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Abstract
We consider the Navier-Stokes-Fourier system in a bounded domain Q Cc R%, d = 2,3,
with physically realistic in/out flow boundary conditions. We develop a new concept of
weak solutions satisfying a general form of relative energy inequality. The weak solutions
exist globally in time for any finite energy initial data and comply with the weak—strong
uniqueness principle.

Keywords: Navier-Stokes—Fourier system, inhomogeneous boundary conditions, weak solu-
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1 Introduction

Turbulent phenomena in fluid flows that persist in the long run are usually attributed to the
interaction of the system with the outer world through the physical boundary of the fluid domain
Q C R?. Still the overwhelming majority of theoretical work on the existence of (weak) solutions of
fluid systems and their long time behavior concerns models with homogeneous or periodic boundary
conditions. In the framework of viscous fluids, the most popular is the no—slip boundary condition
for the fluid velocity u,

u’aQ =0.

*The work of E.F. was supported by the Czech Sciences Foundation (GACR), Grant Agreement 18-127198S.



The fluid is then excited by the action of external volume force supposed to capture “in an equiva-
lent manner” the response of the outer world, cf. Yakhot and Orszag [29]. Such a hypothesis, when
applied to realistic thermodynamically consistent models, however, gives rise to a rather boring
scenario: Either the system stabilizes to a static equilibrium, or the energy becomes infinite for
the time ¢ — oo, see [21]. This can be seen as a direct consequence of the Second law of thermo-
dynamics as all mechanical energy is eventually converted to heat confined to the spatial domain
by isolated boundary. To exhibit turbulent phenomena in the long run, the fluid system must be
open; the coercive effect of dissipation and thermal energy production being counterbalanced by
the energy influx and outflux through the physical boundary. The aim of this work is to develop
a mathematical theory for Newtonian models of compressible, viscous, and heat conducting fluid,
with general in/out flow boundary conditions.
Motivated by Norman [27], we consider a bounded spatial domain Q C R¢ and suppose the
fluid velocity is given on 052,
u|aQ = Up. (1.1)

Furthermore, we decompose
002 = I_\in U Fout U Fwallv

Ty = {g; € 00 | n(z) - wy(z) < o} ,

Cout = {x € 00 | n(z) - up(z) > 0} : (1.2)

Lyanl = {3: €00 | n(z) w(z) = 0} ,
where n denotes the outer normal vector. The fluid mass density p is given on the inflow boundary,
0= op on [ (1.3)

Finally, denoting e and q the internal energy and its diffusive (heat) flux, respectively, we prescribe

[Qbeub + Q} ‘n = Fi, on Iy, (1.4)

and
q-n= 0 on Fwall U 1_‘out- (15)

Here, F;; is a given flux function reflecting the way the energy is flowing in/out of the physical
domain.

The boundary conditions (1.1-1.5) are adequate not only for the explanation of turbulent
phenomena but they are also realistic in the modeling of many real word applications. In fact,
this is a natural and basic abstract setting for flows in pipelines, wind tunnels, turbines and jet
engines, to name a few specific examples.

This paper is the first attempt to establish the existence and weak-strong stability for the
Navier-Stokes-Fourier system describing viscous compressible and heat conducting fluids. To the
best of our knowledge, so far, all papers treating the Navier-Stokes-Fourier equations in various



settings deal always with periodic or homogenous boundary conditions for the velocity and for the
heat flux, see e.g. Bresch, Desjardins [8] and the results in [15], [16], [17], [18], [20].

The mathematical theory developed in the present paper is based on the concept of weak
(distributional) solutions, in the spirit of Leray [25] (incompressible fluids), Lions [26] and [19]
(compressible barotropic fluids), and [17] (compressible and heat conducting fluids). The com-
pressible Navier—Stokes system in the barotropic regime with inhomogeneous boundary conditions
(1.1), (1.3) has been recently investigated in [10] (preceded by Girinon [22]) as far as existence
of weak solutions is concerned, and in [1], [23] as far as the weak strong uniqueness is concerned.
Similarly to [17], our approach is based on careful implementation of the Second law of thermody-
namics, in particular the existence of entropy s interrelated to the pressure p, the density p, the
internal energy e, and the (absolute) temperature ¢ through Gibbs” equation:

1
VDs = De + pD (—) . (1.6)
%

Besides a number of technical difficulties, the inhomogeneous boundary conditions require to con-
trol the state variables, in particular the density, also on the outflow boundary, where their (normal)
traces are interpreted in a very week sense. Fortunately, the problem can be handled by convexity
arguments on condition that the constitutive equations satisfy the hypothesis of thermodynamic
stability specified below, cf. Bechtel, Rooney, Forest [4].

1.1 Field equations
The motion of a general compressible viscous fluid is governed by the system of equations
00 + div,(pu) =0

Oi(pou) + div,(ou ® u) + V,p = div,S + og (1.7)
Oi(0e) + div,(geu) + div,q =S : V,u — pdiv,u,

where g denotes the external driving force. We focus on linearly viscous fluids, where the viscous
stress tensor S is given by Newton’s rheological law

2
S(V,u) = p (qu +Viu— Edivxu]l) + ndiv,ul, >0, n > 0. (1.8)

In addition, we impose Fourier’s law

q=—rV,V (1.9)

relating the heat flux to the temperature gradient. The system (1.7)—(1.9) is termed Navier—
Stokes—Fourier system.



1.2 First and Second law of thermodynamics

The thermodynamic functions are interrelated through Gibbs’ equation (1.6). In what follows, we
alternatively consider the standard thermodynamic variables (o, u, ) and the conservative—entropy
variables (9, m, S), where m = pu is the momentum, and S = ps the total entropy. In particular,
the pressure p and internal energy e may be viewed as p = p(o,9) or p = p(p, 5), and, similarly,
e=e(p,9) or e =e(p,S). To avoid confusion when partial derivatives are considered, we denote

op(o,9)  Oply Ip(o,S) 9pls 0Ople,¥)  0dpl, Oplo,S)  dpl,

do do ' 0o do’ 0V o’ 9S 0S8

and similarly for e. The reason for using the standard variables is mainly because the diffusive
fluxes S, q are easier to express in the standard variables, while the conservative-entropy variables
are more suitable in the weak formulation as they admit well defined traces, in particular the initial
values, in the physical space time.

The thermodynamics stability hypothesis written in terms of the standard variables reads

Iple del,
50 = v

> 0. (1.10)

The same condition may be expressed in the conservative—entropy variables as
Eii(0,5) = oe(p, S) is a convex function of (p,S), S = gs, (1.11)

see Section 3. Moreover, it is straightforward to check that

d(oe)ls p 0(0e)l,
90 —6—193+Q, 99

=, (1.12)

where the latter equality may be viewed as a definition of the temperature ¥ in the framework of
the entropy—conservative variables.
It is easy to deduce from (1.7) the energy equation

1 1
0y (§g|u|2 + Qe) + div, [(§g|u|2 + e +p) u] + div,q — div, (S - u) = pg - u, (1.13)

and, by virtue of Gibbs’ relation (1.6), the entropy equation

O¢(ps) + div,(psu) + div, (9) _1 (S :V,u— LN Vxﬁ) (1.14)

v v v

Note that the equations (1.13), (1.14), and the internal energy equation (1.7)3 are equivalent in the
framework of regular solutions. In the weak formulation, the entropy balance is usually replaced
by inequality

Oi(0s) + div,(psu) + div, (%) > % <S :V,u— 4 Zxﬁ) (1.15)
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The energy flux boundary condition (1.4) can be expressed in terms of entropy as

[Qbs(gb,ﬁ)ub + %] ‘n = 5;; on [y, (1.16)
where . )
Sip = q;’b + [S(Qb>?9) - e(g;, )} ovw, - 1 on Ty (1.17)

Finally, we recall the equation for the total energy

1
/E dl’, E(Q7u7€) = §Q‘U‘2+Q€
Q

To this end, we first extend the boundary velocity u, inside 2. After a straightforward manipula-

tion, we deduce

d

1
W, <§g|u—ub|2+ge) dx—i—/rout oeuy - n do,

1
:/S:qub dx—i—/gg-(u—ub) dx+—/gu-Vx|ub\2 dx
Q Q 2 Jg

—/ (gu@u—i—p]l) SAVARTTA dx—/ Fiy doy.
Q 1_‘in
(1.18)

1.3 Mathematical theory in the framework of weak solutions

The paper is organized as follows:

e In Section 2, we introduce the weak formulation of the problem. The leading idea is the
same as in [17], namely replacing the energy equation by the entropy inequality and the total
energy balance. The completely new ingredient is suitable accommodation of the boundary
conditions. It turns out that the velocity u as well as the temperature ¥ admit well defined
traces while the density o does not. Moreover, it is convenient to include also the traces on
the outflow part of the boundary to ensure stability of the solution set.

