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Abstract

In this paper, the issue of maintaining an optimal level of services provided by heat transmission
systems working in indefinite time is analyzed. In such systems, a stable level of services can be
preserved only if parts of the heat transmission pipelines are periodically replaced. It is shown
that the replacement policies that maximize total discounted net benefits in indefinite time are
stationary (i.e., intervals of the pipelines of the same length have to be replaced in each period).
The paper presents methods for determining stationary replacement policies in homogeneous and
non-homogeneous heat transmission pipelines. Moreover, it is shown that, for the purpose of
analyzing stationary replacement, complex heat transmission networks can be decomposed into
a set of non-homogeneous pipelines. Such a decomposition simplifies the analysis and makes the
methods presented useful for investigating heat transmission networks of any size.

Abstrakt

V €lanku je analyzovan problém optimdlni trovné sluzeb, které poskytuji systémy pienosu tepla
pracujici v neomezeném Case. Stabilni troven sluzeb v takovych systémech mize byt zachovana
jen kdyZ se €asti systému pienosu tepla periodicky vyménuji. Je zde poukdzano na fakt, ze
vyménné postupy, které maximalizuji celkové diskontované uzitky v neomezeném case, jsou
stacionarni (tzn., Ze v kazdé periodé je nutné vyménit stejné dlouhou &ast potrubi). Clanek uvadi
metody pro ur€ovani postupu staciondrnich vymeén u homogennich a nehomogennich systému
pfenosu tepla. Je zde také ukdzano, ze pii analyze stacionarnich vymén mohou byt komplexni
sité pfenosu tepla dekomponovany do mnoziny nehomogennich potrubi. Takova dekompozice
zjednodusSuje analyzu a déla ze zde uvedenych metod uZzitecny prostiedek k vySetfovani siti
pfenosu tepla libovolnych velikosti.



Introduction

In the broad class of engineering systems providing services of different kinds,
such as lighting, heating or transportation, the main determinant of leading
economic indicators is the level of performance of durable equipment. This level
usually decreases with the age of the system, and, therefore, a stable flow of
services can be provided only if certain parts of the equipment are replaced from
time to time by new ones. Such replacements, on the one hand, reduce the number
of failures, but, on the other hand, induce additional costs and therefore have to be
analyzed in an economic context.

The issue of the management of durable equipment has been frequently analyzed
in the economic literature. An overview of these studies has been presented, for
instance, by Arrow et al. (1958), Haavelmo (1960), and Zabel (1963). Impetus for
the development of this part of economic theory has come largely from practical
issues such as optimal maintenance of complex electronic equipment, modern
aircraft, computers, communication equipment, spacecraft, optimal replacement
in the military systems, or optimal managing of the stock of machines in the
production sectors (see, e.g., Jorgenson et al., 1967, or Wagner, 1975).

Spatially distributed line transmission or transport systems, such as gas and oil
pipelines, energy supply lines, conveyors in manufacturing systems, power
transmission lines, or heat and water pipelines, state important classes of
engineering systems and have been also frequently analyzed in an economic
context (see, for example, Valqui, 1978; Osiadacz, 1987; De Wolf and Smeers,
1993).

The present paper focuses on the optimal management of durable equipment in
heat transmission systems which are used indefinitely. However, the methods
presented can also be applied to other kinds of transmission systems (under the
assumption that replacements are periodic, the time between replacements is
exogenously given, and the set of conditions concerning technical characteristics
is satisfied).

1. The Heat Transmission System
A heat transmission system can be defined as a set of interconnected pipelines that
link spatially distributed points: a source of the heat energy with a set of receivers.

The elements of this system (heat transmission pipelines) differ in their technical
parameters, such as insulation or diameter, and, consequently, affect the
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operational reliability of the entire heating system differently.

