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Abstract. We provide an alternative approach to s-convergence of graph

sequences. The original definition, due to Kunszenti-Kovács, Lovász, and

Szegedy, is based on the convergence of certain compact sets, called k-shapes,
of k-by-k matrices. We show that this is equivalent to the convergence of

certain compact sets of Borel probability measures.

1. Introduction

The recently developed theory of graph limits is an important tool in graph
theory. Usually, a different approach is applied to dense graph sequences than to
sparse graph sequences. For dense graph sequences, the convergence of subgraph
densities [10, 4] is employed in most cases. This leads to graphons as limit objects
(a graphon is a symmetric measurable function W : [0, 1]2 → [0, 1]). However, if the
edge densities of graphs in a given sequence tend to 0 (i.e. if the graph sequence is
sparse) then the limit object is always the constant 0 graphon which provides no
useful information about the structural properties of the graph sequence. Thus, if
we want to transfer any interesting properties of sparse graph sequences to their
limit objects we must use different convergence notions. Two possible approaches
in the very sparse case are the Benjamini-Schramm convergence [2] or the local-
global convergence [3, 7]. These two convergence notions can be used when all
graphs in the sequence have uniformly bounded maximum degrees. As was noted
in [9], in the case of each of the three convergence notions mentioned so far, the
limit objects can be equivalently represented by symmetric Borel measures on the
unit square. This simple observation was elaborated in [9] to build up a completely
new theory of graph limits, based on so called s-convergence, which can be applied
to arbitrary graph sequences and whose limit objects are always nontrivial. The
key property of this theory is compactness, in the sense that every graph sequence
has an s-convergent subsequence. As hinted above, the limit objects, called s-
graphons, are symmetric Borel probability measures on the unit square. A very
encouraging fact is that, for dense graph sequences, there is not a big difference
between graphons and s-graphons as limit objects. The only information which we
lose by considering s-graphons instead of graphons is the edge density of the limit
object (see [9, Chapter 11]).

The research was supported by the GAČR project 18-01472Y and RVO: 67985840.
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2 GRAPH LIMITS: AN ALTERNATIVE APPROACH TO S-GRAPHONS

Let us mention that there are also other (completely different) approaches to
unifying the dense and the sparse graph limit theories, cf. [1, 11]. However, this is
not the direction we take in this paper.

Let us briefly recall the notion of s-convergence from [9]. For every finite
(weighted) graph G and every k ∈ N, we consider a certain compact subset of
k-by-k matrices which is called the k-shape of G. In an analogous way, for every
symmetric Borel probability measure µ on the unit square (called an s-graphon)
and every k ∈ N, we again define a certain compact subset of k-by-k matrices
which is called the k-shape of µ. Now, a graph sequence {Gn}∞n=1 is said to be s-
convergent to an s-graphon µ if, for every k ∈ N, the k-shapes of Gn are convergent
to the k-shape of µ in the Hausdorff distance. Among the main results of [9], it is
shown that every graph sequence has a subsequence which is s-convergent to some
s-graphon, and that every s-graphon is a limit of some s-convergent graph sequence.

The k-shape of a graph consists of the density matrices corresponding to all
possible partitions of the vertex set of the graph into k sets of the same size. An
important fact is that, during the partitioning, one is allowed to cut each individual
vertex of the graph into several pieces. This suggests that it may be a good idea to
leave the discrete world and to approach s-convergence via continuity tools. This is
exactly what we do in this paper. Our goal is to provide an alternative description
of s-convergence which clearly shows the topological properties of this notion. To
achieve this goal, we first assign to each s-graphon a new shape as a certain compact
subset of s-graphons. Then we prove that, for s-graphon sequences, convergence
of all k-shapes is equivalent to convergence of the new shapes. The corresponding
equivalence for graph sequences follows as well, because every finite graph can be
represented by its adjacency matrix and every symmetric matrix with non-negative
values can be (after normalizing) naturally represented by an s-graphon. Thus we
obtain a simple characterization of s-convergence using the hyperspace of compact
subsets of s-graphons.

In [9], the k-shape of an s-graphon is defined with the help of all k-tuples of non-
negative Borel (or, equivalently, continuous) functions on the unit interval such
that their sum is the constant function 1 and such the mean value (with respect
to the Lebesgue measure) of each of them is 1/k. The subtle discomfort of this
definition is that one usually needs to prove something for every k ∈ N. Note that
this can be easily bypassed by using our new notion of shapes instead of k-shapes.
We define the shape of an s-graphon with the help of all non-negative continuous
(or, equivalently, bounded Borel) functions on the unit square such that the mean
values (with respect to the Lebesgue measure) of all their vertical and horizontal
sections are equal to 1. So the main difference is that, instead of considering k-
tuples of functions on the unit interval, we consider only single functions on the unit
square. In Section 3 we will see that the shape of a given s-graphon can be easily
recovered from its k-shapes and vice versa. In Section 5 we prove our main result,
Theorem 1, which states that the convergence of all k-shapes (i.e. s-convergence) is
equivalent to the convergence of shapes. Recall that one of the main tools used in [9]
is a variant of Szemerdi’s regularity lemma [12] (see [9, Lemma 6.1]). Similarly, we
prove yet another variant of the regularity lemma in Section 4 (Lemma 3) which is
crucial for our main result, Theorem 1.

