

OPTICKÉ SENZORY 2

OBSAH

- VLNOVODNÉ SENZORY
- Senzory využívající evanescentní vlnu Refraktometrické + ATR
- Senzory reflexní
- Optické mřížky
- Senzory s povrchovými plazmony
- MINIATURIZACE SENZORU
- Tapery
- Nanočástice
- Mikrorezonátory
- NOVÉ SMĚRY
- Fotonické krystaly, zobrazovací senzory

Evanescentní vlnovodné senzory Detekční místo v plášti vlnovodu

Využívají interakci detekovaných veličin s částí optického vidu - evanescentní vlnou, která prochází optickým pláštěm vlnovodu.

Detekovaná proměnná (tlak, teplota, chemická látka, buňka) mění **optické vlastnosti v optickém plášti** – absorpční koeficient, luminiscenci, index lomu - a tedy mění parametry evanescentní vlny procházející pláštěm (amplituda, fáze, polarizace). Tyto změny se přenáší do části optického vidu v jádře a jsou detekovány na konci vlnovodu.

Princip evanescentního senzoru Detekční místo v plášti vlnovodu

Evanescentní vlna - vlastnosti

 Optický výkon v plášti standardních vláknových vlnovodů P_{clad} je malý η~0.01 z celkového výkonu ve vlnovodu P→malá odezva na změny v plášti

$$P_{clad} = P \eta \approx P \frac{\sqrt{8}}{3} \frac{1}{V} = P \frac{\sqrt{8}}{3} \frac{\lambda}{\pi d \sqrt{n_1^2 - n_2^2}}$$

d-průměr jádra, n₁ jeho index lomu, n₂ – index lomu pláště, λ - vlnová délka

2. Evanescentní vlna proniká do vzdálenosti x=100-300 nm od rozhraní jádro/plášť v důsledku exponenciálního poklesu intenzity el. pole E se vzdáleností; analyt musí být v oblasti d_p Pro hloubku průniku d_p platí

$$E \approx e^{-\frac{x}{d_p}} \quad d_p = \frac{\lambda}{2\pi\sqrt{n_1^2 \sin^2 \Psi - n_2^2}}$$

Vyšší vidy s $\Psi \rightarrow \Psi_c$ mají d_p vyšší

Evanescentní vlnovodné senzory- realizace

- Výchozí vlnovod PCS vlákno, polymerní vlákno, SM vlákno, planární vlnovod
- 2. Zajištění přístupu do oblasti evanescentní vlny, tj. k rozhraní jádro/plášť \Rightarrow
- odstranění pláště jednoduše u PCS a polymerních vláken u ostatních nutno plášť odbrousit.

Evanescentní senzory

- refraktometrické měří změny indexu lomu pláště
- ATR (tlumený úplný odraz) měří změny absorpčního koeficientu

Evanescentní vlnovodné senzory -Změna absorpčního koeficientu ε, indexu lomu n pláště 2

Pro každý paprsek i: $P_o(i) = P_{in}(i) R(n_{cl}, \epsilon_{cl}, \psi)^{N(i)}$ R-odrazivost, N~L/d-počet odrazů

Senzory refraktometrické

Výkon <u>P</u>i přenesený paprskem <u>i</u> závisí na odrazivosti R(n_d)

$$P_i = P_{0i} R^{N_i} \quad \begin{array}{c} R = 1 \quad \Psi \ge \Psi_c \\ R = 0 \quad \Psi < \Psi_c \end{array} \quad P \approx P_O \frac{n_1^2 - n_d^2}{n_1^2 - n_2^2} \quad n_1 \sin \Psi_c = n_d \end{array}$$

Citlivost refraktometrického senzoru je malá, pokud n_d <<n₁

Ve vodných roztocích je limit detekce ~ 10⁻² RIU, což není dostačující pro biosenzory

Proto se pro zvýšení citlivosti detekce používá např. navázání optickými mřížkami, interferometrické zapojení nebo SPR struktury

Senzory refraktometrické

Detekce nečistot (parafinový, palmový olej) v kokosovém oleji při 670 nm, odbroušené PMMA vlákno Φ 0.98 mm M. Scheeba et al., Meas. Sci. Technol. 16, 2247-2250 (2005)

Attenuated Total Reflection – ATR Tlumený úplný odraz tj. R=R(ε_{cl})

$$P_i = P_{0i} R^{N_i} \approx P_i = P_{0i} \exp(-\gamma_i L)$$

Pro jeden vedený paprsek

$$\gamma_{i} \approx \varepsilon_{cl} \frac{\lambda}{\pi d \sqrt{n_{1}^{2} - n_{2}^{2}}} \frac{\left(\theta_{ci}\right)}{\sqrt{1 - \left(\frac{\theta_{i}}{\theta_{ci}}\right)}}$$

