Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(SI):608-621 | DOI: 10.32615/ps.2020.025

Special issue in honour of Prof. Reto J. Strasser – Photosynthetic activity as assessed via chlorophyll a fluorescence suggests a role of potassium channels in root to shoot signaling

O.V. VOITSEKHOVSKAJA1, V.I. APOLLONOV1, A.V. MURTUZOVA1, C.K. RABADANOVA1, M.A. CHARNYSH2, I.V. DROZDOVA3, A.I. BELYAEVA3, O.N. KOVALEVA5, I.G. LOSKUTOV5, K. PAWLOWSKI6, V.V. DEMIDCHIK2, E.V. TYUTEREVA1
1 Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Professora Popova 2, 197376 St.-Petersburg, Russia
2 Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, 220030, Minsk, Belarus
3 Laboratory of Ecology of Plant Communities, Komarov Botanical Institute, Russian Academy of Sciences, Professora Popova 2, 197376 St.-Petersburg, Russia
5 Department of Genetic Resources of Oat, Barley and Rye, N.I. Vavilov Institute of Plant Genetic Resources (VIR), 44 Bolshaya Morskaya Str., 190000 St.-Petersburg, Russia
6 Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden

Potassium is indispensable for plant growth. Recently, a role of K+ channels has emerged in sensing and transducing stress and nutrient status. Tetraethylammonium (TEA+) is a specific blocker of K+ transport and affects K+ channel gene expression. Two barley varieties with contrasting salinity tolerance, and a chlorophyll b-less mutant, were grown either in the presence of TEA+ alone or combined with NaCl, at two different concentrations of external K+ and Ca2+, and were analyzed nine days after germination. Chlorophyll a transients monitored via JIP-tests were used to evaluate the state of the photosynthetic machinery. In contrast to reported responses to K+ deficiency, TEA+ inhibited shoot growth while inducing root growth and increasing photosynthetic performance. Both TEA+ and NaCl induced the appearance of negative K-bands in OJIP kinetics and an increase in PIABS, indicating a stimulation of photosynthesis by increased sink strength in the context of root to shoot signaling.

Additional key words: chlorina f2; ion content; quaternary ammonium salts; salt stress.

Received: October 30, 2019; Revised: March 12, 2020; Accepted: March 16, 2020; Prepublished online: April 4, 2020; Published: May 28, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
VOITSEKHOVSKAJA, O.V., APOLLONOV, V.I., MURTUZOVA, A.V., RABADANOVA, C.K., CHARNYSH, M.A., DROZDOVA, I.V., ... TYUTEREVA, E.V. (2020). Special issue in honour of Prof. Reto J. Strasser – Photosynthetic activity as assessed via chlorophyll a fluorescence suggests a role of potassium channels in root to shoot signaling. Photosynthetica58(SPECIAL ISSUE), 608-621. doi: 10.32615/ps.2020.025.
Download citation