As we already mentioned, finite graphs (or matrices) can be naturally interpreted
as measures (see also [9, Lemma 5.1]). However, some results in [9] are formulated
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only for sequences of finite graphs (or matrices) instead of sequences of measures.
This seems to be merely for convenience as, in some cases, working with finite
graphs (or matrices) simplifies the notational difficulties a little bit due to their more
combinatorial nature. In our case, we have already resigned to working with discrete
objects (as we define shapes as compact subsets of Borel probability measures).
Therefore it seems to be easier to formulate and prove our results for sequences of
s-graphons. Of course, the special case dealing with graph sequences follows as an
easy corollary. This corollary is stated in Section 6. In Section 7 we show that it
makes no difference whether we define the shape of an s-graphon with the help of
continuous or bounded Borel functions on the unit square.

The correspondence between our new approach to s-convergence and the orig-
inal approach taken in [9] is of a similar nature as the correspondence between
Chapter 7 from [6] and one particular characterization of convergence of subgraph
densities from [5]. The latter correspondence is explained in detail in [6, Chapter 7].
Shortly, by [5, Theorem 3.5, (i)⇔ (iii)] we know that convergence of subgraph den-
sities is equivalent to Cauchyness of certain sets, called fractional q-quotients, for
every q ∈ N. In [6, Proposition 7.2] it is shown that this is further equivalent to
the convergence of certain weak*-compact sets, called envelopes, of bounded Borel
functions. The latter convergence is meant in the Vietoris topology obtained from
the weak* topology on the dual Banach space L∞([0, 1]2), i.e. on the space of
bounded linear functionals on L1([0, 1]2). And this very closely resembles the main
idea of the current paper. Indeed, every Borel probability measure µ can be inter-
preted as an element of the dual Banach space of bounded linear functionals on the
space of continuous functions on the unit square:

µ(f) =

∫
(x,y)∈[0,1]2

f(x, y) dµ(x, y), f : [0, 1]2 → R continuous.

Now, observe that the weak topology on Borel probability measures on the unit
square is exactly the restriction of the weak* topology from this dual Banach
space. So in both cases (convergence of subgraph densities and s-convergence),
a certain weak*-compact subset of a suitable dual Banach space is assigned to each
graphon/s-graphon, such that the convergence of graphons/s-graphons is equiva-
lent to the convergence of the corresponding weak*-compact sets in the Vietoris
topology.

2. Preliminaries

We denote by λ the 1-dimensional Lebesgue measure restricted to the unit in-
terval [0, 1], and by λ2 the 2-dimensional Lebesgue measure restricted to the unit
square [0, 1]2.

For every k ∈ N, we denote by Mk the space of all real k-by-k matrices equipped
with the topology of Rk×k. We also define

M∗k =

M ∈Mk : M is symmetric with non-negative values and
k∑

i,j=1

M(i, j) = 1

 .
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We say that a non-negative bounded Borel function f : [0, 1]2 → [0,∞) is fairly
distributed (with respect to λ) if for every x, y ∈ [0, 1] it holds∫

v∈[0,1]
f(x, v) dλ(v) =

∫
u∈[0,1]

f(u, y) dλ(u) = 1.

Let FD denote the set of all non-negative bounded Borel fairly distributed (with
respect to λ) functions on [0, 1]2. Let FDC denote the set of all functions in FD
which are moreover continuous.

Let sG be the space of all s-graphons, that is, the space of all symmetric Borel
probability measures on [0, 1]2. This space is equipped with the weak topology
inherited from the space of all Borel probability measures on [0, 1]2.

For every f ∈ FD and every µ ∈ sG we define a function ϕ(f, µ) ∈ L1([0, 1]2, λ2)
by

ϕ(f, µ)(u, v) =

∫
(x,y)∈[0,1]2

f(x, u)f(y, v) dµ(x, y), u, v ∈ [0, 1].

The fact that ϕ(f, µ) is λ2-integrable immediately follows from the boundedness of
f . We further define a Borel measure Φ(f, µ) on [0, 1]2 such that it is absolutely
continuous with respect to λ2 with the Radon-Nikodym derivative equal to ϕ(f, µ),
that is,

Φ(f, µ)(A) =

∫
(u,v)∈A

ϕ(f, µ)(u, v) dλ2(u, v), A ⊆ [0, 1]2 Borel.

By the fair distribution of f we have

Φ(f, µ)([0, 1]2) =

∫
(u,v)∈[0,1]2

∫
(x,y)∈[0,1]2

f(x, u)f(y, v) dµ(x, y) dλ2(u, v)

=

∫
(x,y)∈[0,1]2

∫
(u,v)∈[0,1]2

f(x, u)f(y, v) dλ2(u, v) dµ(x, y)

=

∫
(x,y)∈[0,1]2

(∫
u∈[0,1]

f(x, u) dλ(u)

∫
v∈[0,1]

f(y, v) dλ(v)

)
dµ(x, y)

=

∫
(x,y)∈[0,1]2

1 dµ(x, y) = 1,

and so Φ(f, µ) is an s-graphon (the symmetry of Φ(f, µ) follows from the obvious
symmetry of ϕ(f, µ)).