Pro všechny vedené paprsky

$$A = \log\left(\frac{P_0}{P}\right) = \frac{k\lambda}{\pi d\sqrt{n_1^2 - n_2^2}} \varepsilon L \approx \langle 0.001 - 0.01 \rangle \varepsilon L$$

 $\left(\theta_{i} \right)^{2}$

 $\theta = \pi/2 - \Psi$ – doplňkový úhel k úhlu odrazu Ψ , k~1, ε - absorpční koeficient měřený v kyvetě, A -absorbance $Zvýšení odezvy(\uparrow) = \downarrow P_i = \uparrow L nebo \uparrow \gamma$

Metody pro zvýšení odezvy evanescentních vlnovodných senzorů

- Zmenšení průměru jádra vlnovodu γ ~1/d ATR
- Zvětšení vlnové délky detekce $\gamma \sim \lambda$ ATR
- Řízení úhlu dopadu na rozhraní jádro/plášť tak, aby θ→θ_c
 , tj. excitace vyšších vidů s Ψ→Ψ_c a tedy s β ≈ n_{cl}
- Prodloužení vlnovodu L
- Index lomu jádra $n_1 \rightarrow indexu lomu vzorku n_2$

Způsoby pro zvýšení citlivosti

 $\gamma \approx \mathcal{E}_{cl}$

- Použití opticko-chemického převodníku s vysokým objemovým absorpčním (luminiscenčním) koeficientem ε_{cl} (používáno i u planárních vlnovodů)
- pH převodníky
- Ru komplexy pro detekci kyslíku
- enzymatické převodníky pro detekci glukosy, močoviny
- imunopřevodníky

ε_{bulk} – absorpční koef. c – koncentrace, L – délka detekční části Zdroj UV LED 280 nm – detekce změn absorbanceelektronického spektra proteinů (HIgG, anti IgG) v UV oblasti při 280 nm. PCS vlákno, NA=0,37, d=200 μm, L~5 cm

Viz: V.V.R. Sai et al., Sens.Actuators B143 (2010) 724-730

Imunopřevodník na PCS vlákně

- A. Hydrolysa a dehydratace-tvorba OH skupin na povrchu vlákna 2h
- B. Aminosilanizace (5 min)
- C. Reakce s glutaraldehydem (30 min)
- D. Inkubace HIgG v pufru (PBS) na vlákně (12 h)

Kalibrační křivky při 280 nm

 $LD \approx 0.1 \mu g/ml$

$\gamma \approx \frac{1}{d}$ D-vlákna, UK Sektorová vlákna, UFE

Odbroušení preformy do D tvaru a tažení SM vlákna

Tažení z preformy obroušené do sektorového tvaru

Průměry jader 10-30 μm, dobré mech. vlastnosti, opt. mřížky, senzory povrchových plazmonů G. Stewart, W. Jin, B. Culshaw, Sens. Act. B 38, 42-47, 1997 – D -vlákno

V. Matejec et al., Sens. Actuators B 38-39 (1997) 334-338 – s- vlákno

Přímý ATR IR senzor na D-vláknu

AgCl_xBr_{1-x} D- vlákno, zploštělé stlačením kruhového vlákna ze 700 na 150 µm - 4x větší ATR odezva pro ploché vlákno

U. Bindig et al. ,Sens. Actuators B 74 (2001) 37-46

Nastavení úhlu odrazu na rozhraní jádro/plášť

- Excitace PCS vláken odkloněným kolimovaným svazkem – vlákna se šikmým koncem (beveled)
- Ohnutá PCS vlákna (U vlákna)

PCS vlákno – odezva k toluenu rozpuštěnému ve vodě

Zdroj: červený laser Detektor: Si fotodioda Šikmé vlákno

Detekční membrána z UV tvrditelného silikonu n=1.423, L= 5cm LD~15 mg/l

Vlákno s rovným koncem osvíceno šikmě ≈ vlákno s šikmým koncem 36 ° V. Matějec et al., Mat. Sci. Eng. C21, 217-221 (2002)

<u>ufe</u>

Ohnutá vlákna (U-vlákna) Zmenšení úhlu odrazu na rozhraní

Citlivost ke změnám indexu lomu pláště refraktometrické senzory

Zdroj: červená LED Detektor: Si fotodioda

R=1 mm, LD ~ 0,001 RIU ve vodných roztocích

Citlivost ke změnám absorpčního koeficientu pláště - ATR

Zdroj: halogenová lampa Detektor: spektrometr

Vodný roztok metylenové modři: LD~0,1 mg/l pro R=1 mm

V. Matejec et al., Sens. Lett. 7, 900-904 (2009)

Vlastní senzor kyslíku a glukozy

Ohnuté polymerní vlákno (1 mm), detekční mebrána ze spec. polymeru ORMOCER® (n~1.5) s Ru komplexem a glukosaoxidazou. Detekce je založena na monitorování spotřeby kyslíku v enzymatickém rozkladu glukosy pomocí zhášení luminescence Ru komplexu. Ta se naváže do evanescentních vln.