At every moment of the system’s performance, the pipeline can be in one of two
extreme states: good or failed. When the pipeline is good, it performs precisely
according to specification (i.e., it transmits the heat energy); when it has failed,
there is a break in transmission. Failures of the pipeline transfer it from the good
state to the failed. They can occur at any point in the pipeline (i.e., on an arbitrarily
small length of the line, an infinite number of failures can occur). The only action
which transfers the pipeline from a failed state to a good state is a repair which
consists of the replacement of a small piece of failed pipeline just at the point
where the failure occurred. It means that each repair renews only a very small
section of the pipeline. This section is so short in comparison with the length of
the pipeline that the repair does not change the reliability characteristics of the
considered pipeline as a whole (Stepien, 1991a), as is usually assumed. Hence, for
the purpose of reliability analysis, the transmission line can be represented as an
infinite sequence of pieces (renewable elements) with zero length (Stepien,
1991a). The reliability characteristics of every separate piece (i.e., of every
renewable element) cannot be measured, but the reliability indicators of the
pipeline with respect to the standard interval can be estimated empirically

(Stepien, 1991a).

The main reliability characteristics of the lifetime of the heat pipeline is the
pipeline’s failure rate at a given moment t (A(t)), defined as the probability that the
pipeline will fail in the interval (t,t+dt) under the condition that it survived until
moment t:

A(F) = _ SO , t>0
(1) T RO (1)
where F(t) is a cumulative probability function of the lifetime of the heat pipeline,
and f(t)=dF(t)/dt is its probability density function.

It has been shown by Stepien (1991a, 1991b) that the lifetime of heat pipelines is
described by a random variable with a Weibull distribution. Consequently, the
failure rate of the standard interval of the pipeline is specified by

v

MO = Ta(tort, i 0, 2)
Y v

where oo > 0, vy > 0 (see Figure 1). The empirically determined values of

parameters o and Yy, for some types of heat pipelines coming from heat

transmission systems in Poland (Stepien 1991a, 1991b), are presented in Table 1.



Figure 1
Shapes of the Functions of Failure Rates in Weibull Distribution for
A:0<a<1,B:a=1,C: 1 <a<2,D:a=2,E:a>2
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Table 1
Values of parameters o and y of Weibull distributions describing the lifetime of
commonly used types of pipelines (for 100m)

No. Heat insulation Diameter o Y
(mm)
1. Asbestos cement 700 3.9 28.5
2. Asbestos cement 150 5.2 25.0
3. Asbestos cement 80 9.0 13.0
4. Foamed concrete 125 9.0 25.0
5. Foamed concrete 50 9.0 13.0
6. Glass wool 700 5.2 25.0
7. Glass wool 150 9.0 13.0
8. Fill mass 150 9.0 13.0
9. Fill mass 50 4.7 13.5

One can note that, for each particular type of pipeline, the value of parameter o is



greater than 2. This corresponds to a very intensive ageing process characterized
by curve E in Figure 1.

After each failure, the pipeline is repaired by replacing a piece of it. The durations
of these repairs are stochastic and depend on the technical characteristics of the
pipeline repaired (mostly on its diameter), as well as on the organizational
properties of the repair teams. The empirical analysis shows that the durations of
these repairs can be described by a negative exponential distribution (see Stepien,
1991b).

To consider the performance of the heating system in discrete time, let us denote
the failure rate of a certain standard interval (e.g., 100m) of 1 periods old pipeline
as A, (1=0,1,2,...) and assume that the duration of a single period equals one year.
The failure rate A, increases with the number of periods (i=0,1,2...) corresponding
to the ageing process (see curve E in Figure 1). An increase in the number of
failures decreases the level of services provided. A natural way to improve the
reliability of the system (i.e., to decrease the failure rate) is to use breaks between
heating seasons to replace the oldest parts of heat transmission pipelines. The
method for determining the optimal replacements is discussed below.

2. Optimal Replacement Policy for the Homogeneous Pipeline

Assuming that the replacement is carried out during breaks between heating
seasons, the objective of the replacement policy is to find a sequence (1,,1,1,,...) of
intervals of the homogeneous pipeline that have to be replaced in order to
maximize the total discounted net benefits over the life of the system analyzed.

Taking into account that the lifetime of the transmission system is unlimited, the
optimal policy can be derived from the following infinite-horizon, discounted,
dynamic programming problem (it is assumed that the preventive replacement is
done before the heating season):

nax i: Blu (A1) - ¢, 1] 3)

b t=0
where the maximization is subject to

Ayi=gAl), withAg=24; 4)

and
I, is a control variable (the length of the pipeline replaced in period t,
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t=0,1,2,...),

A, is a state variable (the failure rate at the beginning of period t,
t=0,1,2,...),

u,(A,l) is the net benefit (the gross benefit derived from operating the
pipeline less any operating costs) in period t (t = 0,1,...) when the
replacement Le[0,L] (L is the total length of the pipeline analyzed) is
done in this period and the state of the pipeline at the beginning of the
period is characterized by A,;

c, is the cost of replacing the unit of the pipeline (1m);

B is a discount factor (€(0,1)).