Definition 1. For every µ ∈ sG, we define its shape C(µ) ⊆ sG by

C(µ) = {Φ(f, µ) : f ∈ FDC},

where the closure is taken in the weak topology.

Later (in Proposition 1) we will see that C(µ) = {Φ(f, µ) : f ∈ FD}, so the
continuity of the functions f ∈ FDC in the above definition is irrelevant. As the
set sG is clearly closed in the space of all Borel probability measures on [0, 1]2, it
does not matter in the above definition whether we take the closure only in the
space sG or in the bigger space of all Borel probability measures. Finally, it is well
known that the weak topology on Borel probability measures on [0, 1]2 is compact
(see e.g. [8, Theorem 17.22]), thus the shape C(µ) is a compact subset of sG.
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Recall that in [9], for every s-graphon µ and every natural number k, the k-shape
C(µ, k) is defined in the following way: The k-shape C(µ, k) is the smallest closed
set in Mk containing all matrices of the form(∫

(x,y)∈[0,1]2
fi(x)fj(y) dµ(x, y)

)k
i,j=1

,

where f1, f2, . . . , fk are non-negative Borel functions on [0, 1] such that their sum
is the constant function 1 and such that

∫
x∈[0,1] fi(x) dλ(x) = 1/k for every i =

1, 2, . . . , k. (In fact, the original definition from [9] deals with the Cantor set C
instead of the interval [0, 1], and with measures µ on C2 and functions f1, f2, . . . , fk
defined on C. However, these two approaches are equivalent as it is explained in
detail in [9, Chapter 8].) By the first part of Lemma 3.1 from [9], we may further
require the functions f1, f2, . . . , fk to be even continuous instead of only Borel,
and the smallest closed subset of Mk containing all the corresponding matrices still
equals C(µ, k). (Again, Lemma 3.1 in [9] is formulated for functions f1, f2, . . . , fk
defined on C instead of [0, 1] but the same proof clearly works for [0, 1] as well.)

For our purposes, we need to interpret elements of C(µ, k) as s-graphons. We do
it by interpreting each M ∈Mk with non-negative values as the unique measure µM
on [0, 1]2 satisfying, for every i, j = 1, 2, . . . , k, that µM is uniformly (with respect to

λ2) distributed on [ i−1k , ik ]×[ j−1k , jk ] with µM ([ i−1k , ik ]×[ j−1k , jk ]) = M(i, j). In other

words, µM is an absolutely continuous (with respect to λ2) measure with the Radon-

Nikodym derivative equal to k2M(i, j) at every point from
(
i−1
k , ik

)
×
(
j−1
k , jk

)
,

i, j = 1, 2, . . . , k. It is easy to check that if M belongs to M∗k (in particular, if
M ∈ C(µ, k)) then µM is an s-graphon. Now for every s-graphon µ and every
natural number k, we can define

C̃(µ, k) = {µM : M ∈ C(µ, k)}.

Note that the mapping M 7→ µM from M∗k to sG is continuous. In particular, this

implies that the set C̃(µ, k) is compact by the compactness of C(µ, k).
Recall that if K is a compact metrizable topological space then the hyperspace

of compact subsets of K is a compact topological space when equipped with the
Vietoris topology, and it is metrizable by the Hausdorff distance. While the Vietoris
topology is well defined even without specifying any concrete compatible metric
on K, the Hausdorff distance depends on the choice of the metric on K. Thus,
when talking about convergence of compact subsets of K in the hyperspace, it
is sometimes convenient to use only the topological convergence (rather than the
metric one), namely when the metric on K is not clearly specified. For example, we
state Theorem 1 in terms of Vietoris topology as there is no canonical compatible
metric on the compact space sG (but we pick one such metric in the proof of
Lemma 3 where we adjust it to our needs). For more information on the Vietoris
topology see e.g. [8, Chapter 4.F].

3. Comparison of k-shapes and shapes

In Lemma 1 and Lemma 2, we uncover the connection of the k-shapes C(µ, k)
introduced in [9] with the shape C(µ) from Definition 1.
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Lemma 1. For every s-graphon µ, we have

C(µ) =
⋃
k∈N

C̃(µ, k),

where the closure is taken in the weak topology.

Proof. First, we prove the inclusion

(1)
⋃
k∈N

C̃(µ, k) ⊆ C(µ).

Suppose that k is a natural number, and let f1, f2, . . . , fk be non-negative continu-
ous functions on [0, 1] such that their sum is the constant function 1 and such that∫
x∈[0,1] fi(x) dλ(x) = 1/k for every i = 1, 2, . . . , k. Let M ∈ C(µ, k) be the matrix

given by

M(i, j) =

∫
(x,y)∈[0,1]2

fi(x)fj(y) dµ(x, y), i, j = 1, 2, . . . , k,

and let µM be the corresponding s-graphon from C̃(µ, k). We define a function
g : [0, 1]2 → [0, k] by

g(x, y) = kfi(x), x ∈ [0, 1], y ∈ Ii, i = 1, 2, . . . , k,

where

(2)

Ii =

[
i− 1

k
,
i

k

)
for i < k,

Ik =

[
k − 1

k
, 1

]
.