References

  1. Ache P., Becker D., Ivashikina N. et al.: GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. - FEBS Lett. 486: 93-98, 2000. Go to original source...
  2. Ball M.C., Chow W.S., Anderson J.M.: Salinity-induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide. - Aust. J. Plant Physiol. 14: 351-361, 1987. Go to original source...
  3. Bogeat-Triboulot M.B., Brosché M., Renaut J. et al.: Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. - Plant Physiol. 143: 876-892, 2007. Go to original source...
  4. Carrarretto L., Formentin E., Teardo E. et al.: A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. - Science 342: 114-118, 2013. Go to original source...
  5. Chow W.S., Ball M.C., Anderson J.M.: Growth and photosynthetic response of spinach to salinity: Implications of K+ nutrition for salt tolerance. - Aust. J. Plant Physiol 17: 563-578, 1990. Go to original source...
  6. Çiçek N., Oukarroum A., Strasser R.J., Schansker G.: Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. - Photosynth. Res. 136: 291-301, 2018.
  7. Demidchik V.: Mechanisms and physiological roles of K+ efflux from root cells. - J. Plant Physiol. 171: 696-707, 2014. Go to original source...
  8. Demidchik V., Cuin T.A., Svistunenko D. et al.: Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. - J. Cell Sci. 123: 1468-1479, 2010. Go to original source...
  9. Demidchik V., Davenport R.J., Tester M.A.: Nonselective cation channels in plants. - Annu. Rev. Plant Biol. 53: 67-107, 2002. Go to original source...
  10. Demidchik V., Shabala S.N., Coutts K.B. et al.: Free oxygen radicals regulate plasma membrane Ca2+-and K+-permeable channels in plant root cells. - J. Cell Sci. 116: 81-88, 2003. Go to original source...
  11. Demidchik V., Tester M.A.: Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. - Plant Physiol. 128: 379-387, 2002. Go to original source...
  12. Demidchik V., Tyutereva E.V., Voitsekhovskaja O.V.: The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. - Funct. Plant Biol. 45: 28-46, 2018. Go to original source...
  13. Dreyer I., Gomez-Porras J. L., Riedelsberger J.: The potassium battery: a mobile energy source for transport processes in plant vascular tissues. - New Phytol. 216: 1049-1053, 2017. Go to original source...
  14. Dukic E., Herdean A., Cheregi O. et al.: K+ and Cl- channels/transporters independently fine-tune photosynthesis in plants. - Sci. Rep.-UK 9: 8639, 2019. Go to original source...
  15. Durand M., Porcheron B., Hennion N. et al.: Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. - Plant Physiol. 170: 1460-1479, 2016. Go to original source...
  16. Fuchs I., Stölzle S., Ivashikina N., Hedrich R.: Rice K+ uptake channel OsAKT1 is sensitive to salt stress. - Planta 221: 212-221, 2005. Go to original source...
  17. Hermans C., Hammond J.P., White P.J., Verbruggen N: How do plants respond to nutrient shortage by biomass allocation? - Trends Plant Sci. 11: 610-617, 2006. Go to original source...
  18. Ho C.H., Lin S.H., Hu H.C., Tsay Y.F.: CHL1 functions as a nitrate sensor in plants. - Cell 138: 1184-1194, 2009. Go to original source...
  19. Hoagland D.R., Arnon D.I.: The Water-Culture Method for Growing Plants without Soil. Pp. 32. The College of Agri-culture, University of California, Berkeley 1950.
  20. Ivashikina N., Becker D., Ache P. et al.: K+ channel profile and electrical properties of Arabidopsis root hairs. - FEBS Lett. 508: 463-469, 2001. Go to original source...
  21. Jezek M., Blatt M.R.: The membrane transport system of the guard cell and its integration for stomatal dynamics. - Plant Physiol. 174: 487-519, 2017. Go to original source...
  22. Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. - Plant Physiol. Bioch. 81: 16-25, 2014. Go to original source...
  23. Kalaji H.M., Rastogi A., Živčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  24. Kaňa R., Govindjee: Role of ions in the regulation of light harvesting. - Front. Plant Sci. 7: 1849, 2016.
  25. Leigh R.A., Wyn Jones R.G.: A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. - New Phytol. 97: 1-13, 1984. Go to original source...
  26. Li J., Wu W.-H., Wang Y.: Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+. - J. Integr. Plant Biol. 59: 895-909, 2017. Go to original source...
  27. Lichtenthaler H.K, Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. - Biochem. Soc. T. 11: 591-592, 1983. Go to original source...
  28. Liu H.-Y., Sun W.-N., Tang Z.-C.: Co-regulation of water channels and potassium channels in rice. - Physiol. Plantarum 128: 58-69, 2006. Go to original source...
  29. Oukarroum A., El Madidi S., Schansker G., Strasser R.J.: Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. - Environ. Exp. Bot. 60: 438-446, 2007. Go to original source...
  30. Oukarroum A., El Madidi S., Strasser R.J.: Drought stress induced in barley cultivars (Hordeum vulgare L.) by polyethylene glycol, probed by germination, root length and chlorophyll a fluorescence rise (OJIP). - Arch. Sci. Genève 59: 65-74, 2006.
  31. Pawlowska B., Biczak R.: Evaluation of the effect of tetra-ethylammonium bromide and chloride on the growth and development of terrestrial plants. - Chemosphere 149: 24-33, 2016. Go to original source...
  32. Pier P.A., Berkowitz G.A.: Modulation of water-stress effects on photosynthesis by altered leaf K+. - Plant Physiol. 85: 655-661, 1987. Go to original source...
  33. Plyusnina T.Yu., Khruschev S.S., Riznichenko G.Yu. et al.: An analysis of the chlorophyll fluorescence transient by spectral multi-exponential approximation. - Biofizika 60: 392-399, 2015. Go to original source...
  34. Pottosin I., Shabala S.: Transport across chloroplast membranes: Optimizing photosynthesis for adverse environmental conditions. - Mol. Plant 9: 356-370, 2016. Go to original source...
  35. Rabadanova C.K., Tyutereva E.V., Mackievic V.S. et al.: Cellular and molecular mechanisms controlling autophagy: A perspective to improve plant stress resistance and crop productivity. - Agric. Biol. 53: 881-896, 2018. Go to original source...
  36. Roberts S.K., Snowman B.N.: The effects of ABA on channel-mediated K+ transport across higher plant roots. - J. Exp. Bot. 51: 1585-1594, 2000. Go to original source...
  37. Shabala S.: Signalling by potassium: another second messenger to add to the list? - J. Exp. Bot. 68: 4003-4007, 2017. Go to original source...
  38. Shabala S., Cuin T.A.: Potassium transport and plant salt tolerance. - Physiol. Plantarum 133: 651-669, 2008. Go to original source...
  39. Shabala S., Demidchik V., Shabala L., Newman I.: Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. - Plant Physiol. 141: 1653-1665, 2006. Go to original source...
  40. Shabala S., Shabala L., van Volkenburgh E. et al.: Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves. - J. Exp. Bot. 56: 1369-1378, 2005. Go to original source...
  41. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  42. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores-cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  43. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  44. Sustr M., Soukup A., Tylova E.: Potassium in root growth and development. - Plants 86: 435, 2019. Go to original source...
  45. Touati M., Knipfer T., Visnovitz T. et al.: Limitation of cell elongation in barley (Hordeum vulgare L.) leaves through mechanical and tissue-hydraulic properties. - Plant Cell Physiol. 56: 1364-1373, 2015. Go to original source...
  46. Udovenko G.V., Volkova A.M.: [Determination of salinity tolerance in crops at the early developmental stage using a complex of growth characteristics (guidelines).] Pp. 15. N.I. Vavilov Institute, St. Petersburg 1993. [In Russian]
  47. Wu H., Zhang X., Giraldo J.P., Shabala S.: It is not all about sodium: Revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. - Plant Soil 431: 1-17, 2018. Go to original source...
  48. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  49. Zhu J.-K.: Abiotic stress signaling and responses in plants. - Cell 167: 313-324, 2016. Go to original source...
  50. Zörb C., Senbayram M., Peiter E.: Potassium in agriculture - Status and perspectives. - J. Plant Physiol. 171: 656-669, 2014. Go to original source...