Assuming that all the parameters are stationary over time, the optimal solution to
an infinite-horizon, discounted, dynamic programming problem is time-invariant
(see, for example, Sargent, 1987, Chapter 1). Thus, in the problem considered, the
optimal replacement policy is stationary (i.e., |,"’=1,"=1,"=...=1").

To find I', consider a homogeneous pipeline with total length L, in which interval
| is replaced each period. Assume first that the length of the interval replaced (1)
belongs to the interval (L/2,L]. Thus, each period the pipeline considered consists
of an interval (I) of new pipeline (characterized by failure rate A,) and an interval
(L - 1) of one-year-old pipeline (characterized by failure rate A,). Consequently,
the failure rate of 1m of such a pipeline can be determined as

_ [ (L-D), \ _ 1 (L-)l.

= 1-(1-——A)(1 ——=A,) = —[IA,+(L-DA, - y (5)
500" 00 M) ™ Toot e M g

Assuming that A, and A, are small numbers, the last term in the expression above

can be neglected, and, finally, the dependence of the failure rate (A) on the length
1 (when 1€(1/2,L]) of the stationary replacement can be specified as

L 1 / . L
. = — —)\, + 1 - — A. N l L > l> - 6
() IOO[L o * ( L) s 5 (6)
Similarly,
: L 1 / 21 L _
= —[=A, + =A, + (1 - ], if==>1>": (7)
D= Feotyte t gt PRl 7
L .1 [ [ 3/ L
= —[=A, + =A, + =4, + (1 - DA], f=>1>
T A A I AT R TR A (8)
etc. Succinctly,L the lex,pressions above clan be represinted as
= 2 gAY v -0y, s s>
) 100[L,Z_1: PP n o+ ©)



It turns out that the failure rate A(l) is a decreasing function of the stationary
replacement (1) on each interval (L/(n+ 1),L/n], where n=1,2,... . For each such
interval (specified by n) the failure rate (A,) can be represented as a linear function
of the length of the stationary replacement | (Ie(L/(n+1),L/n]):

A(D=a,+b,1, (10)

where a_ (a, > 0) and b, (b, < 0) are constants (for each fixed value of n) defined
as follows:

LA

1 n
e S S < N
“T o0 100(; i1 ) (D

This implies that, in a steady state, the failure rate (i.e., the state variable) is fully
determined by a stationary choice of I, i.e., A(l) = A, (]), if le(L/(n+1),L/n].
Consequently, in order to find the optimal length of the replacement, it is enough
to consider the following optimization problem:

Max { u(A(D,)) - cl } . (12)
/

where u(A(l),]) is the net benefit generated in each period when a preventive
replacement (1) is done during breaks between heating seasons, and c=c,=c¢,=...
denotes the cost of replacing a unit of the pipeline.

Assuming that the total benefit generated by a heating system during one period
when no failures occur (B,) and the average cost of a single repair (k) are constant
in each period, the net benefit generated in each period, u(A(l),l), is determined as
follows:

u(A(D,D) = u(A(D) = B P(A()) ~ kA() , (13)

where

B is the total (gross) benefit generated by a heating system during a single
period when no failures occur;

P(A(])) is the probability that the system works without breaks during the
period considered, when interval | of the pipeline is replaced in each
period;

A(]) is the failure rate of the pipeline when interval 1 is replaced in each
period (A(]): R, - R, such that dA(1)/dl < 0 and d*A(1)/dI* > 0);

k is the average cost of a single repair.



Finally, the objective of the preventive replacement in the case of a homogeneous
pipeline can be specified as

Vax { B PAN(D)) - k A(D) - ¢ 1} (14)
/

The probability P(A(1)) that the system under study works without failures, if
interval 1 is replaced in each period, is specified as follows:
(A
N A — (15)
yAd) + 1, o+ A

where t,(A(])) is the average time in which the pipeline transmits the heat energy
(t=1/A(1)), t.is the average time of a single repair, and pu=1/t. denotes the number
of repairs that can be done in a unit of time.