In Section 3, we derive a variant of the relative energy inequality satisfied by any weak
solution of the problem. The relative energy represents a Bregman distance (cf. e.g. Sprung
[28]) between a weak solution and an arbitrary trio of functions ranging in the associated
phase space.

In Section 4, we show the weak—strong uniqueness principle. Any weak solution coincides
with the strong solution emanating from the sama initial/boundary data as long as the latter
solution exists. The proof is an application of the relative energy inequality.

Finally, in Section 5, we introduce an approximate scheme and prove existence of global-in—
time weak solution for any physically admissible data.



2  Weak formulation

The weak formulation combines the ideas of [17] with those of [10] to accommodate the boundary
data. We write down the field equations in terms of the standard variables (o, u,#), however, the
integrals on the outflow boundary will be expressed in terms of the conservative—entropy variables
0, S, and the internal energy Ein(p,5). Accordingly, we shall always tacitly assume that any weak
solution belongs at least to the class:

0€ L®0,T; L7 ()N L' ((0,T) x Toy; dt x |up - n| da) for some v > 1,
0>0a.a. in (0,7) x £;

uc L0, T; WH(Q; RY)) for some ¢ > 1, ou € L>=(0,T; L%(Q; R%Y); (2.1)
1
9, log(¥) € L*(0, T; WH(Q)), ¥ > 0 a.a. in (0,T) x Q, 5 € LY((0,T) x I'y,);
S e L0, T; LMQ) N LY(0,T) x Tow), Ewilo,S) € L'((0,T) x Tou).

Definition 2.1 (Weak solution). Let Q@ C R? d = 2,3 be a bounded domain with smooth
boundary. Let the boundary data

u, € C’Q(ﬁ; Rd), o, € CH; Rd), F,p € C’(ﬁ),

and the volume force _
g € C(; RY)
be given functions of z € Q.
We say that (g, u,?) is a weak solution to the Navier—Stokes—Fourier system in (0,7") x Q if
the following holds:

e Equation of continuity

t=1 T T
[/ op dx] +/ / gogbub-ndaxdt%—/ / pouy - n do,, dt
Q t=0 Jo JIy 0 JTout (2.2)
z/ / [@@Wr @u‘sto} dv dt
0o Ja

holds for any 0 < 7 < T, and any ¢ € C*([0, 7] x Q);

¢ Momentum equation

t=1 T
[/ ou- dx} = / / [gu -Op+ou®u: Ve + plo,9)divee| dedt
S



holds for any 0 < 7 < T, and any ¢ € C1([0,T] x ©; RY),

u—u, € LU0, T; W, 9(Q; RY)); (2.4)

e Total energy balance

1 t=T1 T 1
{/ (—Q\u—ub|2+&?€) (0 dl‘} —/ 5ﬂ/}/ (—Q\u—ubIQ—irQe) dx dt
o \2 t=0 0 a\2

+ / (0 Eii(0,S)up - n do, dt
0 1—‘out

T T 1 T
S/ @ZJ/S:qub dmdt+/ @D/Qg-(u—ub) dxdt+—/ @D/gu-vx|ub|2 dx dt
0 Q 0 Q 2 Jo Q

—/ 1/1/ (Qu®u+pll) VR dxdt—/ 1/;/ F;y do, dt
0 Q 0 Fin

holds for a.a. 0 <7 < T and any ¢ € C'0,T], ¢ > 0;

(2.5)

e Entropy inequality

t=1 T
[/ 08P dx] —/ / [Qsﬁtgo +osu- Vo + (%) -chp] da dt
Q +=0 0 Q
+/ / @Sub-ndaxdtZ/ /f S:qu—q‘vmﬁ dx dt (2.6)
0 JTous 0 Ja¥ v

N elen, )
[ e (5 [t - L5 o )

holds for a.a. 0 <7 < T, and any ¢ € C*([0,7T] x Q), ¢ > 0.

The quantities ouy - n|r,,,, Sy, - njr,,, can be (formally) identified with the normal traces of
the fluxes pu, psu, respectively, in the spirit of Chen, Torres, Ziemer [11]. Their relation to the
boundary integral containing Ej, in (2.5) is absolutely crucial for the property of stability of strong
solutions in the class of weak solutions (weak—strong uniqueness principle). The interested reader
may consult [17, Chapters 1-3] for a detailed discussion of the concept of weak solution introduced
in Definition 2.1. As we show in the next two sections, the weak solutions enjoy the important
property of weak—strong uniqueness — they coincide with the strong solution as long as the latter
exists. To show this, however, certain technical hypotheses will be imposed on the constitutive
relations.



3 Relative energy as a Bregman distance

The relative energy for the Navier-Stokes—Fourier system, written in the standard variables as

LX)
do

Hj(o0,1) = o(e(o,9) — Js(o, 1)),

was introduced in [16]. It is interesting to observe that the relative energy represents a Bregman
distance for the energy functional

E (@,u,ﬁ @7u719) = 5@!11 —ul* 4+ Hy(o,9) (0—0)— Hy(0,9),

1 |mf?

m
E(Q,m,S) = ET +Q€(Q7S)

written in terms of the conservative—entropy variables
0, m, S=ps

as long as the hypothesis of thermodynamics stability (1.11) (or equivalently (1.10)) are satisfied.
Indeed it is easy to check, by virtue of (1.12), that

E (Q?mas éa ﬁl, §> =F (Q7u719 ’év ﬁ71§> , M = ou, m = éﬁa S = 96(9719)7 §: ée(@71§)a
where
E<Q7mas @7fﬁ7§):E(Q7mas)_ag,m,SE(é7ﬁ17§)(Q_@am_ﬁlas_g)_E(@7ﬁi7§)

as long as Gibbs’ relation (1.6) holds. As observed in [16], the relative energy represent a distance
between a potential weak solution (g, u, ) and any trio of “test functions” (9, u, 1§) In particular,
E(p,m,S) is a convex function of the conservative—entropy variables, and the relative energy
represents the associated Bregman distance.

More precisely, the mapping

(0,9) — (0, 05(0,v)) is a diffecomorphism

3.1
mapping (0,00)? onto an open convex set £ C (0,00) x R, (3:1)
on which the internal energy
Eint(gv S) = Q@(Q, S)
is (strictly) convex. Extending
o if(p, 5) € R%\ &,
Euw(0,8) = ¢ o0e(o,5) if (0,5) € €, (3.2)
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we obtain a convex lLs.c. function on R?.
In the remaining part of this section, we derive a useful inequality satisfied by the relative
energy if (o, u,v) is a weak solution of the Navier—Stokes—Fourier system.

3.1 Derivation of the relative energy inequality

We suppose that (9, q, 15) are smooth functions of (t,2) € [0,T] x Q satisfying the compatibility
condition o .
Ulgn =, 0<infp < g<supg<oo, 0<inf <J <supv < 0. (3.3)

Starting from now we shall use abbreviated notation é = e(p, 15) and similarly for p, s, S, etc.,
whenever there is no danger of confusion.

3.1.1 Relative kinetic energy

Consider G — uy, as a test function in the momentum balance (2.3):

(R

:/ /[gu-@tﬁ—l—gu@u:Vx(ﬁ—ub)+pdiv$(ﬁ—ub)—S:Vx(ﬁ—ub)] dz dt
0o Jo

+/ /gg-(ﬁ—ub) dz dt
o Ja

Next, test the equation of continuity on 1(|a|? — |u,?):

1 = 4 1 1
s ] = ) 4
Q |2 t=0 0o Ja 2 2
Finally, summing up the previous relations with the energy inequality (2.5) yields

1 t=r1 T
{/ (—Q|u —a)* + Qe) di} + / / Eini(0,S)uy - n do, dt
Q 2 t=0 0 Cout

T T 1 T
§/ /S:Vmﬁ dxdt—l—/ /Qg-(u—ﬁ) dxdt—l——/ /(g@t\ﬁ\2+gu~vm]ﬁ|2> dz dt
0 Q 0 Q 2 0 Q
—/ /Qu-atﬁ dxdt—/ /(gu®u+p]1> LV, i dxdt—/ / Fyy do, dt
0 Q 0 Q 0 Tin

(3.4)



3.1.2 Entropy

Recalling that N
200)(0.5) _
08

we use U as a test function in the entropy balance (2.6) obtaining

—|:/QS7§ dx] // Qsatﬂ+gsu Vz?—k(ﬁ) Vi } dxdt—// J9Suy - ndo, dt
Q 0 1—‘out
<—//—(S:qu— Ve
// (zb +79 (b,ﬁ)