Senzor kyslíku a glukozy Plastové vlákno pokryté glukozaoxidasou a Ru komplexem

Excitace 470 nm modrá LED Luminiscence 620 nm

Detekční rozsah 0,2-1 mM

Způsoby pro zvýšení citlivosti

Zvýšení délky vlnovodu L – navinutím (vlákno)

Rovněž vliv ohybu vlákna

Zdroj: halogenová lampa Detektor: chlazená Ge fotodioda 10 m PCS vlákna

Navinuté a rovné PCS vlákno ATR detekce toluenu ve vodě

LD ~ 4 mg/l pro L=5 m

<u>ufe</u>

Reflexní optický senzor Detekční místo na konci vlnovodu-vlákna

Reflexní senzor - omezení

Nízká odrazivost (%) – potřebné zesílit zrcadly nebo zbroušením konce vlákna (změna úhlu dopadu)

Kolmý dopad Ψ = 0 deg

$$R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

Pro konec křemenného vlákna ve vodě a kolmý odraz R=0.002

Reflexní senzor zvýšení odezvy

<u>Nízká odrazivost pro malé úhly reflexe</u> – použití vláken se šikmým koncem a zrcadel na konci vlákna

<u>Malá plocha odrazu = nízká intenzita odraženého záření-</u> použití svazku vláken místo jednoho

Viz: U. Utziger et al., "Fiber-optic probes for biomedical optical spectroscopy", J. Biomedical Optics 8(1) (2003) 121–147

Reflexní senzor - instrumentace

Vláknové děliče (X, Y), děliče svazků, konektory

Reflexní fluorescenční senzor kyslíku a glukozy

Kyslík – zhášení fluorescence Ru komplexu (470 nm excitace, 620 nm emise)

Glukoza – detekce kyslíku v enzymatické reakci

Senzorová hlava a detekční místo

Měření doby života fluorescence Ru komplexu zhášené O₂

Časová odezva ke kyslíku a glukoze Dvě detekční membrány

Časová odezva

Měření doby života luminiscence Ru komplexu z časové změny intenzity luminiscence

Reflexní senzor bilirubinu v žaludku

Spektrální odezva

Poměr absorbancí A – 470 (měření) a 565 nm (reference)

Senzor pro detekci bilirubinu v žaludku

Viz: F. Baldini et al., *Current Analytical Chemistry*, 2008, *4*, 378-390 (i pro detekci oxidu uhličitého v žaludku)

Senzor kyslíku pro farmacii

Modulace fáze výstupního signálu z fluorescenčního senzoru kyslíku

Ru komplex na špičce senzoru

Sensor – zdroj, sonda, detektor

www.oceanoptics.com

Detekce kyslíku a pH i u rostlin

Optické mřížky

periodické změny indexu lomu v jádře vlákna

(a) Braggovské mřížky (FBG) $\lambda_{B} = 2n_{eff}\Lambda_{B}$ ($\Lambda_{B} << \lambda$)

(b) Mřížky s dlouhou periodou – "Long Period Gratings (LPG)" $\lambda_{LPG} = (n_{CO} - n_{cl}^m) \Lambda_{LPG}$ (perioda stovky µm)

Mřížky

<u>FBGs</u> - zapsané UV lasery do vlnovodů sycených vodíkem přes masku
 <u>Interference vidů šířících se jádrem</u>
 Citlivé k detekovaným veličinám působícím na jádro - teplota, napětí, deformace

 <u>LPGs</u> zapisované CO₂ laserem přejíždějícímvlákno Interakce vidů šířících se v jádře s plášťovými vidy Citlivé i k veličinám působícím na obal i jádro -teplota, napětí, deformace, chemické látky

K.O. Hill,Gerald Meltz, J. Lightwave Technol. 15, 1263-1276, 1997 J. Canning, J. Sensors 2009, Article ID 871580, 17 stran - vlákna I. J. G. Sparrow, J. Sensors 2009, Article ID 607647, 12 stran - planární