Then g belongs to FD. Moreover, for every i, j = 1, 2, . . . , k and every (u, v) ∈
Ii × Ij we have

ϕ(g, µ)(u, v) =

∫
(x,y)∈[0,1]2

g(x, u)g(y, v) dµ(x, y)

= k2
∫
(x,y)∈[0,1]2

fi(x)fj(y) dµ(x, y)

= k2M(i, j),

and it follows that Φ(g, µ) = µM . However, the function g is not necessarily
continuous on [0, 1]2, only its restrictions to each of the sets [0, 1]×Ii, i = 1, 2, . . . , k,
are continuous. To deal with this issue, we fix ε ∈ (0, 1

2k ). Then we define a new

function gε : [0, 1]2 → [0, k] by

gε(x, y) =


g(x, y) if

∣∣y − i
k

∣∣ > ε for every i = 1, 2, . . . , k − 1,
1
2ε ( ik + ε− y)kfi(x)

+ 1
2ε (y − i

k + ε)kfi+1(x) if
∣∣y − i

k

∣∣ ≤ ε, i = 1, 2, . . . , k − 1.

It is straightforward to check that gε ∈ FDC. Moreover, the values of g and gε may

differ only on the set [0, 1] ×
⋃k−1
i=1

[
i
k − ε,

i
k + ε

]
. Thus, if we denote by µ(1) the
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marginal of µ on the first coordinate (which is, by the symmetry of µ, the same as
the marginal µ(2) of µ on the second coordinate) then we have

‖g − gε‖L1([0,1]2,µ(1)×λ) ≤ k(µ(1) × λ)

(
[0, 1]×

k−1⋃
i=1

[
i

k
− ε, i

k
+ ε

])
= 2k(k − 1)ε.

Consequently, it holds

‖ϕ(g, µ)− ϕ(gε, µ)‖L1([0,1]2,λ2)

≤
∫
(u,v)∈[0,1]2

∫
(x,y)∈[0,1]2

|g(x, u)g(y, v)− gε(x, u)gε(y, v)| dµ(x, y) dλ2(u, v)

≤
∫
(u,v)∈[0,1]2

∫
(x,y)∈[0,1]2

g(x, u)|g(y, v)− gε(y, v)| dµ(x, y) dλ2(u, v)

+

∫
(u,v)∈[0,1]2

∫
(x,y)∈[0,1]2

gε(y, v)|g(x, u)− gε(x, u)| dµ(x, y) dλ2(u, v)

≤k
∫
v∈[0,1]

∫
(x,y)∈[0,1]2

|g(y, v)− gε(y, v)| dµ(x, y) dλ(v)

+ k

∫
u∈[0,1]

∫
(x,y)∈[0,1]2

|g(x, u)− gε(x, u)| dµ(x, y) dλ(u)

=k‖g − gε‖L1([0,1]2,µ(2)×λ) + k‖g − gε‖L1([0,1]2,µ(1)×λ)

≤4k2(k − 1)ε.

It follows that the measures Φ(gε, µ) ∈ C(µ) weakly converge to Φ(g, µ) = µM
as ε tends to 0. Thus µM belongs to the closed set C(µ). By the continuity of
the mapping M 7→ µM from M∗k to sG it follows that, for every k ∈ N, the set

C(µ) contains a dense subset of C̃(µ, k). As the C(µ) is closed, it follows that⋃
k∈N C̃(µ, k) ⊆ C(µ), and inclusion (1) follows.

Now we show the other inclusion. It is enough to prove that Φ(f, µ) ∈
⋃
k∈N C̃(µ, k)

for every f ∈ FDC as the measures Φ(f, µ), f ∈ FDC, are dense in C(µ). So let us
fix a function f ∈ FDC. We define C = sup(x,y)∈[0,1]2 f(x, y), and we pick ε > 0.

By the continuity of f , there is k ∈ N such that |f(x, y) − f(x′, y′)| < ε whenever
the points (x, y), (x′, y′) from [0, 1]2 are such that |x−x′| ≤ 1

k and |y−y′| ≤ 1
k . Let

Ii, i = 1, 2, . . . , k, be the intervals given by (2). Let f1, f2, . . . , fk : [0, 1]→ [0, Ck ] be
functions given by

fi(x) = k

∫
(u,v)∈Ij×Ii

f(u, v) dλ(u, v), x ∈ Ij , i, j = 1, 2, . . . , k.

It is easy to verify that f1, f2, . . . , fk are non-negative Borel functions on [0, 1] such
that their sum is the constant function 1 and such that

∫
x∈[0,1] fi(x) dλ(x) = 1/k

for every i = 1, 2, . . . , k. Thus the matrix M given by

M(i, j) =

∫
(x,y)∈[0,1]2

fi(x)fj(y) dµ(x, y), i, j = 1, 2, . . . , k,
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belongs to the k-shape C(µ, k). For every i, j = 1, 2, . . . , k and every (u, v) ∈ Ii×Ij ,
it holds ∣∣k2M(i, j)− ϕ(f, µ)(u, v)

∣∣
=

∣∣∣∣∣k2
∫
(x,y)∈[0,1]2

fi(x)fj(y) dµ(x, y)−
∫
(x,y)∈[0,1]2

f(x, u)f(y, v) dµ(x, y)