Summing up (3.4), (3.5) and performing a simple manipulation we obtain

/ <1Q|u u|2 + oe 8(@‘3)’9(@7 S)S N ée(é, §)> dz

L

V)

]Qbub ) do, dt
(3.5)

t=1

S

~ 9(0e)lo(8,5) // q- V.0
/ /Fom< int Qa XS ——F uy ndO'xdt—F S: Vu— J dx dt
S// Q(fl—U)-8tf1—|—g(ﬁ—u)®u:Vxﬁ—pdivxﬁ> dz dt
0o Ja

+/ /S:Vmﬁ dxdt—l—/ /gg~(u—ﬁ) dz dt
// Q38t19+gsu v19+(19) Vﬁ] de dt

A G ) R R O ey KR R

(3.6)
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Next, testing the equation of continuity (2.2) on %‘Z(@’S) we get

)2, 9) . |
/ Q—ag dx]

// Qe 5(2 )u ndaxdt—l—// Qe s(@, )u ndo, dt
m I‘out

/ / S)+Qu V. —8( )ég’ )|S] dz dt
Consequently,
/( o 4 go— a(gegfé@,S»*)S_a(geﬂ;@(@ﬂ)g_ @e(@g)) dx]

a(ge>|9(é7§) 0Q6(§a§)‘5
//F( (0,9 s = A wym do

_ _q-VgCﬁ
+/0/919<S.V$u 3 )dxdt

// )-ou+po(il—u)®@u:V,u— pdlvmu) dz dt
+/ /S:Vxﬁ dxdt—i—/ /Qg-(u—ﬁ) dz dt
// 0800 + osu - V§+(§) V.| deat
2 e(gbaﬁ)
+/0 /Fin (Fi,b <5 - 1) +?9[S(Qbﬂ9) - J }Qzﬂlzyﬂ) do, dt
+/ / waub'nd%dt—/ /8t(ée(§,§)) dz dt
iy 0o Ja

[ oot >+Qu_vxa<ge>gz<@,§>] s

3.1.3 Final form

After a simple manipulation based on Gibbs’ relation we deduce the final form of the relative

energy inequality:!

In what follows, we denote é = e(g, 15), p = p(o, 15) etc. if there is no danger of confusion.

11



/(10|u u|2+ge—M(s-é’)—%ﬂ@’s)(@—@)—@e@,@) dx]

0S
t=0
00)]o(8,8) o, 9(0e)s(8,5) .
/ /FO‘lt ( int Q7 83 S 89 olu-n dO'x dt

V.0
< Va ) dz dt
0
g—/ /Q(ﬁ—u)@)(ﬁ—u):vxﬁ dx dt
0o Ja

T 1 _
+/ /Q(ﬁ—u)-<8tﬁ+ﬁ-fo1+—~pr—g> da dt
0 Q

//dlvxudxdt—l—// mpdmdt—i—//S V.ua dxdt
o Ja Q0

p
/O/Q[Qs—N)atﬁ—l—g(s—Uu Vz?—k(ﬁ) Vﬁ] dex dt

//<b< —1>+§[(9b’0> +5—6(Q;’ﬁ>}gbub-n>daxdt
/ / =y - ndaxdt+/ [2((1—2) 0,7 — %u-%ﬁ) dedt.

Here, for the sake of brevity, we have used the notation b= b(o, Qg) It is worth noting that the
relative energy inequality (3.7) coincides, modulo the boundary terms, with that obtained in [12,
Section 3.2].

We have shown the following result.

Proposition 3.1 (Relative energy inequality). Let a trio of continuously differentiable functions
(6,0,9) belong to the class (3.3).

Then the relative energy inequality (3.7) holds for any weak solution (p,u,v) of the Navier—
Stokes—Fourier system in the sense of Definition 2.1.

4 Weak—strong uniqueness

We now suppose that (g, 1, 9) is a regular solution of the system (1.7-1.9) satisfying the boundary
conditions (1.1-1.5) and belonging to the class (3.3) and use it as a test function in (3.7).

12



4.1 Momentum balance

As (o, 1, 19) satisfies the momentum balance, we get

1
/g(ﬁ—u)-(8tﬁ+ﬁ-vxﬁ+jvmﬁ—g) dx+/S:V$ﬁ da
Q 0 Q

),
J

Consequently, after a straightforward manipulation, the relative energy inequality (3.7) gives rise
to

(@ —u)-div,S+S: V,a dz

/\rczlrb

gi—l) (@t — u) - div,S dx+/Vx(u—ﬁ):§+S:V$ﬁ dz.
0 Q

t=T1

/( olu — u|2+Q€ %(S—g)_%j@&(g—@—@@(@gg dx]

9(00)o(8,5) o 9(ee)ls(,S) n
/ /Foth ( it (0, S 55 S D0 Q> u, do, dt
//((——1)8 V.u— (1_g>qv0) dxdt+// Vﬂ Vﬁ) de dt
+/O /Q(S—g) . (Vou— V) dedt

/ /pdlvxu dxdt+/ / - Vop dxdt
+/ / é(g—S) 8t19+1~1-va:19>] dx dt
0o Ja

t=0

N _ 4.1)
T v ~ ¢ elop,? (
+/o /Fm <F¢,b (5—1> —l—ﬁ[s(gb,ﬁ)—s—i—g— (Q; )}gbulyn) do, dt
T oo~ T o\ o~ © _ T
+/ / —puy - n do, dt —|—/ / <(1 — T) Op—=u- pr) dx dt —I—/ Erq(¢) dt,
o Jry, © 0o JQ 0 0 0
with an “error term”
_ N . RS 0—
Erl——/g(u—u)®(u—u).vxudx+/( ) u—nu) ( D — d1v$> dz
° A (4.2)

+/QQ(§—3)(u—ﬁ)-Vm1§‘ dx+/ﬁ(g—g)(s—s) (85‘ -V 19) dz.

13



4.2 Pressure

First observe that

—/ﬁuVﬂ’pﬁ dr = —/ ﬁub~ndax+/ﬁdivxﬁ dz.
Q 80 Q

Next, a direct manipulation yields

_ 9(ee)]s(8,S)  0(0e)]o(8,5) .
b= 5 - do

Finally, we report the identity
. Op op
(1 — E) <(3tp +u- pr) (p p> div,u = div,ua ( — (9_Q(Q —0) — 50 (19 ) — p>

— 50,0 + - V,0) (gZ( — o)+ 23(19 19))

+ (1 - %) <§ LV, — agﬁ) + (0 — 9)div, (%) :

see [12, Section 6].
Consequently, plugging these three relations in (4.1) and using the fact g|r
that

/(; el o ww—é’)—w(g—@)—@e@@) dx]

= 0p, we may infer

in

t=1

S _
//F< w0 S a(ge)é\)S( S s-5) - %W(g_@_%t@’g)) w0 o e

+/;/Q(z—1)w e [ (5-1) @ w) e
//(1——) ddt+//<——1) X””ﬁ dz dt

+/0 /Q(s_@:( - V,0) dxdt+/ /(——‘—3) (Vo — V.0 doar
g/o/r (Fb <5—1)+7§[s<gb,ﬁ>—§+%— )] . n+a~n(§—1)>dazdt

+/0T/9Er2(t) da dt,
(4.3)

14



with

Erp=— [ o(0—u)®@ (0 —u):V,a dx—i—/

Q

<1 - g) (u—n)- (Vxﬁ— divmg) dx
(0-0)5 ) (90 + - V.9) da

+ [ 0G—s)(u—mn)-V,0 dx+/

¢ (4.4)

+

S— — 5—

: ﬂ i) (7490
+/Q (s— 90 (g—g)—aﬁ(ﬁ ) s) <8t19—|—u Vﬂ?) dz
4.3 Conclusion

As a consequence of the hypothesis of thermodynamic stability expressed via convexity of the
function Ei (e, S), we get

I/ ( (0.)- 2o g5 W(g—@—ﬂm@ﬁ))ub-ndaxdtzo.

Consequently, inequality (4.3) can be rewritten in terms of the standard variables as
5 t=1
[/E(g, 0 19) d:c]
//( )S Vudxdt+//(: >(§:Vmﬁ) dz dt
+/ /(1—2)‘1'?“9 dxdt+/ / Do) eVl
0o Ja ) 0, U 9
—1—//(8 S) (V,u—V,u) dxdt—i—//(——g) VQ? VQ9> dx dt
e(op, v ~ 0
/ /n< ,b<——1>—|—19[(gb,19) 15 (Q; )]gbub-n+q-n(5—1))dazdt
+/ /Erg(t) dz dt.
0o Ja

With the exception of the boundary integral, this is the same inequality as in [12, Section 6, formula
(71)]. We may therefore anticipate results similar to [12] as soon as we handle the boundary terms.