Citlivost LPGs k teplotě a vnějšímu indexu lomu

UFE: SM vlákno, Λ_B =500 µm; silikon pro pokrytí Citlivost 0,5 nm/°C

Zdroj: LED 1550 nm, detektor: spektrometr

LPG mřížka – SM vlákno: DNA zachyceni (A) a hybridizace (B)

Perioda: Λ~160 μm

1 μM ssDNA (5-GCACAGTCAGTCGCC-NH2-3) in PBS buffer A.V. Hine et al., Biochem. Soc. Trans. (2009) 37, 445–449

Kombinace Braggovských mřížek a mřížek s dlouhou periodou

Mřížky vytvořené v jednom vlákně (Fibercore PS1250/1500)

LPG citlivá k napětí, teplotě, indexu lomu; FBG citlivá k napětí a teplotě.

F. Baldini et al., Proc. SPIE Vol. 7941, 7941- 40 (2011)

Braggovské mřížky pro biosenzory

Lze použít FBG pro chemickou detekci?

Pro chemické senzory a biosenzory je nutné odleptat plášť a otevřít přístup k evanescentnímu poli v oblasti FBG. Použito např. pro detekci DNA (μM). X. Fan et al., Anal. Chimica Acta 620 (2008) 8–26

Další přístupy pro zvýšení citlivosti senzorů

Porovnání dvou vedených vln, jedné referenční a druhé s konstantou šíření změněnou interakcí s analytem \Rightarrow <u>Interferometrické senzory</u> ($\Delta n \sim 10^{-6}$ RIU i ve vodných roztocích)

X. Fan et al., Anal. Chimica Acta 620 (2008) 8-26 – plan. vlnovody Byeong Ha Lee et al., Sensors 12, 2467-2486 (2012)-vlákna

HOF 70 µm MMF 360 µm MMF ponořeno do vzorku

Zvýšení intenzity evanescentního pole na rozhraní jádro/plášť nanesením vhodných materiálů do pláště

- SPR senzory ($\Delta n \sim 10^{-5} - 10^{-7}$ RIU i ve vodě)

Senzory s povrchovými plazmony (Surface Plasmon - SP)

Evanescentní vlna na rozhraní hranol/roztok excituje SP, tj. předá energii do SP SP↔ energetická změna volných elektronů – elektronová plasma na úrovni asi 10 eV (> ~124 nm) Intenzivní evanescentní pole SP zasahuje do roztoku

Senzory s povrchovými plasmony (SPR senzory)

A propagating surface plasmon at a metal-dielectric interface. PSP

Při vhodné hodnotě <u>adjustabilního parametru světla</u> dopadajícího na kovovou vrstvu dojde k přeskoku volných elektronů v kovu na vyšší energetickou hladinu, což je spojeno s pohlcením světla a snížením výstupního signálu senzoru (SPR rezonance). Její poloha závisí na indexu lomu dielektrika

SPR senzory – způsoby excitace

Nastaví se úhel dopadajícího světelného svazku a detekuje se odražené světlo od povrchu kovu. Konstantní vlnová délka λ . Poloha SPR rezonance závisí na úhlu a indexu lomu vzorku *n*.

SPR senzory – způsoby excitace

Nastaví se vlnová délka dopadajícího světla a detekuje se odražené světlo od povrchu kovu. Konstantní úhel dopadu. Poloha SPR rezonance závisí na vlnové délce a indexu lomu vzorku *n.*

SPR senzory – způsoby excitace

ADVANTAGES:

- Low-cost (no spectrometer)
- Compact
- Chips compatible with mass production

Na kovové vrstvě se vytvoří difrakční mřížka (perioda ~1250 nm), na níž dojde k difrakci vstupního kolimovaného polychromatického svazku. Difrakce 2. řádu excituje SP, 1. řád v závislosti na vlnové délce dopadá na pevný CCD detektor. LD~5.10⁻⁷RIU.

M. Piliarik et al., Biosensors and Bioelectronics 24 (2009) 3430–3435

SPR senzory s více kanály pro 🛄

Dva paralelní detekční kanály (A-1 a B-2), odděleně excitované umožňují do jednoho kanálu zavést referenční vzorek (vlnovodně-spektroskopické uspořádání). Vhodné i při SP excitaci pomocí mřížky.

