Photosynthetica, 2020 (vol. 58), 1

Photosynthetica 2020, 58(1):146-155 | DOI: 10.32615/ps.2019.168

High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress

C. XU1,†, Z.Q. YANG1,2, S.Q. YANG1,†, L. WANG1,†, M.T. WANG3,5
1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu Province, China
2 Binjiang College, Nanjing University of Information Science and Technology, Wuxi, China
3 Sichuan Meteorological Observatory, Chengdu, Sichuan Province, China
5 Water-Saving Agriculture in Southern Hill Area Key Laboratory of Sichuan Province, Chengdu, Sichuan Province, China

This study investigated the effects of high humidity on the growth and photosynthetic and physiology traits of tomato plants under high temperature stress (HT). The results showed that high humidity effectively alleviated the limitation of HT on plant growth and increased the root-to-shoot ratio. In addition, high humidity also increased the chlorophyll content, net photosynthetic rate, and maximum photochemical quantum yield of PSII in tomato seedlings under HT stress, but declined the stomatal limitation value. Moreover, JIP-test showed that increasing air humidity improved the quantum yields and efficiencies of HT-stressed tomato plants and increased the size of functional antenna, while reduced the activity of a portion of reaction centers. Besides, high humidity increased the activity of antioxidant enzymes, but decreased the content of malondialdehyde and hydrogen peroxide in HT-stressed tomato plants. Therefore, high humidity improved the growth and alleviated photoinhibition and oxidative stress of tomato seedlings under heat stress.

Additional key words: chlorophyll fluorescence; Lycopersicon esculentum Mill.; photosynthesis.

Received: June 23, 2019; Revised: November 26, 2019; Accepted: December 11, 2019; Prepublished online: February 4, 2020; Published: March 10, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
XU, C., YANG, Z.Q., YANG, S.Q., WANG, L., & WANG, M.T. (2020). High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress. Photosynthetica58(1), 146-155. doi: 10.32615/ps.2019.168.
Download citation