∣∣∣∣∣
≤

k∑
s,t=1

∫
(x,y)∈Is×It

∣∣k2fi(x)fj(y)− f(x, u)f(y, v)
∣∣ dµ(x, y)

≤
k∑

s,t=1

∫
(x,y)∈Is×It

∣∣k2fi(x)fj(y)− kfi(x)f(y, v)
∣∣ dµ(x, y)

+
k∑

s,t=1

∫
(x,y)∈Is×It

|kfi(x)f(y, v)− f(x, u)f(y, v)| dµ(x, y)

≤C
k∑

s,t=1

∫
(x,y)∈Is×It

|kfj(y)− f(y, v)| dµ(x, y)

+ C
k∑

s,t=1

∫
(x,y)∈Is×It

|kfi(x)− f(x, u)| dµ(x, y).

(3)

In the last two integrands, the expression kfj(y) is equal to the mean value of f on
It × Ij , and so it is ε-close to f(y, v) for every (y, v) ∈ It × Ij ; similarly kfi(x) is
ε-close to f(x, u) for every (x, u) ∈ Is× Ii. Thus, we can continue the upper bound
from (3) by

∣∣k2M(i, j)− ϕ(f, µ)(u, v)
∣∣ ≤ 2C

k∑
s,t=1

εµ(Is × It) = 2Cε.

It follows that, by the choice of ε > 0, the Radon-Nikodym derivative (with re-

spect to λ2) of µM ∈
⋃
k∈N C̃(µ, k) can be made arbitrarily close to ϕ(f, µ) in the

space L1([0, 1]2, λ2). Consequently, the measure Φ(f, µ) is in the closure of the set⋃
k∈N C̃(µ, k). This completes the proof. �

Lemma 2. For every s-graphon µ and every k ∈ N it holds

C̃(µ, k) = C(µ) ∩ {µM : M ∈Mk}.

Proof. The inclusion ⊆ is an immediate consequence of Lemma 1.
To prove the opposite inclusion, we fix M ∈Mk such that µM ∈ C(µ). We need

to show that M ∈ C(µ, k). Let Ii, i = 1, 2, . . . , k, be the intervals introduced in the
proof of Lemma 1 by (2). Recall that one of the many known characterizations of
the weak convergence states that a sequence {νn}∞n=1 of Borel probability measures
on [0, 1]2 is weakly convergent to µM if and only if limn→∞ νn(A) = µM (A) for
every Borel set A ⊆ [0, 1]2 whose boundary (i.e. the set of all points in the closure
of A which are not interior points of A) is of µM -measure zero (see e.g. [8, Theo-

rem 17.20]). As µM ∈ C(µ) = {Φ(f, µ) : f ∈ FDC}, this characterization implies
that for any ε > 0 there is f ∈ FDC such that

(4) |Φ(f, µ)(Ii × Ij)− µM (Ii × Ij)| < ε, i, j = 1, 2, . . . , k.
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Now we define functions f1, f2, . . . , fk : [0, 1]→ R by

fi(x) =

∫
u∈Ii

f(x, u) dλ(u), x ∈ [0, 1], i = 1, 2, . . . , k.

It is easy to verify that f1, f2, . . . , fk are non-negative Borel (even continuous) func-
tions such that their sum is the constant function 1 and such that

∫
x∈[0,1] fi(x) dλ(x) =

1/k for every i = 1, 2, . . . , k. The corresponding matrix belonging to the k-shape
C(µ, k) has the following entry on the position (i, j):∫

(x,y)∈[0,1]2
fi(x)fj(y) dµ(x, y)

=

∫
(x,y)∈[0,1]2

(∫
u∈Ii

f(x, u) dλ(u)

∫
v∈Ij

f(y, v) dλ(v)

)
dµ(x, y)

=

∫
(u,v)∈Ii×Ij

∫
(x,y)∈[0,1]2

f(x, u)f(y, v) dµ(x, y) dλ2(u, v)

=

∫
(u,v)∈Ii×Ij

ϕ(f, µ)(u, v) dλ2(u, v) = Φ(f, µ)(Ii × Ij).

(5)

Combining (4) and (5) together shows that the matrix M can be approximated in
Mk with an arbitrary precision by a matrix belonging to C(µ, k). As the k-shape
C(µ, k) is a closed subset of Mk, it follows that M ∈ C(µ, k) as we wanted. �

Following the notation from [9, Chapter 11], let Xs be the set of isomorphism
classes of s-graphons, where two s-graphons ν1, ν2 are isomorphic if C(ν1, k) =
C(ν2, k) for every k ∈ N. By Lemma 1 and Lemma 2 we have the following
immediate corollary.

Corollary 1. Two s-graphons ν1, ν2 are isomorphic if and only if C(ν1) = C(ν2).

Proof. If ν1 and ν2 are isomorphic then their shapes are the same by Lemma 1. If,
on the other hand, ν1 and ν2 have the same shapes then they are isomorphic by
Lemma 2. �

4. Regularity lemma

The following lemma is one of the key steps to prove Theorem 1. Note that

it is a certain quantitative extension of the inclusion C(µ) ⊆
⋃
k∈N C̃(µ, k) from

Lemma 1.