SPR biosenzor na D-vláknu

R. Slavik et al., Novel spectral fiber optic sensor based on surface plasmon resonance, *Sens. Actuators B*74, 106-111 (2001)

Lokalizované plazmony

I. Nanoparticles

II. Arrays of nanoobjects

CHARACTERISTICS OF LSP:

Field extent: L_{diel} = 10 - 40 nm

Umožňují detekci v menších rozměrech porovnatelných s rozměry proteinů

J. N. Anker et al., J. Phys. Chem.C 113, 5891-5894 (2009).

SPR senzory – požadavky

<u>Čtyři hlavní prvky</u>

- Zdroj světla s možností nastavit polarizaci, vlnovou délku, úhel dopadu, intenzitu, tvar svazku. Pouze p (TM) polarizované světlo excituje povrchový plasmon (SP). (Bílé světlo – využije se max. 50%)
- Navazovací prvek vytvářející evanescentní poloe pro navázání světla do kovové vrstvy a tím i pro excitaci volných elektronů (optický hranol, mřížka, vlákno)
- Tenká vrstva kovu (Au, Ag, Al, Cu, Pd, Pt, Ni, Co, Cr, W) nebo polovodiče (Si), s tloušťkou asi 50 nm, kde může světlo excitovat SP. Kovy mají velké ztráty ve viditelné a NIR oblasti.
- 4. Detektor světla (fotodioda, spektrometr, diodové pole)

SPR senzory praktická instrumentace

LIMITATIONS:

- Costly (over 300kEUR)
- Bulky (80 kg)
- Requires trained personnel
- Designed for use in the lab

Sensors based on angular spectroscopy of surface plasmons: BIAcore S51 (left), BIAcore 3000 (middle), Spreeta sensor, TI (right).

Applications: biomolecular interaction analysis

SPR senzory laboratorní instrumentace – ÚFE AV ČR

- Spectroscopy of surface plasmons.
- Four sensing channels, (flow chamber volume 0.5 µL per channel)
- Temp. stabilization (stability < 0.02°C)

RI RESOLUTION: < 2×10⁻⁷ RIU OPERATING RANGE: 1.32-1.45 RIU

Four-channel SPR sensor and (top) and detail of an SPR chip (right).

SPR senzory praktická instrumentace – ÚFE AV ČR využívá excitaci mřížkou

Laboratory prototype of 6-channel SPRCD sensor.

Pracují již ve více než 5 zemích světa, např. ve Federal Drug Agency (USA) M. Piliarik, M.Vala, I. Tichý, J. Homola, *Biosens. Bioelectr.* 24, 3430–3435 (2009).

SPR senzory – Využití Kinetika intermolekulárních interakcí

SPR senzory – Využití Detekce chemických látek-herbicidů

Inhibition assay detection format. EDC- carboxyl-reactive carbodiimide crosslinker

Protilátka (antibody) k atrazinu Detekce látek narušující systém žláz s vnitřní sekrecí

SPR senzory – Využití Detekce chemických látek

Calibration curves for detection of atrazine (ATR), 2,4-dichlorophenoxyacetic acid (24D), 4-nonylphenol (4NP) and benzo[a]pyrene (BaP).

SPR senzory – Využití Detekce nebezpečných látek

- Bisphenol A is a used to make polycarbonate plastics
- Bisphenol A is endocrine disruptor, dangerous especially in early development stage.

Inhibition binding detection format.

Detection of BpA using inhibition assay. Kinetic response to unreacted antibody.

SPR senzory – Využití Detekce nebezpečných látek

Miniaturizace optických senzorů

Nové otázky

- Detekce v malých objemech vzorků (µl)
- In situ detekce v živočišných nebo rostlinných buňkách (rozměry ~1-100 µm)

Mikro a nanosenzory využívající

- -Kónická vlákna vláknově-optické tapery
- Optické nanočástice PEBBLE "probes encapsulated by biologically localized embedding";

Umožňují zvýšit detekční citlivost ve srovnání s vlákny s konstantním průměrem.

Připravují se buď se dvěma kónusy (B) –"biconical" nebo s jedním jako vláknové špičky (D)- "fiber tips"

Kónicky zúžená vlákna - princip

Zmenšuje se poloměr jádra <u>a</u> a reflexní úhel Φ na rozhraní jádro-plášť \Rightarrow zvyšuje se výkon přenášený v evanescentním poli a tím i odezva a detekční citlivost.

Senzory na vláknově-optických špičkách

Optické vlákno protažené do špičky, která je modifikována vrstvou s opticko-chemickým převodníkem.