Supplementary files

Download fileXu 2312 suplement.docx

File size: 17.9 kB

References

  1. Almeselmani M., Deshmukh P., Sairam R. et al.: Protective role of antioxidant enzymes under high temperature stress. - Plant Sci. 171: 382-388, 2006. Go to original source...
  2. Ansari W.A., Atri N., Singh B. et al.: Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. - Photosynthetica 56: 1019-1030, 2018. Go to original source...
  3. Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373-399, 2004. Go to original source...
  4. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  5. Barker J.: Effects of day and night humidity on yield and fruit quality of glasshouse tomatoes (Lycopersicon esculentum Mill.). - J. Hortic. Sci. 65: 323-331, 1990. Go to original source...
  6. Berry J., Björkman O.: Photosynthetic response and adaptation to temperature in higher plants. - Ann. Rev. Plant Physio.31: 491-543, 1980. Go to original source...
  7. Camejo D., Rodríguez P., Morales M.A. et al.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. - J. Plant Physiol. 162: 281-289, 2005. Go to original source...
  8. Choudhury S., Panda P., Sahoo L., Panda S.A.: Reactive oxygen species signaling in plants under abiotic stress. - Plant Signal Behav. 8: e23681, 2013. Go to original source...
  9. Cruz De Carvalho M.H.: Drought stress and reactive oxygen species: production, scavenging and signaling. - Plant Signal Behav. 3: 156-165, 2008.
  10. Cruz-Ortega R., Ayala-Cordero G., Anaya A.L.: Allelochemical stress produced by the aqueous leachate of Callicarpa acuminata: Effects on roots of bean, maize, and tomato. - Physiol. Plantarum 116: 20-27, 2002. Go to original source...
  11. Das S., Krishnan P., Nayak M. et al.: High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. - Environ. Exp. Bot. 101: 36-46, 2014. Go to original source...
  12. Dhindsa R.S., Matowe W.: Drought tolerance in two mosses: Correlated with enzymatic defence against lipid peroxidation. -J. Exp. Bot. 32: 79-91, 1981. Go to original source...
  13. Farquhar G.D., von Caemmerer S., Berry J.A.: Models of photosynthesis. - Plant Physiol. 125: 42-45, 2001. Go to original source...
  14. Fromm J., Lautner S.: Electrical signals and their physiological significance in plants. - Plant Cell Environ. 30: 249-257, 2007. Go to original source...
  15. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Bioch. 48: 909-930, 2010. Go to original source...
  16. Han W., Yang Z., Huang L. et al.: Fuzzy comprehensive evaluation of the effects of relative air humidity on the morpho-physiological traits of Pakchoi (Brassica chinensis L.) under high temperature. - Sci. Hortic.-Amsterdam 246: 971-978, 2019. Go to original source...
  17. Hodges D.M., DeLong J.M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. - Planta 207: 604-611, 1999. Go to original source...
  18. Huang Y.H., Li Y.L., Wen X.Z.: [The effect of different air humidity on vegetative growth of greenhouse tomato under high temperature.] - North. Hortic. 15: 138, 2010. [In Chinese]
  19. Huseynova I.M.: Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. - BBA-Bioenergetics. 1817: 1516-1523, 2012.
  20. Krause G., Weis E.: Chlorophyll fluorescence and photosynthesis: The basics. - Annu. Rev. Plant Biol. 42: 313-349, 1991. Go to original source...
  21. Krishnan P., Ramakrishnan B., Reddy K.R., Reddy V.R.: High-temperature effects on rice growth, yield, and grain quality. -Adv. Agron. 111: 87-206, 2011. Go to original source...
  22. Lautner S., Stummer M., Matyssek R. et al.: Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation. - Plant Cell Environ. 37: 254-260, 2014. Go to original source...
  23. Li X., Ahammed G., Zhang Y. et al.: Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants. - Plant Biol. 17: 81-89, 2015. Go to original source...
  24. Lu T., Yu H., Li Q. et al.: Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. - Front. Plant Sci. 10: 490, 2019. Go to original source...
  25. Marečková M., Barták M., Hájek J.: Temperature effects on photosynthetic performance of Antarctic lichen Dermato-carpon polyphyllizum: a chlorophyll fluorescence study. - Polar Biol. 42: 685-701, 2019. Go to original source...
  26. Martínez-Téllez M.A., Lafuente M.T.: Effect of high temperature conditioning on ethylene, phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase activities in flavedo of chilled <Fortune> mandarin fruit. - J. Plant Physiol. 150: 674-678, 1997. Go to original source...
  27. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  28. Muraoka H., Tang Y., Terashima I. et al.: Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema hetero-phyllum in natural high light. - Plant Cell Environ. 23: 235-250, 2000. Go to original source...
  29. Murkowski A.: Heat stress and spermidine: Effect on chlorophyll fluorescence in tomato plants. - Biol. Plantarum 44: 53-57, 2001. Go to original source...
  30. Noctor G., Foyer C.H.: Ascorbate and glutathione: Keeping active oxygen under control. - Annu. Rev. Plant Biol. 49: 249-279, 1998. Go to original source...