Lemma 3. Let ρ be an arbitrary metric on sG compatible with the weak topology.
Then for every ε > 0 there is K ∈ N such that for every ν ∈ sG it holds

(6) dρH

(
C(ν), C̃(ν,K)

)
≤ ε,

where dρH is the Hausdorff distance on the hyperspace of compact subsets of sG
which is obtained from the metric ρ.

Proof. As the hyperspace of compact subsets of sG is compact, any two compatible
metrics d1, d2 on the hyperspace are uniformly equivalent in the sense that for every
ε > 0 there is δ > 0 such that

d1(E,F ) ≤ δ ⇒ d2(E,F ) ≤ ε
and d2(E,F ) ≤ δ ⇒ d1(E,F ) ≤ ε, E, F ⊆ sG compact.
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In particular, every two Hausdorff distances on the hyperspace are uniformly equiv-
alent. Therefore it is enough to prove the statement only for one fixed metric ρ
on sG (and for the corresponding Hausdorff distance dρH on the hyperspace). It is
easy to check that one possible choice of the compatible metric on sG is the metric
ρ given by
(7)

ρ(ν1, ν2) =
∞∑
j=1

1

2j

∣∣∣∣∣
∫
(x,y)∈[0,1]2

hj(x, y) dν1(x, y)−
∫
(x,y)∈[0,1]2

hj(x, y) dν2(x, y)

∣∣∣∣∣ ,
where {hj : j ∈ N} is a fixed countable dense subset of continuous functions on
[0, 1]2 with values in [0, 1]. This is our choice of the compatible metric on sG.

We fix ε > 0. We find J ∈ N such that
∞∑

j=J+1

1

2j
<
ε

2
.

Then we find K ∈ N such that |hj(x, y)− hj(x′, y′)| < ε
2 , j = 1, 2, . . . , J , whenever

the points (x, y), (x′, y′) from [0, 1]2 are such that |x − x′| ≤ 1
K and |y − y′| ≤ 1

K .
Now let ν be an arbitrary s-graphon, we need to check (6). By Lemma 1 we have

C̃(ν,K) ⊆
⋃
k∈N

C̃(ν, k) = C(ν),

and so we only need to show that for every k ∈ N and for every M ∈ C(ν, k) there
is N ∈ C(ν,K) such that ρ(µM , µN ) ≤ ε. So let f1, f2, . . . , fk be non-negative
Borel functions on [0, 1] such that their sum is the constant function 1 and such
that

∫
x∈[0,1] fi(x) dλ(x) = 1/k for every i = 1, 2, . . . , k, and let M ∈ C(ν, k) be the

matrix given by

M(i, j) =

∫
(x,y)∈[0,1]2

fi(x)fj(y) dν(x, y), i, j = 1, 2, . . . , k.

For every r = 1, 2, . . . ,K we define a non-negative Borel function gr on [0, 1] by

gr = k
k∑
i=1

λ

((
i− 1

k
,
i

k

)
∩
(
r − 1

K
,
r

K

))
fi.

Then we have
K∑
r=1

gr =
k∑
i=1

k
K∑
r=1

λ

((
i− 1

k
,
i

k

)
∩
(
r − 1

K
,
r

K

))
fi =

k∑
i=1

fi ≡ 1,

and (for each r = 1, 2, . . . ,K) also∫
x∈[0,1]

gr(x) dλ(x) =
k∑
i=1

λ

((
i− 1

k
,
i

k

)
∩
(
r − 1

K
,
r

K

))
k

∫
x∈[0,1]

fi(x) dλ(x)

=

k∑
i=1

λ

((
i− 1

k
,
i

k

)
∩
(
r − 1

K
,
r

K

))
=

1

K
.

It follows that the matrix N given by

N(r, s) =

∫
(x,y)∈[0,1]2

gr(x)gs(y) dν(x, y), r, s = 1, 2, . . . ,K,
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belongs to the K-shape C(ν,K). Moreover, for every r, s = 1, 2, . . . ,K it holds

µN

((
r − 1

K
,
r

K

)
×
(
s− 1

K
,
s

K

))
=

∫
(x,y)∈[0,1]2

gr(x)gs(y) dν(x, y)

=
k∑

i,j=1

λ

((
i− 1

k
,
i

k

)
∩
(
r − 1

K
,
r

K

))
λ

((
j − 1

k
,
j

k

)
∩
(
s− 1

K
,
s

K

))
k2M(i, j)

=
k∑

i,j=1

µM

(((
i− 1

k
,
i

k

)
∩
(
r − 1

K
,
r

K

))
×
((

j − 1

k
,
j

k

)
∩
(
s− 1

K
,
s

K

)))

=µM

((
r − 1

K
,
r

K

)
×
(
s− 1

K
,
s

K

))
.

(8)

By (8) and by the choice of K, we easily conclude that∣∣∣∣∣
∫
(x,y)∈[0,1]2

hj(x, y) dµM (x, y)−
∫
(x,y)∈[0,1]2

hj(x, y) dµN (x, y)

∣∣∣∣∣ < ε

2

for every j = 1, 2, . . . , J . Consequently, it holds that

ρ(µM , µN ) =
∞∑
j=1

1

2j

∣∣∣∣∣
∫
(x,y)∈[0,1]2

hj(x, y) dµM (x, y)−
∫
(x,y)∈[0,1]2

hj(x, y) dµN (x, y)

∣∣∣∣∣
<

J∑
j=1

ε

2j+1
+

∞∑
j=J+1

1

2j
<
ε

2
+
ε

2
= ε,

which completes the proof. �

5. Main result

Now we are ready to prove our main result.