Taking into account that
AD=AN)=a,+bl, if le(L/(n+1),Ln], (16)

the objective function, when the length of the replacement le(L/(n+ 1),L/n] (for
each fixed value of n, n=1,2,...), can be written as

B
Max | H - b Dk - cl
Lax£ w+a, +bl (@, = b.f) ‘ (17)
n+l’ n

The first derivative of the maximized function with respect to 1 (Ie(L/(n+1),L/n])
equals zero, if

-Bub
~(a, + p) £ and -B u b,
_ \ bk ¢ bk 1o
b}’l
The expression under the root is non-negative if
b, > (19)

i.e., if b e(-c/k,0).

The second derivative of the objective function equals
Zb, B

(i +a +« h N3 ’
(20)



and it is negative if
21)

j> G T H

This implies tha[%:"an interior maximum (in the interval (L/(n+1),L/n], n=1,2,...)
exists only if

-B u b,

~(a, + W - |—— (22)
bk +
- \ bk ¢ L L

b, n+1n

otherwise the maximum in this interval is not interior (b, is constant in the interval
(L/(n+1), L/m], n=1,2,..., and, consequently, in each interval specified by n, at
most one interior maximum exists).

The objective function increases in the interval (L/(n+1),L/n] if its first derivative
with respect to 1 is positive for all le(L/(n+1),L/n], 1.e., if

Bub,
(w +a, + b’
The ratio Bub, /(n+a,+b, 1)* is always negative; therefore, the inequality above is
undoubtedly satisfied if (b,k+c¢) is also negative, i.e., if

- (bk + ) >0 (23)

b < -£. 24
. <2 24)
The values of coefficients b, (n = 1,2,...,) are negative and decrease with n.
Therefore, for sure, there exists such n=n" starting from which b, is smaller than
-c/k (c and k are constant), and, consequently, in all intervals specified by n>n",

the objective function is strictly increasing.

This implies that, in order to find the maximum of the objective function
considered, it is not necessary to analyze more than n’ intervals, taking into
account the interior maximum (if it exists) or the right boundary of the interval
analyzed (note that A(L/n) =a, +b, L/nincreases withn, i.e., A(L/(n+1))> A(L/n),
forn=1,2,...), and to choose the length of the replacement which maximizes the
value of the objective function.

Formally, it can be formulated as the following problem of discrete optimization:

lax { B u
I B +a,+b

; - (a, + bk - cl (25)
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s.t. le{l,,L,...,1.*}
where
n’ is the smallest number of the interval in which the value of coefficient b,
1s smaller than -c/k,
1. (n=1,2,..,n") are determined as

) -B b,
+ _
g \ bk +c c (26)
, if b, > -— and [e(-

b, k A

or
L )
ln = — , otherwise. 27)

n

Note that 1. (n = 1,2,...n") are not necessarily the optimal lengths of the
replacements in the intervals considered. Nevertheless, the optimal length of the
replacement belongs to the set {1,,1,,...,1 *}.

The running time of the algorithm for determining the optimal replacement
depends on the number of intervals analyzed (n"). Taking into account that the
failure rate is determined by (2), the inequality (24) can be represented as

1 o $ . -1 c
b, = — — i- 1) - < -2 (28)
T [,-_Zl( ) 1<
Note that,
Y-t <, (29)
-1 2
for all & > 2. Thus, the inequality (28) is always satisfied if
n”, 100¢,o (30)
2 o k
and, consequently, if
1
n > (w%)a y . (31)

The smallest integer value, i1, such that i > n, estimates from above the number
of intervals that have to be analyzed, n” (i.e., n" is always smaller or at most equal
to ).

As an example, consider L = 2600m of the homogeneous pipeline with the
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diameter 700mm and asbestos cement insulation (¢=3.9, y=28.5). Suppose that
the total benefit generated by a heating system during a single period when no
failures occur (B) equals 10° dollars, the average cost of a single repair (k) is 10°
dollars, and the cost of replacing the unit of pipeline (¢) equals 25 dollars. Assume
also that the average time of a single repair, t, equals 1 day, i.e., 1/365 part of the
year (u = 1/t,=365). The optimal replacement policy can be derived from the
analysis of no more than n"=28 intervals: (L/(n+1),L/n], where n=1,2,...,28 (the
smallest integer number satisfying inequality (31): 1 =31). The value of the
optimal replacement (1") equals L/26 (100m). The corresponding value of the
objective function equals 96,675.31 dollars.