  31. Pan C., Ahammed G.J., Li X., Shi K.: Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. - Front. Plant Sci. 9: 1739, 2018. Go to original source...
  32. Peet M.M., Willits D., Gardner R.: Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. -J. Exp. Bot. 48: 101-111, 1997. Go to original source...
  33. Prasad P., Pisipati S., Momčilović I., Ristic Z.: Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. - J. Agron. Crop Sci. 197: 430-441, 2011. Go to original source...
  34. Pukacka S., Ratajczak E.: Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. - J. Plant Physiol. 162: 873-885, 2005. Go to original source...
  35. Rai A.C., Singh M., Shah K.: Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. - Plant Physiol. Bioch. 61: 108-114, 2012.
  36. Saeed A., Hayat K., Khan A.A., Iqbal S.: Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). - Int. J. Agric. Biol. 9: 649-652, 2007.
  37. Shu S., Tang Y., Yuan Y. et al.: The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. - Plant Physiol. Bioch. 107: 344-353, 2016. Go to original source...
  38. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  39. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  40. Su P., Liu X.: Photosynthetic characteristics of linze jujube in conditions of high temperature and irradiation. - Sci. Hortic.-Amsterdam 104: 339-350, 2005.
  41. Su W.C., Sun L.L., Wu R.H. et al.: Effect of imazapic residues on photosynthetic traits and chlorophyll fluorescence of maize seedlings. - Photosynthetica 55: 294-300, 2017. Go to original source...
  42. Sukhov V., Gaspirovich V., Mysyagin S., Vodeneev V.: High-temperature tolerance of photosynthesis can be linked to local electrical responses in leaves of pea. - Front. Physiol. 8: 763, 2017. Go to original source...
  43. Sukhov V.: Electrical signals as mechanism of photosynthesis regulation in plants. - Photosynth. Res. 130: 373-387, 2016. Go to original source...
  44. Sukhov V., Surova L., Sherstneva O. et al.: Variation potential induces decreased PSI damage and increased PSII damage under high external temperatures in pea. - Funct. Plant Biol. 42: 727-736, 2015. Go to original source...
  45. Sukhova E., Mudrilov M., Vodeneev V., Sukhov V.: Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. - Photosynth. Res. 136: 215-228, 2018. Go to original source...
  46. Surova L., Sherstneva O., Vodeneev V. et al.: Variation potential-induced photosynthetic and respiratory changes increase ATP content in pea leaves. - J. Plant Physiol. 202: 57-64, 2016. Go to original source...
  47. Tang L., Kwon S.Y., Kim S.H. et al.: Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. - Plant Cell Rep. 25: 1380-1386, 2006. Go to original source...
  48. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plants' vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants. - In: Varma A. (ed.): Mycorrhiza. State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. 3rd edition. Pp. 679-703. Springer, Berlin-Heidelberg 2008. Go to original source...
  49. van der Ploeg A., Heuvelink E.: Influence of sub-optimal temperature on tomato growth and yield: A review. - J. Hortic. Sci. Biotech. 80: 652-659, 2005. Go to original source...
  50. van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147-150, 1990. Go to original source...
  51. Wang L., Yang Z.Q., Wang M.T. et al.: [Effect of air humidity on nutrient content and dry matter distribution of tomato seed-lings under high temperature.] - Chin. J. Agrometeorol. 39: 304-313, 2018. [In Chinese]
  52. Wang L., Yang Z.Q., Yang S.Q. et al.: [Effects of high temperature and different air humidity on growth and senescence characteristics for tomato seedlings.] - Chin. J. Agrometeorol. 38: 761-770, 2017. [In Chinese]
  53. Wu M., Kubota C.: Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. - Sci. Hortic.-Amsterdam 116: 122-129, 2008. Go to original source...
  54. Xu C., Yang Z., Wang M. et al.: Effects of low temperature on photosynthesis and antioxidant enzyme activities of Panax notoginseng during seedling stage. - Int. J. Agric. Biol. 21: 1279-1286, 2019.
  55. Yan K., Chen P., Shao H. et al.: Effects of short-term high temperature on photosynthesis and photosystem II perfor-mance in sorghum. - J. Agron. Crop Sci. 197: 400-408, 2011. Go to original source...
  56. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  57. Zaharieva I., Dau H.: Energetics and kinetics of S-state transitions monitored by delayed chlorophyll fluorescence. - Front. Plant Sci. 10: 386, 2019. Go to original source...
  58. Zeliou K., Manetas Y., Petropoulou Y.: Transient winter leaf reddening in Cistus creticus characterizes weak (stress-sensitive) individuals, yet anthocyanins cannot alleviate the adverse effects on photosynthesis. - J. Exp. Bot. 60: 3031-3042, 2009. Go to original source...
  59. Zhou R., Yu X., Kjær K.H. et al.: Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. - Environ. Exp. Bot. 118: 1-11, 2015. Go to original source...