Theorem 1. Let µ and µn, n ∈ N, be s-graphons. Then the following conditions
are equivalent:

(1) ∀k∈N : limn→∞ C(µn, k) = C(µ, k) in the Vietoris topology on the hyper-
space of compact subsets of Mk,

(2) limn→∞ C(µn) = C(µ) in the Vietoris topology on the hyperspace of com-
pact subsets of sG.

Proof. The mapping M 7→ µM from M∗k to sG is one-to-one and continuous. As the
space M∗k is compact, it follows that the mapping M 7→ µM is even a homeomor-
phism of M∗k onto its image. This implies that the mapping F 7→ {µM : M ∈ F}
is a homeomorphism of the hyperspace of compact subsets of M∗k onto its image
(which is a subset of the hyperspace of compact subsets of sG). As a consequence,
condition (1) is equivalent to the following condition:

(1’) ∀k∈N : limn→∞ C̃(µn, k) = C̃(µ, k) in the Vietoris topology on the hyper-
space of compact subsets of sG.

Now suppose that condition (1’) holds, and fix ε > 0. We fix some metric ρ on
sG which is compatible with the weak topology, and we denote by dρH the Hausdorff
distance on the hyperspace of compact subsets of sG which is obtained from the
metric ρ. By Lemma 3, there is K ∈ N such that for every s-graphon ν we have (6).
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Let N ∈ N be such that for every n ≥ N it holds dρH(C̃(µn,K), C̃(µ,K)) < ε. Then
for every n ≥ N we have

dρH(C(µn), C(µ))

≤dρH(C(µn), C̃(µn,K)) + dρH(C̃(µn,K), C̃(µ,K)) + dρH(C̃(µ,K), C(µ)) < 3ε,

and so condition (2) holds. So we have proved (1) ⇔ (1’) ⇒ (2).
For ν ∈ sG we denote by [ν] the isomorphism class of ν (which is an element of the

space Xs defined before Corollary 1). Recall that by Corollary 1, two s-graphons
ν1, ν2 are isomorphic if and only if C(ν1) = C(ν2). Therefore the following two
topologies on the space Xs are well defined:

(A) the coarsest topology such that the mapping [ν] 7→ C(ν, k) from Xs to the
hyperspace of compact subsets of M∗k is continuous for every k ∈ N,

(B) the coarsest topology such that the mapping [ν] 7→ C(ν) from Xs to the
hyperspace of compact subsets of sG is continuous.

The already proved implication (1) ⇒ (2) shows that the identity mapping on Xs
is continuous from the topology given by (A) to the topology given by (B). It
only remains to observe that the topology given by (A) is compact, as then the
two topologies coincide and the equivalence of conditions (1) and (2) follows. The
compactness was already essentially proved in [9] but let us explain it in a detail.
Let

∏
k∈NK(M∗k) be the product space of the hyperspaces of compact subsets of

M∗k. Note that this space is compact metrizable, so we can fix a compatible metric
σ on

∏
k∈NK(M∗k). Now let {νn}∞n=1 be an arbitrary sequence of s-graphons. By [9,

Theorem 4.7] we can find, for every n ∈ N, a graph sequence {Gin}∞i=1 which is s-
convergent and its limit is µn. Let Sin denote the element of

∏
k∈NK(M∗k) which

has the k-shape of Gin on its kth coordinate. Similarly, letMn denote the element
of
∏
k∈NK(M∗k) which has the k-shape C(νn, k) on its kth coordinate. Then, for

every n ∈ N, we can easily find in ∈ N such that

(9) σ(Sinn ,Mn) <
1

n
.

By passing to a subsequence, we may assume that the graph sequence {Ginn }∞n=1

is s-convergent. By [9, Theorem 4.5] there is an s-graphon ν such that for every
k ∈ N, the k-shapes of Ginn converge to C(ν, k) (when n goes to infinity). Finally,
by (9) it follows that the k-shapes C(νn, k) converge to C(ν, k) as well. This proves
the compactness of the topology given by (A). �

6. Convergence of graph sequences

Recall that to each matrix M ∈ M∗k we associated an s-graphon µM . Now, if G
is an arbitrary finite graph (with a non-empty edge set) then we can consider its
adjacency matrix AG. After normalizing AG by its l1-norm we obtain the matrix

ÃG = 1
‖AG‖l1

AG (which belongs to M∗k where k is the number of vertices of G) and

the corresponding s-graphon µÃG
. Therefore we can define the shape of every finite

graph G (with a non-empty edge set) as the shape C(µÃG
). Following [9], we say

that a graph sequence {Gn}∞n=1 is s-convergent (to an s-graphon µ) if and only if
the k-shapes of µÃGn

are convergent (to the k-shape of µ) for every k ∈ N. Thus we

immediately obtain the following corollary of Theorem 1 (we tacitly assume that
each of the graphs Gn, n ∈ N, has a non-empty edge set).
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Corollary 2. Let {Gn}∞n=1 be a graph sequence and let µ be an s-graphon. Then
the following conditions are equivalent:

(1) {Gn}∞n=1 is s-convergent to µ,
(2) limn→∞ C(Gn) = C(µ) in the Vietoris topology on the hyperspace of com-

pact subsets of sG.