3. The Non-Homogeneous Pipeline

In real heat transmission systems, transmission lines connecting the source with
the receivers usually contain not one but several homogeneous pipelines. In such
systems, each homogeneous pipeline works until its own failure, but every failure
of another pipeline placed between it and the source also interrupts its work. This
means that the pipelines which are placed closer to the source influence the work
of the pipelines placed farther from it but not vice versa.

Analogously, as in the case of homogeneous pipelines, the optimal replacement
policy for the transmission line with J homogeneous intervals can be derived from
the following optimization problem:

max D BT Dyl sl ) = Dy, (32)
Liys =0 j=1
1,2,..., J, t=0,1,...
where the maximization is subject to

Al,tﬂ :g(Al,vll,t) > (33)

Az,m :g(Az,tslz,t) ) (34)
AJ,t+1.:g(AJ,t51],t) ) (35)

with AI,O:)“I,Oa Az,oz)bz,(b s A.l,():)kl,o ; (36)

1, ,1,4»-...1; are the control variables (the lengths of the pipelines replaced in
period t, t=0,1,2,...),
A A\, Ay are the state variables (the failure rates at the beginning of
period t, t=0,1,2,...),
(ANl el is the net benefit in period t (t = 0,1,...), when
Lephacements 1yef0 B (I is thovtotal length of tf@ﬁéjp,ﬁljimej, 1=1,2,...0)
el

A N , e
are done 1n this period, anci the states of the pipelmes at the beginning of
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the period are characterized by A, G=1,2,...,J):
(37)

B, is the total return generated by the system in period t when no failures
occur,
P(A, .\l eo0ly,) is the probability that no failures occur during
period t,
k;, is the average cost of a single repair of pipeline j in period t;
¢, is the cost of replacing a unit of pipeline j, in period t (t=0,1,2,...);
B is a discount factor (f£(0,1)).

If all the parameters are stationary over time, the optimization problem above is
a typical infinite-horizon dynamic programming problem, and, consequently, the
solution to it is stationary, i.e., |, ,=1, ;=1 ,=..=1,",... | ,=1,,=1,=...=]".

Similar to the case of a homogeneous pipeline, if a stationary replacement policy
is applied, then the state variables are fully determined by the values of stationary
replacements 1,,1,,...,1,. Therefore, assuming that the values of B, k;, ¢, are constant

over time, the optimization problem can be formulated as follows:

{})@-]x { B P(Al(ll)’AZ(lz)’ )) — ZA(l)k _ Zc (38)
9':1:2,1..,.,J
where
L i 0l .
—O _ Z -1 - #) )\'j,nj] ’ lf;J > lj > (39)
(ﬂ_,j_l,2,... ); / J

A;; is the failure rate of pipeline j (j=1,2,...,J) in period i (i=1,2,...).

Similar to the case of a single homogeneous pipeline, one can show that there exist
nj* (G = 12,..J) such that the objective function increases with I if
le(Ly/(n; + 1),Li/n;], for all n; > nj* g =1.2,...,J), and, consequently, that the
maximum of the objective function can be determined (analytically or using
numerical methods) on a finite number of the intervals.

The crucial point of the analysis is the determination of the probability

P(A,(1),A,(1,),...,Ay(l;)) of the working state of the system under study. Taking into
account that
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e a stationary replacement policy makes the failure rate constant, i.e., it

converts the Weibull distribution of the lifetime of each homogeneous

pipeline into a negative exponential distribution, and

* the repair time is arandom variable with negative exponential distribution,
this probability can be determined using the Markov chains technique (see
Kleinrock, 1975, for details). The corresponding method for determining the
probability of the “good” state of the non-homogeneous pipeline as the function
of the stationary replacements 1,,1,,...,1; is presented below.