Optické prvky citlivé k draslíku pro detekci pH a K v buňkách myšších vajíček-"oocyte" (100µm) S.M. Buck et al., Talanta 63 (2004) 41

Příprava kónických špiček- termicky

Výchozí křemenné vlákno

Prodloužení a zúžení vlákna při jeho zahřátí hořákem nebo CO₂ laserem

Pokrytí kovovou nebo keramickou ochrannou vrstvou Přesné uříznutí

T. Martan et al., Proc. SPIE 7138 (2008), Article 71380Z DOI: 10.1117/12.818000

Příprava kónických špiček - leptání

Ponořením křemenného vlákna do roztoku kyseliny fluorovodíkové a jeho pomalým vytahováním konstantní rychlostí

N. Nath et al., J. Anal. Toxicology 23 (1999) 460-467

Příklady připravených špiček

Průměr špičky 50 nm

- B. Cullum et al., Tibtech September 18 (2000) 388-review
- E. J. Park et al., J. Mater. Chem. 15 (2005) 2913 detekce O₂

Senzory na vláknově-optických špičkách fluorescenční měření

Invertovaný fluorescenční mikroskop

Senzory na vláknově-optických špičkách - příklad

Excitace 325 nm Emise nad 400 nm (zelena) BPT zachycen na protilátce ukotvené na špiččce taperu

B. M. Cullum et al., Analytical Biochemistry 277 (2000) 25 – Fluorescence benzo[a]pyrene tetrol v buňce z krysích jater – protilátka pro BPT: LD~ 10 pM

Tapery UFE

Taper pokrytý ITO a výchozí vlákno

Taper pokrytý Al

Taper pokrytý ITO s průměrem špičky 2 µm

Pokrytí konce špičky polymerní nebo pórézní membranou

Detekční vrstvy – Příprava sol-gel

Namáčení

Z kapky v kapiláře

Reflexní pH sensor

Špička na křemenném vlákně (diam. 1-20µm), luminiscenční pH indikátor (BCECF) na špičce – pH in v rostlinách (*Arabidopsis Thaliana)* nebo v exudátu

Detekce pH v exudátech z tabákových listů

	Kapky na špičce listu	Exudát získaný po odříznutí špičky listu	Exudát získaný po odříznutí listu v jeho základně
Střední	5.0	5.6	5.5
St. odchylka	0.3	0.3	0.1
Elektrochem.	5.4	5.4	6.0

Žádný gradient pH nebyl v rámci statistických chyb prokázán I. Kašík et al., Anal. Bioanl. Chem. 398 (2010) 1883-1889
PEBBLES

"Probes Encapsulated By Biologically Localised Environment" = nanočástice (50-100 nm) obsahující měřící a referenční luminiscenční převodníky v inertní matrici

PEBBLE - PŘÍPRAVA

- Nanočástice 20-100 nm obsahující převodníky jsou připravovány emulzními technikami na základě :
- Polymerů
- Organicky modifikovaných silikátů
- Alkoxidů -TEOS

W.Tang et al., Biochem. Biophys. Res. Commun. 369 (2008) 579 - polymery

X. Hun et al., Microchim Acta 159 (2007) 255, TEOS

Implementace PEBBLE do buňky

A) Genové dělo, B) Injektování, C) Liposomální přenos, D) Fagocytosa

S.M. Buck et al., Talanta 63 (2004) 41

Měření s PEBBLEs

- 1. Konfokální mikroskop
- 2. Invertovaný fluorescenční mikroskop

H.A. Clark et al., Sensors and Actuators B 51 (1998) 12 – pH, Ca, Mg, K, kyslík

Nové směry ve vývoji senzorů

- WGM mikroresonátory
- Zobrazovací (imaging) senzory
- Fotonické krystaly
- Další možnosti

WGM MIKROREZONÁTORY

WGM="Whispering Gallery Mode" (módy šeptající galerie)

Světlo navázané do mikrokuličky obíhá kolem rozhraní kulička/okolí ve formě WGMs.

Změny polohy WGM rezonancí s koncentrací analytů a časem

WGM – Rezonanční spektra

Velmi úzké rezonanční pásy – pološířky pm

WGM – Rezonanční spektra

<u>ufe</u>

Šířka rezonančních pásů je charakterizována faktorem kvality $Q \sim \lambda / \Delta \lambda$

- U mikrokuliček Q udává, kolikrát paprsek oběhne kolem rozhraní než je jeho energie pohlcena Q~10³-10⁹
- Kulička průměr 200 µm: L~ 0.6 m 6 10⁵ m

Poloha rezonančních pásů se mění se změnami indexu lomu okolí – detekce indexu lomu s přesností 10⁻⁸ RIU.