(4.5)
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4.3.1 Inflow boundary
Since (g, 1, 15) is a strong solution,
opeW, -n+q-n =,

and the boundary integral reads

Y - _ 2 eloy?) N(ﬂ >
EFol=+—=-—2]+v|s(op,9) — 5+ = — uy-n—¢cl=-—1 u,-n | do,
/Fm<7b(19 J ) [(Qb ) 7 9 OvUp 7 OvUyp

Next, it follows from Gibbs’ equation that

e— 95 =e(op, ) — Is(0p, V) > e(0p, ) — Vs(0p, V).
Indeed, as shown in [16], the function
Vs e(ov, 15) — 193(@1,,15)

is non-negative attaining its minimum at 9 = ¢ for any fixed g, 9. Consequently,
~ ~ e eloV)] i _ e
ﬂ[s(gb,ﬁ) s+ 5 ] =3 [ﬁs(gb,ﬁ) Vs + 5 e(0p, V)

0

Y I - ~
:E[ﬁs(gb,ﬂ)—ﬁs—ke—e(gb,ﬁ)} +e—5 :

whence the boundary integral can be controlled as

v 9 Y
Fyl=+=—-2]-¢|l=+--2 n|d
/pin< ib (294'19 ) e (19 +19 )Qbub 1’1) O

Y

. (4.6)
9 SO 9 0 ~
+ —[ﬁs(gb,ﬁ) —195+e—e(gb,19)} oy, - ndo, < -+ —-—2]q-ndo,.
Fin 19 Fin 19 19
4.3.2 Conditional weak—strong uniqueness
We suppose that the weak solution (g, u, ) belongs to the “non—degenerate” area
0<o<ot,z)<o, 0<V<I(tx) < foraa. (t,x) € (0,T) x €, (4.7)

where p, 9,0, 0 are constants. Under these circumstances, we can apply a Gronwall type argument
to the inequality (4.5) exactly as in [12, Section 6.1, Theorem 6.1] to show a conditional weak—
strong uniqueness result. The boundary integral (4.6) can be handled by means of the trace
theorem and interpolation as

9 . 112
/ LA ﬁ~nda$§/ |19—19|2d0$r5H19—19H
Tin 9 v Din We2(Q) (48)

- - 1
< 319 = Do + @9 — Iy 5 <a <1,
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where 0 > 0 can be chosen arbitrarily small. Thus the same arguments as in [12, Section 6.1] give
rise to the following result.

Theorem 4.1 (Conditional weak—strong uniqueness). Let the thermodynamic functions p, e, and
s be continuously differentiable functions of o and ¥ satisfying Gibbs’ equation (1.7), together
with the hypothesis of thermodynamics stability (1.11) (specified in (3.1), (3.2)). Let the transport
coefficients p, n, k be continuously differentiable functions of o and 9,

u>0, k>0mn2>0.

Let (0,u,v) be a weak solution of the Navier—Stokes system (1.7)—(1.9), with the boundary condi-
tions (1.1)—(1.5), in the sense specified in Definition 2.1 satisfying

0<o<o(t,r) <o, 0<V<V(tx) <D for a.a (t,z) € (0,T) x Q.

Suppo§e that the same problem (with the same initial and boundary data) admits a strong solution
(0,1,7) in the class

o, u, 9 € C([0,T] x Q), &a, 99 € C([0,T] x Q).
Then ) B
o=0, u=1u, =19 1in[0,T] x L.
4.3.3 Unconditional weak—strong uniqueness

Unfortunately, the existence result proved below does not provide weak solutions ranging in the
physically “regular” domain (4.7). To save the weak—strong uniqueness principle, we are forced
to impose certain technical hypotheses on the constitutive relations. Motivated by [17, Chapters
2,3], we suppose that the pressure p obeys a state equation in the form

1Y a
plo,9) = 99/2P <W> + 57 a>0, (4.9)

with P € C*0,00). In accordance with Gibbs’ equation (1.6), we get

e(0,9) = S%/QP (ﬁ) + gﬁ‘*, (4.10)
and .
s(0,0) =8 (193—9/2) +4—;%, (4.11)
where $(2) __§§P(Z)—P’(Z)Z (4.12)
2 7?2 '



Moreover, the thermodynamic stability requires

SP(Z)—- P (2)Z
P'(Z) >0 for any Z >0, 2 2) Z)

> 0 for any Z > 0. (4.13)

In particular, the function Z + P(Z)/Z° is decreasing, and we suppose

Z
lim = oo > 0. (4.14)

Next, we impose technical but physically grounded hypothesis (see [17, Chapter 2])

SP(Z)-P(2)Z
P(0)=0, 3 ( )Z (2) < cfor all Z > 0. (4.15)

Finally, we require the transport coefficients to be continuously differentiable for ¢ € [0, 00),

2
p(1+9%) < p) < +9%), (1 (9)] < cfor all ¥ € [0,00), = < A<, (4.16)
0 < n(¥) <71+ ) for all ¥ € [0, 00), (4.17)
(1 +9%) < k(¥) <R(L+9?) for all ¥ € [0, 00). (4.18)
Observe that function S is decreasing on (0, 00) and we can suppose without loss of generality
limgz 0 S(Z) € {—00,0}. If
Zlim S(Z)=0 (4.19)
—00

then s satisfies the Third law of thermodynamics, cf. Belgiorno [6], [7]. The reader may consult
[17, Chapter 1] for the physical background of the above hypotheses.
The important observation made in [12, Section 6.1, formula (78)] is the following inequality:

o=l [ (1= 5) 52 e [ (5-1) 27
+/ﬂ(%—g) (Vﬁ Vﬁ) da:+/QE<Q,u,19‘§,ﬁ,1§> da

The bound (4.20) allows us to control the boundary integral

Y - _ e e(op0) 0]
Fol2+Y% -9 iy (% .
/Fin ( ib (19 + 3 ) —i—"ﬁ[s(gb,ﬁ) s+ 5 9 }Qbub n—e 5 opuy -1 | do,

as long as further restrictions are imposed relating Fj;, oy, and the structural constant p., in
(4.14). Following Norman [27, formula (2.10b)] we suppose that

(4.20)

Fip(z) < 0on I'y,. (4.21)
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Our goal is to show, similarly to (4.8), that

Y - _ e elon?) [V
F' - __2 i -~ . i 7_1 .
/Fin< ib (19—1—19 )—H?[S(gb,ﬁ) 5—1—19 9 opup-n —e 5 opuy, -1 | do,
é/ 19 — 9 do,.
Fin

In view of (4.8) and since the integrand is a sublinear function of ¥ for ¥ — oo, it is enough to

have
v 0 . _, ¢ e(o) (9
E -~ - 2 19 719 - - * — -~ _1 *
< b (19 + 3 ) + [S(Qb ) — S5+ 5 3 o N —¢€ 5 opup - N

~(Fip  e(op,9)
g (R UL
(ﬁ 9

(4.22)

gbub-n) — —oo as v — 0.

Indeed, in view of hypotheses (4.10), (4.14),

e(on¥) 13 53 P () ) 13 4
9 929 g b)3 PR

Moreover, by the same token,
|5(0p, ¥)| ~ (1 — log(®)) as ¥ — 0.
Consequently, the desired estimate (4.22) holds as soon as

3

Fip— époogg/aub -n <0 on Iy, (4.23)
If (4.23) holds, the boundary integral in (4.5) can be controlled via (4.20), and we are in the
situation treated in [12, Section 6.1, Theorem 6.2]. More precisely, a Gronwall type argument can

be used to absorb all terms in Ery in (4.5) to obtain the following result.

Theorem 4.2 (Unconditional weak—strong uniqueness, I). Let the thermodynamic functions p, e,
and s satisfy the hypotheses (4.9)—(4.15), where, in addition,

4a 93

Y
s(0,9) =S8 <W) + 30 S(Z)—0as Z — oc. (4.24)

Let the transport coefficients u, n, Kk be continuously differentiable functions of ¥ € [0, 00), satisfying
the hypotheses (4.16)—~(4.18). Let the flux F;y prescribed on the inflow boundary satisfy

Fiyp 3 53
: o i 4.2
sup (2 (o) + S () <0 (4.25)

iEGFm
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Let (p,u,9) be a weak solution of the Navier—Stokes system (1.7)—(1.9), with the boundary condi-
tions (1.1)~(1.5), in the sense specified in Definition 2.1. Suppose that the same problem (with the
same initial and boundary data) admits a strong solution (9,0, V) in the class

o, u, ¥ e CY[0,T] x Q), o*u, 929 € C([0,T] x Q).