If the indicator of the state of the homogeneous pipeline j (j=1,2,...,J) is denoted
as

1, if the homogeneous pipeline j is repaired,

aj:{ 0, otherwise, (40)

then the states of the heat transmission system with J homogeneous pipelines can
be described by the vectors S, =(a,,a,,...,a;), a,€{0,1} (j=1,2,...,J). Subscripts m
(m=1,...,2") which identify the states (S,,) are specified as m=N, + 1, where N is
a decimal representation of the binary number specified by the sequence a,,a,,...,a;
of elements of the corresponding vector. Each state (S,, m=1,2,...,2") can be
represented as a point in a J-dimensional Euclidean space with coordinates
(a;,,,...,a;). Thus, transitions from the one state to another are possible only if
these states differ by only one coordinate (i.e., if the Euclidean distance between
these states equals one). Formally, the state-transition-rate diagram of the Markov
chain which corresponds to the non-homogeneous pipeline with J homogeneous
intervals is specified by the directed graph:

G=(S,D,u), (41)

where
S is a set of vertices which is equal to the set of states

S={S,,S,, .... Sy)),

D is a set of directed arcs (D<S % S), such that the arc (S,,,S,) belongs to D
in the two following cases:

(1) if the vectors describing states S, and S, differ only by the value of
one coordinate (say y, 1<y<J), and m > z;

(2) if vectors describing states S and S, differ only by the value of one
coordinate (say y, 1<y<J), the first y coordinates of the vector
corresponding to state S equal zero (ie., a,= a,=..=a,=0), and
m <z

u is a transition rate function that assigns the following numbers to the arcs
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(SwsS,) ((8,S,)eD) of graph G:

u,, if (S,,S,) is a subject to the case 1,

S,..S,) = { i . .
u(SmS,) A, if (S,,,S,) is a subject to the case 2.

(42)

The state-transition-rate diagrams for pipelines with J =1, J =2, and J =3
homogeneous lines are presented in Figure 2.
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Figure 2
State-Transition-Rate Diagram for a Non-Homogeneous Pipeline
with (a) J=1, (b) J=2, (c) J=3 Homogeneous Intervals
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The vector of stationary probabilities t= [1t,,T,,...,7,1], where 7, is the stationary
probability that the system considered is in state m (m = 1,2,...,2"), can be
calculated from the following system of linear equations:

Qn=0 43)
Yool (44)
m=1

where matrix Q is the infinitesimal generator of the Markov process:

Q= {qmjz }, mz=12,..2"; (45)

where elements outside the main diagonal q,,, (m#z) are rates of transition from
state S, to state S,, i.e., q,,,=u(S,,S,), (m,z= 1,2,...,2", m#z), while the elements
on the main diagonal g, ,, make the sum of elements of each row equal to zero, i.e.,

Qum= ~ Z Z’l(Sm’S:) : (46)

zrl,...,ZJ, z#m

The equations specified by the first expression are linearly dependent, thus one of
them should be neglected.

The probability of state S,:(0,0,...,0), i.e., the probability that the non-
homogeneous pipeline transmits the heat energy, is determined as

7, = det(H")/det(H) . 47)

Matrices H and H' are specified as follows:

H= |h,, |, mz=12,.2"; (48)
where
1 ifm=2'
S “9)
: Qm,» Otherwise,
and
H'= {hlm’z }, mz=1.2,..2"; (50)

where
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6D

m,z

o :{ 0, ifz=landm<2’,
h

m,z *

otherwise.

The expression (47) represents the probability that the non-homogeneous pipeline
works without any breaks during the period considered, as a function of the failure
rates of the homogeneous pipelines, and, consequently, as a function of the
stationary replacements 1, j=1,2,...J (see Cukrowski, 1993, for details). Note that,
in the real world, even in large heat transmission networks, the number of
homogeneous intervals (J) in non-homogeneous pipelines is usually small (see
Section 5), and, consequently, determination of the probability , is relatively
simple.

Knowing the relationship between the lengths of the stationary replacements and
the probability that the non-homogeneous pipeline works without any brakes
during the period considered:

PA,(1,),Ay(L,),... A1) = T, = det(H")/det(H) , (52)

the lengths of the optimal stationary replacements can be determined by finding
the solution to the maximization problem specified at the beginning of this section.
However, for complex pipelines (i.e., for large number of homogeneous intervals),
a numerical analysis has to be applied (see Cukrowski, 1993, for an example).

4. Heat Transmission Networks

The heat transmission pipelines considered in the previous sections are usually
included into networks where many receivers are connected with only one source
of heat energy. A simple case of a heat transmission network (three receivers and
five intervals of homogeneous transmission lines) is presented in Figure 3.