WGMs pronikají jen málo do okolí (50-100 nm)

Typy WGM mikrorezonátorů

Nejvyšší Q~10⁶ bylo dosaženo s mikrokuličkami (průměry 10-500 µm)

WGM Senzory – možnosti

F. Vollmer, S. Arnold, Nature Methods 5, 591-596 (2009)

WGM Imunosenzory

- Nutné upravit povrch pro zachycení proteinů silanizací nebo použitím polymerů
- 3-Aminopropyltriethoxysilane
- F. Vollmer et al., Appl. Phys. Lett. 80 (2002) 4057 detekce proteinů
- 3-Mercaptopropyltrimethoxysilane
- N. Hanumegowda et al., Sensor Lett. **3** (2005) 315 sensor proteázy Polymerní vrstva - Eudragit® L100 (Degussa, n = 1.39) anionický kopolymer kys. metacrylové a metylmetakrylátu S. Soria et al., Opt. Express 17, 14694-14699 (2009)

WGM Imunosenzor

Imunosenzory

Typ senzoru	LD
Mikrokulička	10 ⁻⁷ RIU - roztok
	1 pg/mm² - DNA
LPG ve vlákně	10 ⁻⁴ RIU – roztok
	4 pg/mm² - DNA
SPR	10 ⁻⁵ - 10 ⁻⁸ RIU – roztok
	10 pg/mm²
Interferometr (Mach	10 ⁻⁷ RIU - roztok
Zehnder)	20 pg/mm ² - protein

X. Fan et al., Analytica Chimica Acta 620 (2008) 8-26

Zobrazovací (Imaging) senzory

10

100

Ď

Ð

D

10

Ö

10

100

Ô.

10

10

100

Ō

ñ

0

n

n

n

D.

10

100

n

0

0

n

Ū

0

10

100

ũ

0

10

0

11

12

Fluo-Zin1- Zn; BTC-5N - Ca/Zn;	
Calcein- Ca; Lucifer Yellow – Cu	

Phen Green-Cu; Newport Green-Ni; OG BAPT4-5N (OG 5N)-Ca; Fluo-5N-Ca

Využito pro určení selektivity ve vícesložkových analytech T. Mayr et al., *Anal. Chem.* 75 (2003) 4389

Fotonické krystaly (PC)

PC=struktury u nichž se dielektrická konstanta (index lomu) periodicky mění v jednom (1D) až třech (3D) směrech. Světlo dopadající na strukturu se odráží od každé hranice a odražené vlny <u>při vhodných podmínkách</u> spolu interferují a nejsou vedeny strukturou

$$m\lambda = 2n_{eff}d$$

Fotonický zakázaný pás

Fotonické krystaly 3D

Polystyrenové kuličky 280 nm samoorganizující se v koloidní suspenzi

Poloha transmisního dipu závisí na indexu lomu v porech R.V. Nair, R. Vijaya, Progress in Quantum Electronics 34 (2010) 89–134

Fotonické krystaly - senzory

- Detekce glukosy na 3D krystalech připravených kopolimerizací 3acrylamidophenylboronic acid (APBA) a2-
- hydroxyethylmethacrylate (HEMA) v porech mezi polystyrenovými kuličkami. Měření reflexe v důsledku <u>změn</u> vzdálenosti v mřížce

- Posun reflexního pásu od modré do červené
- R.V. Nair, R. Vijaya : Progress in Quantum Electronics 34 (2010) 89–134

Fotonické vlnovody se vzduchovými děrami v plášti

Vedou světlo v důsledku <u>úplného odrazu světla na</u> plášti s nižším indexem lomu (mikrostrukturní vlákna) + <u>Braggovského odrazu</u> na periodické struktuře. Pro druhý způsob se do jádra zavádí *porucha ve struktuře.* Ta způsobí narušení zakázaného pásu

Fotonická vlákna s poruchou

Centrální porucha struktury vytvoří transmisi v oblasti fotonického zakázaného pásu, která je citlivá na změnu optických vlastnosti v poruše (kavita, vzduchová díra). Toho se využije v senzorech

Nové směry - Materiály

1)Nanomateriály

Kvantové tečky (InP@ZnSe) Zlaté nanočástice Uhlík 70, uhlíkové nanotrubice, grafeny W. Yang et al.; *Angew. Chem.* 49(12) (2010), 2115-2133.

Nové směry - Materiály

1) "Ekologické "Green" materiály

Vodorozpustné barevné spreje pro současnou detekci teploty a tlaku na letadlech nebo automobilech

L. H. Fischer,, O. S. Wolfbeis, *Analyst* 135 (2010), 1224-1229 DOI: 10.1039/B927255K

2) Biomateriály

Polymerní membrány např. bource morušového mající vysokou biokompatibilitu

3) Kombinatorické metody pro hledání senzorových materiálů

Combinatorial Methods for Chemical and Biological Sensors. R. A. Potyrailo, V. M. Mirsky (eds.), Springer, 2009

<u>ufe</u>

Nové směry - Optoelektronika

1) Integrované senzory

Všechny komponenty senzoru integrované v jedné jednotce. Často využívají elektricky vodivé polymery jako je polypyrrole, polythiophenes

R. Shinar and J. Shinar; DOI: 10.1117/2.1200602.0121

2) Optická vlákna

Komerčně dostupný systém pro detekci kyslíku využívající luminiscenční doby života

Vláknově-optické multiplexy (pole)

F. J. Steemers et al.; *Nature Biotechnology* (2000) 18: 91 – 94 DOI:10.1038/72006

Možné rozšíření na imunosensory.