Then . B
o=0, u=1u, 9=191in[0,T] x Q.

Hypothesis (4.25) may seem rather awkward, however, it can be interpreted as negativity of the
“heat flux” on T'y,. To see this, consider an “iconic” example of internal energy satisfying (4.10),
namely,

3 3
oe(p, ) = 5@19 + §poog5/3 + a* : (4.26)
~~~ N—— radiation(photon)energy
molecular energy  electron energy
Writing
3 5/3
Fp = 52900@;,/ w, -n+ Fu,-n oon Iy,
——
cold Aux heat flux

we can check that (4.23) holds as soon as infr, F, > 0.

Although physically relevant, the satisfaction of the Third law may seem restrictive, in par-
ticular, this assumption is violated by the state equation (4.26). We show that the conclusion of
Theorem 4.2 remains valid in the general case under slightly more restrictive assumption

<A<1 (4.27)

DN | —

in (4.16). Note that the range (4.27) is still realistic for gases, see e.g. Becker [5]. As a matter of
fact, the hypothesis (4.19) was not explicitly used in the proof of Theorem 4.2, it is necessary to
control the error Ery exactly as in [12, Section 6.1]. A short inspection of the proof in [12, Section
6.1] reveals the most problematic term in Ery, namely

[ o5 =5 =) Vi e

or, more precisely, its “residual” component

| esten)-w - V.ide
R
where

1 1 ~ -
R = [(O,T) X Q] \ {(t,x) ‘ §inf§§ o(t,x) < 2sup g, §inf19§19(t,x) Squpﬁ},
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and where, by virtue of (4.9-4.15),

5/3 ~ ~ O
||Q]'R||L/5/3(Q) ’5 E <Q7 u7S‘ o,u, S)

The Gronwall argument used in [12, Section 6.1] applies as soon as we have the following bound:

/Qs(g,ﬁ)(u—ﬁ).vxﬁdx g5Hu—ﬁH12ﬁ,01,a(Q;Rd)+c(e)/X(t)E(g,u,S‘ 6,6,8) dr (4.28)
R

Q

for any € > 0, where

o =

S and x € L'(0,7).

In view of the arguments of [12, Section 6.1}, the verification of (4.28) amounts to showing
[ elos)llu —alde < & u = @l + OO [ B(ow| 26.5) do (420)
R Q

Here, we address the problem for d = 3, the result can be slightly improved for d = 2. If A > %,
we have o > 1976, and in view of the standard Sobolev embedding theorem,

48
Wo (2 R?) € L'( B for L <7 < =
Consequently, by Holder’s inequality,

~ < ~
[ eltog0)lha =]z & f1rell, 5 1080) o llu = Gl
2
L3 (@)

6
~ 5
< e flu =l gup + e(©)l108(0) [Foo) ( / E (o8] 5,1.5) dx) .

12
< & [lu — [0 gm0 + (&) 0g(9)[Ls (o) 1= ll

As 1} is a weak solution, we have
log(¥) € L*(0,T; W"*(Q)), whence we may consider x = ||log(¥)[|Z6y € L'(0,T).
We have shown the following result.

Theorem 4.3 (Unconditional weak—strong uniqueness, II). Let the thermodynamic functions p,
e, and s satisfy the hypotheses (4.9)—(4.15). Let the transport coefficients p, n, £ be continuously
differentiable functions of ¥ € [0, 00), satisfying the hypotheses (4.16)—(4.18), with

1
A e [5,1]
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Let the flux F;p prescribed on the inflow boundary satisfy
Fiy 3 53 )
su () + =Poo z) | <0.
sup (o) + Syl )

Let (0,u,v) be a weak solution of the Navier—Stokes system (1.7)—(1.9), with the boundary condi-
tions (1.1)~(1.5), in the sense specified in Definition 2.1. Suppose that the same problem (with the
same initial and boundary data) admits a strong solution (9,0, V) in the class

0, u, ¥ € CY[0,T] x Q), &1, 99 € C([0,T] x Q).

Then i B
o=0, u=1u, 9 =19 1in[0,T] x Q.

5 Existence theory

Our ultimate goal is to show existence of global-in—time weak solutions in the sense of Definition
2.1. To this end, we restrict ourselves to the thermodynamic functions p, e, and s, and the transport
coefficients p, 1, and r satisfying the constitutive relations (4.9)—(4.18) introduced in Section
4.3.3. The approximation scheme is similar to [17, Chapter 3], with the necessary modifications to
accommodate the boundary conditions. In comparison with [17, Chapter 3], there are two main
difficulties to be handled:

e Compactness of the boundary integrals with respect to the available a priori bounds.

e The fact that the approximate density does not satisfy the boundary condition (1.3) at the
first level of approximation.

The existence result reads as follows:

Theorem 5.1 (Global-in—time existence). Let Q C R? be a bounded domain with smooth bound-
ary. Let the thermodynamic functions p, e, and s satisfy the hypotheses (4.9)—(4.15), and let the
transport coefficients be continuously differentiable functions of 9 € [0,00), satisfying the hypothe-
ses (4.16)-(4.18). Let the data g, Wy, oy, and Fy, be smooth fucntions of x € S0, satisfying

Eip 3 53

- nl (x) + SP0, (x)) < 0. (5.1)

o, >0 on Iy, sup (

z€l'in

Let the initial data (0o, (0u)o, (05)o) be given such that
0(0,-) = 00, 00 € L*3(Q), 00 >0, a.a. in Q;
2
(0u)(0, ) = (ou)o, / @ dz < oo (5.2)
o Qo

(08)(0,-) = S(0,-) = (08)0 = 005(00,%0) € L*(Q), Yo >0 a.a. in Q.

Then for any T > 0 the Navier—Stokes system (1.7)—(1.9), with the boundary conditions (1.1)-
(1.5), admits a weak solution (o, u,d) in (0,T) x Q in the sense of Definition 2.1.
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The rest of the paper is devoted to the proof of Theorem 5.1.

5.1 Approximation scheme

Similarly to [17, Chapter 3], we introduce a multilevel approximation scheme to construct the weak
solution.

5.1.1 Equation of continuity

As in [10], the equation of continuity is replaced by a standard parabolic regularization:
0o + div,(pu) = Ao in (0,T) x Q, € > 0,
eVeo-n+ (0 — 0)[uy-n]” =0in [0,7] x 09, (5.3)
0(0,°) = 0o,
where we have denoted

up-nonl,

[up - n]” =min{0,u; - n} = { 0 otherwise

Here € > 0, 6 > 0 are two parameters, gy s being a suitable regularization of gy,

005 € C*(Q), 005 >0inQ, eVi00s5 -0+ (05 — 00s5)[1y- 1]~ =0 in ON.

5.1.2 Momentum equation

The approximate velocities are determined via a Faedo—Galerkin approximation. To this end,
consider

Xn:span{wi w; € C(Q; RY), i = 1,...,n}

where w; are orthonormal with respect to the standard scalar product in L?. Let II,, : L? — X,
be the associated orthogonal projection.
We look for
u=v-+uw, vedl(0,T];X,),

where

t=1 T
[/gu-cp dm} :/ /[gu-@tcp—kgu@u:V$<p+p5divxgo—85:ngo dx
Q t=0 0 Q

—5//VIQ-VJCu-cpdxdt—l—//Qg-npdxdt
0o Jo 0o Ja

for any ¢ € C'([0,T]; X,,), with the initial condition IT,(ou),. Here we have introduced
ps=p+6 (0" +0°),

S5(9, Vo) = (u(8) + 59) (qu +Via— C%divxu]l) 4 5(9) div,ul.

(5.4)
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5.1.3 Internal energy balance

To keep the approximate scheme consistent with the energy estimates, we consider a modified

internal energy balance:
Oi(0es) + div,(oesu) + div,qs = S5 : V,u — pdiv,u + &6 (I‘QF_2 + 2) |V.ol® + (5%
with the Robin boundary conditions