In such a network every receiver is connected with the source by a set of
homogeneous pipelines £, (q=1,2,...,Q, where Q denotes the number of receivers).

An optimal stationary replacement policy for the heat transmission network can
be derived from the following optimization problem:

0 J J
iv]c (Y BP (AL ML) = D AWDE — Y ¢ (53)
75 =1 j=1 Jj=1
ey o ! L. I Wi I’ljl L. ;
where /) = —L LY A+ (L= =DA, T, if-+L>1>—
10 Ljizl Lj / l’lj I’ZJ (54)
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Figure 3
A Simple Structure of a Heat Transmission Network

TEHMINAL

LINE 1
SOURCE MAIN LINE
TRANSITORY
LINE

q=3

RECEIVER
2 TERMIMNAL TERMINAL

LINE 2 LINE 3

RECEIVER
3

B, denotes the return generated by connection q in a single period when no
failures occur;

P (A (1),Ax(1y),....,A (1y)) is the probability that connection q works during
the period considered, if the intervals 1,l,,...,], are replaced in each
period;

A(l)) denotes the failure rate of pipeline j, if the stationary replacement
equals 1,

k; is the average cost of a single repair of pipeline j;

¢; is the average cost of replacement of one unit of pipeline j;

L; is the length of pipeline j;

j specifies the homogeneous pipeline (j = 1,2,...,J, J is the number of
homogeneous pipelines in the network considered).

The probabilities P, (9= 1,2,...,Q), as functions of the lengths of the replaced
intervals, can be derived from the Markovian analysis of the transmission network.
However, the analysis of the network with J intervals of homogeneous pipelines
leads to a Markov chain with 2’ states, and, consequently, to a system of 2’ linear
equations. The solution to this system gives expressions for the probabilities P
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(q=1,2,...,Q), but, in general, if the number of intervals of homogeneous pipelines
in the network is large, such an analysis faces serious computational problems.
These problems can be avoided if every connection source-receiver specified in
the network is analyzed separately (typically each connection contains only a few
homogeneous intervals). A decomposition of the network is possible, because the
probability (P ) that receiver q (q=1,2....,Q) works during the period considered
depends only upon the failure rates of the homogeneous pipelines that connect
receiver q with the source (i.e., upon the pipelines that belong to the set & ). This
implies that the probabilities P, (q=1,2,...,Q), as functions of the lengths of
intervals of homogeneous pipelines replaced in each period, can be derived from
the analysis of separated non-homogeneous pipelines specified by the sets & (as
in Section 4), and the lengths of optimal replacements can be computed from the
analysis of the above optimization problem (a numerical example of this analysis
is presented in Cukrowski, 1993). It turns out that the complexity of analysis is
determined not by the number of homogeneous pipelines in the network, but by
the maximum number of pipelines in a single connection source-receiver.

Conclusion

A stable level of services provided by heat transmission systems can be
maintained only if some parts of durable equipment (heat transmissions pipelines)
are periodically replaced. The paper shows that the replacement policy which
maximizes total discounted net benefits in the case when the system works
indefinitely is stationary, i.e., that intervals of pipelines of the same length have
to be replaced in each period.

In the simplest heat transmission system (a single homogeneous pipeline), the
optimal length of the interval replaced can be determined through a simple
problem of discrete optimization. Optimal replacement policies in complex heat
transmission systems can be easily computed numerically under the condition that
the probabilities of the working state of the non-homogeneous pipelines
connecting the source with the receivers are specified as functions of the lengths
of the intervals replaced. Stationary replacement and, consequently, an
exponentially distributed time between failures (when the replacement policy is
applied) allow us to determine these probabilities with the help of the Markov
chain technique.

Optimal replacement policies for heat transmission networks can also be found

numerically, based on expressions for probabilities of the network’s states. These
probabilities can be derived from the Markov chain of the whole network.
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However, the complexity of the analysis significantly decreases if the network
considered is decomposed into a set of connections (non-homogeneous pipelines
linking the source with the receivers), and the expressions for the corresponding
probabilities are derived in a set of separate models. Such a decomposition makes
the methods presented in the paper useful for the analysis of replacement policies
in heat transmission networks of any size.
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