T.M. Blicharz et al., *Anal Chem.* (2009) 81: 2106–2114.DOI: 10.1021/ac802181j.

Nové směry-spektroskopie

1) Chemická fotografie

Digitální kamery mají 3 kanály : červený, zelený, modrý (RGB) – 3 spektrometry

2) Vícenásobná detekce – multiplexy, pole

M. I. J. Stich et al.; Chem. Soc. Rev. 39, 3102 (2010)

3) Senzory využívající mobilní telefony

D. Quesada-Gonzales et al., Biosens. Biolectr. 92, 549 (2017)

Nové směry - aplikace

- 1) Senzor glukosy pro umělou slinivku
- 2) Detekce v buňkách
- 3) Optický nos a jazyk,
- 4) Kombinatorické techniky hledání nových senzorových materiálů
- 4) Nové metody zpracování signálů; "Artificial Neural Networks; Principal Component Analysis"
- 5) Miniaturizace & Mikrofluidika

Příklady optických senzorů pro farmacii

- -Sledování tvrzení laminátů (optické vlákno změna RI)
- -Detekce rozpouštědel ve vodě chlorované uhlovodíky (FTIR, AgIBr vlákna. Střední IČ oblast)
- -Homogenita prášků (spektrální posun při suchém míšení)
- -Analýza proteinů a enzymů (FTIR, AgIBr vlákna)
- -Kontrola kvality přípravy tablet (měření NIR na tabletách)
- Osobní dosimetr benzenu (optické vlákno s detekční membránou)
- Sledování mikrobiologických fermentorů (kyslík, CO₂)
 - E.D.S. Kerslake et al., Adv. Drug Delivery Rev. 21 (1996) 205-213
 - **D. Meadows**, Adv. Drug Delivery Rev. 21 (1996) 179-189

Suché míšení

Acetylsalicylova kyselina + monohydrat laktozy Reflexní spektra v rozmezí 1-2,5 µm

C. Voura et. al., AIChe 2009 Annual Meeting, Nov. 9-13, Nashville , TN

Příklady detekčních prvků pro farmacii

Analyt	Metoda	Uspořádání/odkaz
Propranol (vysoký tlak)	Fluorescence adsorbovaného analytu (Amberlite XAD-7), excitace 300 nm, emise 338 nm	Spektrometr, průtočná kyveta/[1]
Aspirin	pH fluorescenční indikátor s lipofylním nosičem salicilátů v PVC folii, excitace 550 nm, emise 640 nm	Spektrometr, folie/[2]
Digoxin, Oxytocin aj.	Immunosensory	Afinitní biosensory, fluorescenční biosenzory/[3]

[1] J.F. Fernandez-Sanchez, J. Pharm. Biomed. Analysis, 31 (2003) 859-865
[2] H. He et al., Fresenius J. Anal. Chem. 343 (1992) 313-318
[3] I.A. Darwish, J. Biomed. Sci. 2 (2006) 217-235

Příklady komerčních senzorů

Senzor	Výrobce	WWW		
chemický				
pН	GeoCenters			
рН, О ₂	Presens	presens.de		
CO ₂	Yellow Springs	ysi.com		
pH, O ₂	OceanOptics	oceanoptics.com		
O_2	SMSI	s4ms.com		
O_2	Photosense	photosense.com		
medicinální				
рН, СО ₂ , О ₂	CDI (3M)	terumo.com		
Žluč	Cecchi	medtronic.com		
O ₂	Abbott	abbott.com		
0 ₂	Optex Biomedical, Inc.	Alacrastore.com		

ČR: SAFIBRA s.r.o – Říčany u Prahy, SQS a.s. – Nová Paka.

Optické senzory - souhrn

- Nabízejí možnosti detekce řady molekul s využitím optických vlastností v senzorech přímých a nepřímých
- Umožňují miniaturizovanou detekci a detekci v nepřístupných místech
- Lze u nich řídit citlivost a selektivitu detekce v širokém rozsahu
- Nepotřebují elektrické vlastnosti molekul