Qs -+ pes[uy,-n|” = Fy, Fip=0on Dyan U Tou.

Here,

1
es = e+ 01, quq—é(ﬁr—ka) V..
The initial conditions are determined through gy and ¥y, where

o5 € WH2 N L>®(Q), ess insf2 Yos(x) > 0.
re

5.1.4 Entropy inequality

— e,

(5.5)

(5.6)

(5.7)

The above approximation scheme is exactly the same as in [17, Chapter 3|, modulo the boundary

conditions. Assuming there is a strong solution of the internal energy balance such that

inf ¢ >0,
(0,T)xQ2

we derive a weak formulation of the entropy inequality.
First, rewrite (5.5) with the help of (5.3) as

1 1 1
0—0ses + —ou - Vyesu + ces—A o + div, <%>

9 9 9 9
1 ) qs- Vot 0 D .. 1 r-2 2 4
=3 (S(s - V,u 3 + 192> ﬁdlvmu—l—ééﬁ (FQ + 2) |Vao|* — 0.

Consequently, using Gibbs’ relation, we may go back to the entropy formulation:
. . qs

Oi(0ss) + div,(ossu) + div, (E)

1 -V 0

1 r—2 2 _q4
3 3 792)—1—5519@9 +2) |V,0|* — v

where we have denoted
ss = s+ 0log(9).
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Finally, multiplying (5.8) by ¢ € C*([0,T] x Q), ¢ > 0, we get

t=r1 T T r
[/ 0S5 daz] —/ /Qs(;é?tgo dx dt—/ /g35u~ngo da:dt+/ / possup - n do, dt
=0 0o Ja 0o Ja 0 JTout
/ /— V.o dzdt
_ i 95Vl | 9 ’ 'a r—2 2 94
_/ / (Sg.vl,u 3 +192) d:cdt+e/0 /9519<(FQ +2) V.0 19) dx dt
—|—5// 20 Vg [ (5—354—;19)} dx dt
—5/ / ©Vz0- n(——35+g ) daxdt—/ /
Now, we use the boundary conditions obtaining
_5/ / AV n(——35~|— ) do, dt — / / q n+935ub )daxdt
11] Q’l? m
1
/ / [Qb (——35—1-;;9) ub-n—sub-n—gﬂ,b] do, dt.

Unfortunately, the boundary integrals depend on p on the inflow part I';, whereas, at this stage of
approximation, o # g, on 'y, in general. To remedy the problem, we make use of the thermody-
namic stability (1.11), (1.12) to deduce

) do, dt

Bon(00,53) > Fun(0,S) + <e—ﬁs+g)<gb—g>+ﬁ<sb—5>

Ei,
< — s+ )Qb+ge—<e—ﬁs+g>g+ﬁ&,—gﬁs
< — s+ = > p+195b, with Sb:QbS(Q(,,"&).

Thus we may infer that

1 1 1
5 (e — s + g) Op — Ep < EQbe(Qbaﬂ) - Qb5(9b779)

Seeing that u, - n < 0 on I'y, we may write down the final form of the approximate entropy

25



inequality:

t=1 T T T
[/ 0S5 dx] —/ /QSg(?tcp dxdt—/ /Qs(gu-vxgp dxdt—i—/ / possuy - n do, dt
=0 0o Ja o Ja 0 JTout
/ /— V.o dzdt
qg‘Vxﬁ 0 /T/ ¥ r—2 2 4
do° Va¥ 7 “((r 9 _
/ / (85 3 +192) dadt + ¢ i 9519<( o' 2 +2) V.ol 19> dx dt
+e/ /VIQ Va { (5—55—%@79)} dx dt

1 Y
+/ / © [5@,(1 —log(9¥))uy - n — EFi’b + (e(g%;) — s(gb,ﬁ)> opuy - n] do,, dt
0 1—‘in

for any ¢ € C1([0,T] x Q), » > 0.

5.2 A priori bounds

Assuming for a moment solvability of the approximate problem (5.1)—(5.7) we focus on available
a priori bounds. Needless to say they mimick their counterparts for the limit system.

5.2.1 Approximate total energy balance

Consider ¢ = v = (u —w), ¥ = ¥(t), ¢ € C'0,T] as a test function in the approximate
momentum balance (5.4). After a straightforward manipulation and with the help of the equation
of continuity, we deduce

1 N 2 1 r 2 =
=t o (e ) o]
T 1 1 T
—/ &w/ {—gyu—ubﬁw(—gwg?ﬂ dmdt+/ ¢/Sg(z9,vxu):vxu dz dt
0 Q 2 I'—1 0 Q
+/ 0 5(LQF+Q2>ub-nda:€dt
l—‘out F_l
o] [ a0 - e e e a
T T-1 ’ r—1° " v

—5/ w/ (0 — @)*up -1 doy, dt+€(5/ ¢/ (L' 24 2) |V,o0f* dzdt
0 Tin 0 Q

(5.10)
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—/077,0/9[911@11—!—]?6( )] : Vyup dedt 4 = / @/}/Qu V.|up|® dzdt

+/ Q/J/pdivxu dx dt

/1/)/8519Vu) V,up dxdt+/ @b/gg (u—u,) dedt

o

Equality (5.10) added to the approximate internal energy balance (5.5), (5.6) gives rise to the
approximate total energy balance

1 t=T1
[/[ |u—ub| +5(—Q +Q)+Q€5]¢ dx]
Q 1 t=0
1
—/ atw/ {—g|u—ub|2+a<—gf+@2)+ge5} de dt
. 012 -1
T T 1
—I-/ Y Qegub-ndaxdt—i—é/ / (_Qr+gz) u, - n do, dt
0 Tout 0 Jrow \I'—1
+/T¢/Fd dt 5/Tw/ L or I =1 0) 1 do, dt
. J— _——_— R— _——_— u -n T
o - 1,00 o . F_ltgb F—lg Ob T — 1Q b o
5[ [ (0 aunndo, ar
0 Tin

— /¢/ [ou®@u + psll| : Vyup dedt + = /w/gu V|uB] dx dt

/1/)/S519V11) V. dxdt—l—/ ¢/gg (u—u,) dedt
/1/1/ (6——5195> dz dt

_6/ w/ —Qbub ndo'xdt‘i‘g/ w/vzg~vx(u—ub)~ub dz dt
Q

for any ¢ € C'[0,T).

_1Qbub ndaxdt%—f:/ w/VxQ Lu—uy) - dedt

(5.11)
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5.2.2 Approximate total entropy balance and uniform bounds

Consider ¢ > 0, ¥ —a positive constant - as a test function in the approximate entropy inequality
(5.9) and subtract the resulting expression from (5.11) (with ¢» = 1) to obtain

1 - t=1
{/[ g|u—ub|2+(5<r r—1¢ +Q)+Q€5 19935} dx]
/ / o(es — Jss)uy - ndaxdt+5/ / (—Q +g>ub n do, dt
Fout Fout
// [(1— ) ,b—|—19( (Qgﬁ)—s(gb,ﬁ))gbub-n}damdt
A=t
_—Q
0 le‘ F 1
—5/ / 0— 0p)°w, - n do, dt+6/ / Yop(1 — log())uy - ndo, dt
0 JTi Tin
T , qs5- Va6 2 (5.12)
/O/Qﬁ(S(g.Vx — —1—192) dxdt+55// ]ng\ do dt
—1—5/ 19194 dedt —0 / /— dz
o Ja

1 T
/ / [ou ® u+ ps(o)l] : V,u, dxdt+—/ /Qu-Vm|ub|2 dz dt
o Ja

+ Ss(9, Veu) : Vau, da:dt+//gg (u—u,) dzdt
0o Ja

_ F-dzdt—ﬁ//gc-z—— P arat
5/0 /me—lgbubn o € i QVQV 3 .954—@19 T

—I—s/ /ng-Vx(u—ub)-ub dz dt
0o Ja

[e9)

1
F_l(gb —0) — ﬁg ] u, - n do, dt

+

/\

Now, the first observation is that the left-hand side of (5.12) is bounded below by a constant
that depends only on the data but is independent of € and . Indeed, similarly to Section 4.3.3,
we may control the boundary integral

/ Kl - g) Fo+? ((Q%ﬁ) — s(or, 19>) wi “1 do,

with the help of hypothesis (5.1):

/ l+193|ub-n| dO’wa/ 1—§ F,b+5 6(@13719)_8(Qb’19) OpUp - 1l dO’x—Fl (513)
r. \V I 9 ’ v
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The remaining boundary integrals are either non—negative or controllable by the quantity on the
left-hand side in (5.13). Note that u,-n < 0 on I, and up - n > 0 on Loy

The next observation is that all integrals on the right-hand side of (5.12) can be “absorbed”
in the left hand-side by means of a Gronwall argument. Indeed possibly the most difficult term is

/85(19, V.,u): V,u, dz
0
2
— /(,u(ﬁ) + 0v) (qu + Vu' — ;ldivxu]l) : Ve, dz + / n(¥)div,udiv,u, dz
0 Q

1 1
§w/—Sg:VIu dx+cl(w,ub)/192 dxgw/—Sg:qu dz + co(w, up) 1+/Q65 dx
QU Q o Q

for any w > 0.
As for the last integral in (5.12), it can be shown, exactly as in [17, Chapter 3|, that

55//Vmg-vw @—35+£ dedt = 0ase —0 (5.14)
0 Jo U oV

for any fixed § — 0.
Summarizing we have obtained the following a priori bounds, cf. [17, Chapter 3]:2

1 _
ess sup /{20|u—ub| +5<—1@ +Q)+065—19985] de <1,
Q

te(0,T)
/ / (S(; N Vﬁ) dzdt <1,
¥
/ / (— + 9%|uy - n|> do, dt ~ 1,
o Jr, \V
T —
/ / o(es — Vss)u, - ndo, dt 5 1,
0 1_‘out

T
/ /— dxdt+5/ /195 dzdt <1,
Q
T 1
0 / / —QF+92 luy - | daazdt"’/ / (Q—Qb)21u5~n|daxdt fil, (5.16)
0 1—‘out F_l 0 Fi“

T
1
55/ /— (To" % +2) |V,0f dedt ~ 1.
0 919

2In what follows, we denote a < b if there exists ¢ > 0 independent of n, €, § such that a < cb.