7. Continuity versus measurability

Recall that it makes no difference whether we require the functions f1, f2, . . . , fk
from the definition of k-shapes to be Borel or continuous. This is because the
closure of the set of the corresponding matrices in Mk is the same in both cases,
see [9, Lemma 3.1]. Therefore one would expect that in Definition 1 we can simi-
larly replace continuous fairly distributed functions by arbitrary fairly distributed
functions (such functions are automatically non-negative and bounded Borel by
definition). In this section we show that this expectation is correct. It may seem
that a simple approximation of a Borel function by a continuous one (in an appro-
priate L1-norm) is enough to prove this fact. But by doing so, we may lose the fair
distribution of the function. Therefore we apply Lemma 1 to obtain this result.

Proposition 1. For every µ ∈ sG it holds

C(µ) = {Φ(f, µ) : f ∈ FD},

where the closure is taken in the weak topology.

Proof. By Definition 1 we have C(µ) = {Φ(f, µ) : f ∈ FDC}, and so the inclusion

C(µ) ⊆ {Φ(f, µ) : f ∈ FD} is trivial.
To prove the opposite inclusion, we only need to show that Φ(f, µ) ∈ C(µ) for

every f ∈ FD as the set C(µ) is closed. So let us fix a function f ∈ FD, and let
us also fix ε > 0. Let ρ be the compatible metric on sG introduced in the proof of
Lemma 3 by (7). We find J ∈ N such that

∞∑
j=J+1

1

2j
<
ε

2
.

Then we find k ∈ N such that |hj(x, y)− hj(x′, y′)| < ε
2 , j = 1, 2, . . . , J , whenever

the points (x, y), (x′, y′) from [0, 1]2 are such that |x−x′| ≤ 1
k and |y− y′| ≤ 1

k . We
define C = sup(x,y)∈[0,1]2 f(x, y). Let Ii, i = 1, 2, . . . , k, be the intervals introduced

in the proof of Lemma 1 by (2). Let us define functions f1, f2, . . . , fk : [0, 1] → R
by

fi(x) =

∫
u∈Ii

f(x, u) dλ(u), x ∈ [0, 1], i = 1, 2, . . . , k.

Then f1, f2, . . . , fk are non-negative Borel functions such that their sum is the con-
stant function 1 and such that

∫
x∈[0,1] fi(x) dλ(x) = 1/k for every i = 1, 2, . . . , k.

Repeating step by step the computations from equation (5) in Lemma 2 we ob-
tain that the corresponding matrix M belonging to the k-shape C(µ, k), and the

corresponding measure µM ∈ C̃(µ, k), satisfy

µM (Ii × Ij) = M(i, j) = Φ(f, µ)(Ii × Ij), i, j = 1, 2, . . . , k.
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It easily follows by the choice of k that, for every j = 1, 2, . . . , J , it holds∣∣∣∣∣
∫
(x,y)∈[0,1]2

hj(x, y) dµM (x, y)−
∫
(x,y)∈[0,1]2

hj(x, y) dΦ(f, µ)(x, y)

∣∣∣∣∣ < ε

2
.

Therefore

ρ(µM ,Φ(f, µ))

=
∞∑
j=1

1

2j

∣∣∣∣∣
∫
(x,y)∈[0,1]2

hj(x, y) dµM (x, y)−
∫
(x,y)∈[0,1]2

hj(x, y) dΦ(f, µ)(x, y)

∣∣∣∣∣
<

J∑
j=1

ε

2j+1
+

∞∑
j=J+1

1

2j
<
ε

2
+
ε

2
= ε.

As ε > 0 was chosen arbitrarily, it follows that Φ(f, µ) ∈
⋃
k∈N C̃(µ, k). Finally,

this means that Φ(f, µ) ∈ C(µ) by Lemma 1. �

8. A final remark on compactness

We know by the proof of Theorem 1 that the space Xs of isomorphism classes
of s-graphons equipped with the topology of convergence of all k-shapes is home-
omorphic to some subspace of the hyperspace of compact subsets of s-graphons.
This subspace is necessarily compact as the convergence of all k-shapes is com-
pact. It would be interesting to find an alternative proof of the compactness which
would rely on convergence of shapes introduced by Definition 1 and which would
be independent of the results from [9]. Let us summarize this by the following
problem.

Problem 1. Let {µn}∞n=1 be a sequence of s-graphons, and let E be a compact
subset of sG. Suppose that E = limn→∞ C(µn) in the Vietoris topology on the
hyperspace of compact subsets of sG. Find a self-contained proof of the fact that
there is an s-graphon µ such that E = C(µ).
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[10] László Lovász and Balázs Szegedy. Limits of dense graph sequences. J. Combin. Theory Ser.

B, 96(6):933–957, 2006.
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graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat.

CNRS, pages 399–401. CNRS, Paris, 1978.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