(5.15)

and
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5.3 Solvability of the approximate problem

Given n > 1, & > 0, and 6 > 0, the existence of solutions to the approximate system (5.3)—(5.7)
was shown in [15, Chapter 3] in the case of energetically insulated system u, = 0. The scheme of
the proof is based on a fixed point argument:

1. Fix [o, v, V].

2. Solve the approximate equation of continuity obtaining a new density o = g[v].

3. For given v, g[v] solve the approximate internal energy equation (5.5)—(5.7) J|p, u]
4. Find a new velocity u by solving (5.4) and use a fixed point argument.

In the present setting, the steps 1,2 have been performed in [10]. We therefore focus on
solvability of the approximate internal energy equation (5.5)—(5.7) for given (smooth) p and u.
This amounts to verifying the same set of a priori estimates as in [17, Chapter 3, Section 3.4.2].
For given o, u, we consider the problem

1

= e, (5.17)

O (0es) + div(oesu) + diveqs = Ss = Vu — pdiveu+ 26 (Dot % +2) V0> + 6

qs - N+ Qeé[ub : n]i = E,ba Fi,b =0on [y U I‘outa (518)
with

qs = —K(V)Vy0 =4 (ﬁr + %) V.. 0.

5.3.1 Comparison principle

We say that o is a supersolution of (5.17), (5.18) if it satisfies

1
Oi(0es) + div,(0esu) + div,qs > S5 : V,u — pdiv,u + &4 (FQF_2 + 2) V.0l* + 5@ — e

qs - N+ oesup - n < E,b on 1—‘ina qs = 0 on Fwall U I‘out-

Similarly, a subsolution ¥ satisfies

1
Oi(0es) + div,(0esu) + div,qs < S5 : V,u — pdiv,u + &4 (FQF’Q + 2) V.o* + (5@ —e)®

qs N+ gesu-n > Fipoon Iy, qs = 0 on Iyan U Doy

The comparison principle asserts that if 9 is a supersolution and ¥ a subsolution, then

9(0,-) <9(0,-) = 9(¢t,-) <I(t,-) for all t > 0. (5.19)
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Our goal is establish the comparison principle for strong solutions of the problem (5.17), (5.18).
Following the proof in the case of homogeneous boundary conditions in [17, Chapter 3, Lemma
3.2], we consider the difference of the two inqualities multiplied by the expression

sgnt (@65(@, 0) — es(o, 5))
Specifically, we get
[0 (0es(0.9) — oes(0,9)) +u- V. (eeso, ) — oes(o. D)) | sen* (oes(o. 9) — oeslo, D))
+div, (qa(ﬁ) - q(s(a))sgr1+ (@ea(@,ﬁ) - Qea(@ﬁ)) <.

Thus, in comparison with [17, Chapter 3, Lemma 3.2|, there is an extra term on the left-hand side
of the above inequality after integration, namely

/msgrl+ (Qea(g,ﬁ) - Q@s(@ﬁ)) [(@ea(g,ﬁ) - Q@s(@ﬁ))ub ‘n+ (%(ﬁ) - qg@)) : n] do,

> /F sgn” (Qes(g,ﬁ) - @65(9@) [(ges(g,ﬁ) — @@s(@ﬁ))ub ‘n+ (qa(ﬁ) — qa@)) -n] do,
> 0.

Here, similarly to the proof in [17, Chapter 3, Lemma 3.2], we have written

qs (V) = =V (), Ks(¥) = /179 </<;(S) +9 (sr + é)) ds,
and used the equality
sgn™ <Q€5(Q,Q) — QBg(Q,E)) = sgn™ <IC5(Q) — IC(;(E)).

Accordingly, the proof of (5.19) can be carried over exactly as in [17, Chapter 3, Lemma 3.2].
As a corollary, we obtain uniform bounds on ¥,

0 <(T) <I(t,z) <I(T) for all t € [0,T], z € Q (5.20)

as soon as
0< irflzfﬁo < sup vy < oo.
Q

5.3.2 Parabolic estimates

ks(0) = K(s) +0 <sF + %) , Ks(9) = /119 (m(s) +0 <sF + %)) ds
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we can rewrite (5.17) as

1
A (0es) + div,(oesu) — AKs(0) = S5 : Vou — pdivou+ 6 (o' 2 +2) [V,0* + 6—

i e?® (5.21)

Similarly to [17, Chapter 3, Lemma 3.3], the parabolic estimates

sup [|9]lws) + / / 00 + |AK(O)P) dedt <1
te(0,7)

can be derived by multiplying (5.21) successively on ¥, 9;Ks(¢). In the present setting, this
technique produces two extra boundary integrals:

I, = Y (0esup - n+qs - n)do, = Poesuy - ndo, + / VEF;y, dog,
o2 Tout i

and

d
I, = / 0Ks()qs - ndo, = @ IC5(19) ipdoy — / 0 Cs (1) 0es(0,9)uy - ndo,.
[Y) r

in

Introducing a function

x(0,9) = @/1 Ks(s)es(o, s)ds

we compute

Ox(0,9) = O </1 ks(s)es(p, s)ds —i—/l /ig(s)%—(zs(g, s)ds) + 0,K(19)pess.

Consequently,

d

I, = T . (/C(S(ﬂ) ib — x(0,9)uy - Il)dax

+ /Fin Do </1”9 ra(s)es(o, s)ds + /:9 Iig(S)aa—eg(Q’s>d5) do,

Thus all integrals are controlled in terms of 0,0 and the uniform bounds for ¥ established in (5.20).

5.3.3 Solvability of the approximate internal energy equation

Having established the same set of a priori bounds as in [17, Chapter 3, Section 3.4.2], the existence
of the approximate solutions satisfying (5.17), (5.18) can be shown as therein. Note that the
Neumann problem for general quasilinear parabolic equations in divergence form is nowadays
well understood. The relevant existence result was shown by Ladyzhenskaya, Solonnikov, and
Uraltseva [24, Chapter 5, par. 7, Theorem 7.4] under certain restrictions imposed on the growth
of the nonlinearities. As the comparison principle holds for the present problem, solutions may be
constructed by suitable cut—off of nonlinearities, application of the result from [24], and passing to
the limit in the regularization, see [17, Chapter 3, Section 3.4.2] for details.
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5.4 Asymptotic limit of the approximate solutions

Our ultimate goal is to show that any limit of a sequence of approximate solutions represents a
weak solution of the target problem. Note that this includes limits at three different levels:

e The limit n — oo in the Galerkin approximation (5.4) of the momentum equation.
e The artificial viscosity limit € — 0 in the equation of continuity (5.3).
e The limit  — 0 in the artificial regularizing terms.

A detailed proof of convergence is rather lengthy but nowadays well understood at least in
the case of conservative boundary conditions. Indeed the full proof of convergence under the
hypotheses (4.9)—(4.18) and with u, = 0 was given in [17, Chapter 3]. Moreover, the barotropic
Navier—Stokes system with general inflow /outflow boundary conditions has been treated in detail in
[10]. Consequently, we focus only on the convergence of the boundary integrals in the total energy
balance (5.11), and the entropy inequality (5.9). As the difficulties are the same at any level of the
approximate process, we use a generic notation (g,,, U, J,,) for an approximate sequence, where
m — oo stands for n — oo, or € = 0, or 6 — 0. We also focus on the last step 6 — 0.

5.4.1 Total energy balance

Neglecting all non—negative terms on the left-hand side of the approximate total energy balance

(5.11) we get
[/ {1Q\u u[2+5( L QF+QZ)+Qe]wda¢yT
—olu—uy - 5
0|2 r—1 -

T 1 1
— / &1/1/ {—Q|u —w* 49 (—QF + Q2) + Q€5:| dx dt (5.22)
0 o2 r—1
+ / Y oewy - n do, dt dt
0 1_‘out

T 1 T
S—/ w/ [ou ® u + psll] : V,up dxdt—l——/ w/ ou-V, |ugl* drdt
0 Q 2 Jo Q

+/ ¢/Sg(19,vxu) V., dxdt+/ /Qg. (u—uy) dxdt—/ 1/)/ Fipdo,dt  (5.23)
0 Q 0 Q 0 Iin
T 1 T 1
) — dadt - sy -1 do, dt
- /O w/ﬂﬁ2 ! 5/0 77Z)/Finr_lgbub e

for any ¢ € C'0,T], » > 0. Moreover,

T 1
(5// oy -n do, dt — 0 as § — 0,
0 T. F—l

in
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and, by virtue of the uniform bounds (5.16),

6// dezdt =+ 0asd — 0.

As the convergence of the volume integrals on the right-hand side of (5.23) was established in
[17, Chapter 3|, it remains to handle the boundary term

/ Y oeuy - n do, dtdt
0 1—‘out

Using the last estimate in (5.15) we deduce

/ / oe — 9195)} luy - n|do, dt ~ 1.
Cout

As the function (ge) = Fiy (0, 5) is convex in the conservative entropy variables (g, S = ps) and e
is given by (4.10), we get

T
/ / (|QS| +95/3) |ub'n|d0xdt§¢ 1.
0 1—‘out

Consequently, given an approximating sequence 0,,, Sm = 0mSm, We may suppose, extracting a
suitable subsequence as the case may be, that

0m — 0 weakly in L/3((0,T) X Tou; [u, - 0| dz),
S, —% S in the biting sense in L'((0,T) x Tow; [uy - n| dz),

(0m, Sm) generates a Young measure v, (t,2) € (0,7) X Loy,

S(t,x) = <Vt,$;g> = [ Sdv,.(9),

R2

see Ball [2] and Ball, Murat [3, Section 3]. In order to pass to the limit in the total energy balance
(5.22), we have to show

mM— 00

Z / / Emt(g, S)llb : l’ldO}C dt.
0 Tout

As the function Fj being non—negative lower semi—continous, it can be approximated, by
virtue of Baire’s theorem, by a sequence of continuous, compactly supported functions,

liminf// 0m€(0m, Sm)wp - 1 do, dt (5.24)
1—‘out

E, € C.R*, E, >0, E, /* Ey pointwise.

34



This yields

lim inf/ / Eint(0m, Sm)wp - ndo, dt > / / <Vt,a:5 Eint (0, §)> u, - ndo, dt,
m—00 0 Fout 0 Fout

in view of the fact that

lim / / E.(om, Sm)uy, - ndo, dt= / / <Vt,x;En(@,§)>ub~ndaxdt.
M) JTou 0 JTous

Finally, Jensen’s inequality yields the desired conclusion,
|| (Bt )yw ndndi= [ [ Bulo.S)w ndo e
0 FDut 0 1_‘out

Remark 5.2. To justify the above arguments we must extend carefully the function Fi(g,S)
outside its natural domain o > 0. First, the entropy s admits a limit

s(0,9) — s € {0, —o0} as ¥ — 0 for any fixed g > 0.

The case s = 0 corresponds to the Third law of thermodynamics and has been considered as
one of the hypotheses in Theorem 4.2. In this case, the internal energy is defined as

[ 0e(o,S)if 0> 0, S >0,

0if p=0, =0,

Eint(@v S) =
lim, o4 0e(o,S) if o =10, S >0,

[ oo otherwise.

If s = —oc0 we set
oe(o,5)if o> 0, S € R,
Fii(0,5) =< lim, 04 0e(p,S) if p=0, S € R,
oo otherwise.

In both cases the extended function is convex, l.s.c, and strictly convex in the interior of its

domain.
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5.4.2 Entropy inequality

To finish the proof of convergence, we have to perform the limit in the boundary integrals in the
approximate entropy inequality (5.9). Let us start with

/ / possuy -n do, dt =0 wolog(P)u, - n do, dt + / / posu, - n do, dt.  (5.25)
0 Fout Fout 0 Fout
We start with the first term in (5.25). We have,

(5/ wolog(V)u, - n do, dt < (5/ wollogV|tuy -n do, dt — 0asd — 0
1—‘out r

out

as a consequence of uniform integrability of the internal energy.
The treatement of the second term in (5.25) is more delicate. We have to show that

lim sup/ / ©Spuy - n do, dt < / / oSu, - n do, dt, ¢ >0, (5.26)
0 Fout 0 1_‘out

m—ro0

where S is the biting limit of the sequence {S,,}°_,. To this end consider a function
XEC®R), 0<x<1, x>0, x(Y)=0for Y <0, x(Y)=1for Y > 1,

and the composition
X(S+Ek), k>1.

Observe that
S < x(S+k)Sif k> 1.

Consequently,

lim sup/ / ©Snu, - n do, dt < lim sup/ / ox(Sm + k)Spup - n do, dt for any k£ > 1.
0 Fout 0 Fout

m— 00 m— 00

Next, we claim that the family {x (S, +k)Sm }m>o is equi-integrable in L*((0,T) X Tou; [up - n| dz)
for any fixed k£ > 1. Assuming for a moment this is the case, we get

lim sup/ / ©Spuuy - n do, dt < lim Sup/ / oxX(Sm + k)Spup -1 doy, dt
0 Fout 0 1—‘out

m—r0o0 m—o0

:/ / cp<yt’$;x(§+k:)§>ub-n da$dt—>/ / g0<1/t,x;5’>ub-n do, dt as k — oo,
0 Fout 0 1—‘lout

as claimed in (5.26). To see equi-integrability of {x (S, + k)Sm}m=0, consider first the part of
(0,7) x I'ous, where 9, > 1. By virtue of the hypotheses (4.12)—(4.14),

S| = |0m5(0m, )| ~ (1 + 0| log(om)| + (9™)%) if Oy > 1
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and the desired equi-integrability follows from uniform integrability of Ei,(om, Um). If Uy < 1, we
deduce from (4.11) that

whence

which implies equi-integrability. This finishes the proof of (5.26).
Thus it remains to pass to the limit in the boundary integral

T 1 Y
/ / © [5@1,(1 —log(¥))uy - n — EFi’b + (% — s(ov, 19)) opuy - n] do, dt.
0 Fin

By virtue of the uniform bounds (5.15), we have

T
/0 /Q || log(ﬁ)H%Vlﬂ(Q) dx dt S 1;

whence, as a consequence of the trace theorem,
6/ / wop(1 —log(¥))u, - n do, dt — 0 as 6 — 0.
0 1—‘in

Next, exploiting (5.15) once more we get

T
ess sup [|9]| ey + / V20 2a) S 1.
te(0,T) 0

Moreover, as shown in [15, Chapter 3],
¥y — ¥ in, say, L*((0,T) x Q).

Thus, by interpolation,

T T T
fo% 2(1—«
/ / 1o — 91 o dt / 100 — D12y it < / 1 — D220y 9 — OIS
0o Joo 0 0
for any % < a < 1. Consequently,
Uy — U in L*((0,T) x 052),

and the limit in the integral

T 1 U
/ / 2 i,b + M - S(Qb7 ﬁm) Opup - 11 dam dt,
0 Tin ﬁm ﬁm

can be performed using hypothesis (5.1) and Fatou’s lemma.
We have shown Theorem 5.1.
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6 Concluding remarks

To the best of our knowledge, this is the first result concerning global existence for the Navier—
Stokes—Fourier system with large and realistic initial/boundary conditions. The fact that the
present concept of weak solution complies with the weak-strong uniqueness principle plays an
important role, in particular in view of the recent results on ill-posedness of the incompressible
Navier—Stokes system, see Buckmaster and Vicol [9]. The present results can be used as a suitable
platform for studying turbulence phenomena in physically relevant open fluid systems.

Extensions to more general rheological laws are certainly possible, however, the basic structure
of the internal energy

oe(0,9) =~ 0¥ 4 ¢" +9*

is essential in view of the lack of suitable a priori bounds. In particular, the stabilizing effect of the
radiation component ¥ is absolutely crucial on (hypothetical) vacuum zones, where o vanishes.

Last but not the least, the approximate scheme used in the construction of weak solutions
shares certain similarity with the numerical methods based on the upwinding of convective terms,
see [13], [14], [23].
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