
On the long–time behavior of compressible fluid flows:
Ergodic hypothesis and beyond

Eduard Feireisl
based on joint work with F. Fanelli (Lyon I), M. Hofmanová (TU Bielefeld)
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Motto

Energetically closed systems

Clausius:

The energy of the world is constant; its entropy tends to a
maximum

Energetically open systems – ergodic hypothesis

Time averages along trajectories of the flow converge, for
large enough times, to an ensemble average given by a certain
probability measure.

Dynamical system

U(t, ·) : [0,∞)× X → X

• Closed system: U(t,X0)→ U∞ equilibrium solution as t →∞

• Open system:
1

T

∫ T

0

F (U(t,X0))dt →
∫
X

F (X ) dµ, T →∞

µ a.s. in X0



Principal problems

Low regularity of global in time solutions

Global in time solutions necessary. For many problems in fluid dynamics –
Navier–Stokes or Euler system – only weak solutions available

Lack of uniqueness

Solutions do not, or at least are not known to, depend uniquely on the
initial data. Spaces of trajectories: Sell, Nečas, Temam and others

Propagation of oscillations

Realistic systems are partly hyperbolic: propagation of oscillations “from
the past”, singularities



Abstract setting

Space of entire trajectories

T = Cloc(R;X ), t ∈ (−∞,∞)

ω–limit set

ω[U(·,X0)] ⊂ T

ω[U(·,X0)] =
{

V ∈ T
∣∣∣ U(·+ tn,X0)→ V in T

}
Stationary (statistical) solution

V : R → X stationary process (law is time shift invariant)

V ∈ ω[U(·,X0)] a.s.

V solves the associated evolutionary equation a.s.



Strong and weak ergodic hypothesis

Krylov – Bogolyubov construction

T 7→ 1

T

∫ T

0

δU(t,X0)dt – a family of probability measures on T

tightness in T ⇒ Tn 7→
1

Tn

∫ Tn

0

δU(t,X0)dt → µ ∈ P[T ]

[T , µ] stationary statistical solution

Ergodic hypothesis ⇔ µ is unique ⇒ T 7→ 1

T

∫ T

0

δU(t,X0)dt → µ

unique ≈ unique on ω[U(·,X0)]

Weak ergodic hypothesis

lim
T→∞

1

T

∫ T

0

δU(t,X0)dt = µ exists in the narrow sense in P[T ]

[T , µ] stationary statistical solution



Barotropic Navier–Stokes system

Field equations

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp = divxS(∇xu) + %g

Constitutive equations

barotropic (isentropic) pressure–density EOS p = p(%) (p = a%γ)

Newton’s rheological law

S = µ

(
∇xu +∇t

xu− 2

d
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0

Gravitational external force

g = ∇xF , F = F (x)

Energy

E(%,m) ≡ 1

2

|m|2

%
+ P(%)− %F , P ′(%)%− P(%) = p(%), m = %u



Energetically insulated system

Conservative boundary conditions

Ω ⊂ Rd bounded (sufficiently regular) domain

• impermeability u · n|∂Ω = 0

• no–slip [u]tan|∂Ω = 0

Long–time behavior – Clausius scenario

Total mass conserved ∫
Ω

%(t, ·) dx = M0

Total energy – Lyapunov function

d

dt

∫
Ω

E(%,m) dx+

∫
Ω

S(∇xu) : ∇xu dx = (≤)0,

∫
Ω

E(%,m) dx ↘ E∞

Stationary solution

m∞ = 0, ∇xp(%∞) = %∞∇xF ,

∫
Ω

%∞ dx = M0,

∫
Ω

E(%∞, 0) dx = E∞



Energetically open system

In/out flow boundary conditions

u = ub on ∂Ω

Γin =
{
x ∈ ∂Ω

∣∣∣ ub(x) · n(x) < 0
}
, Γout =

{
x ∈ ∂Ω

∣∣∣ ub(x) · n(x) ≥ 0
}

Density (pressure) on the inflow boundary

% = %b on Γin

Energy balance

d

dt

∫
Ω

1

2
%|u− ub|2 + P(%) dx +

∫
Ω

S : ∇xu dxdt

+

∫
Γin

P(%b)ub · n dSx +

∫
Γout

P(%)ub · n dSx

= (≤)−
∫

Ω

[%u⊗ u + p(%)I] : ∇xub dx +
1

2

∫
Ω

%u · ∇x |ub|2 dxdt

+

∫
Ω

S : ∇xub dxdt +

∫
Ω

%∇xF · (u− ub) dx



Global bounded trajectories

Global in time weak solutions

U = [%,m = %u] – weak solution of the Navier–Stokes system satisfying
energy inequality and defined for t > T0

Bounded energy

lim sup
t→∞

∫
Ω

E(%,m) dx ≤ E∞

Available results

Existence: T. Chang, B. J. Jin, and A. Novotný, SIAM J. Math.
Anal., 51(2):1238–1278, 2019
H. J. Choe, A. Novotný, and M. Yang J. Differential Equations,
266(6):3066–3099, 2019

Globally bounded solutions: F. Fanelli, E. F., and M. Hofmanová
arxiv preprint No. 2006.02278, 2020
J. Březina, E. F., and A. Novotný, Communications in PDE’s 2020



ω – limit sets

p ≈ a%γ , γ >
d

2

Trajectory space

X =
{
%,m

∣∣∣ %(t, ·) ∈ Lγ(Ω), m(t, ·) ∈ L
2γ
γ+1 (Ω;Rd) ↪→W−k,2

}
T = Cloc(R; Lγ ×W−k,2)

Fundamental result on compactness [Fanelli, EF, Hofmanová, 2020]

The ω–limit set ω[%,m] of each global in time trajectory with globally
bounded energy is:

non − empty

compact in T

time shift invariant

consists of entire (defined for all t ∈ R) weak solutions of the
Navier–Stokes system



Propagation of oscillations

Equation of continuity

∂t%+ u · ∇x% = −%divxu

Renormalized equation of continuity

∂tb(%) + divx(b(%)u) +
(
b′(%)%− b(%)

)
divxu = 0

Weak convergence

b(%n)→ b(%) weakly in L1

∂t
[
b(%)− b(%)

]
+ divx

(
b(%)u− b(%)u

)
=
(
b′(%)%− b(%)

)
divxu−

(
b′(%)%− b(%)

)
divxu[

b(%)− b(%)
]
(0, ·) = 0 is needed!



Vanishing oscillation defect

Compactness of densities

%n ≡ %(·+ Tn)→ % in Cweak,loc(R; Lγ(Ω))

%n log(%n)→ % log(%) ≥ % log(%)

D(t) ≡
∫

Ω

% log(%)− % log(%) dx ≥ 0

Problem: Unlike in the existence proof, there is no information on
oscillations of “initial data”!

Crucial differential inequality

d

dt
D + Ψ(D) ≤ 0, 0 ≤ D ≤ D, t ∈ R

Ψ ∈ C(R), Ψ(0) = 0, Ψ(Z)Z > 0 for Z 6= 0

⇒

D ≡ 0



Statistical stationary solutions

Application of Krylov – Bogolyubov method

1

Tn

∫ Tn

0

δ%(t,·),m(t,·) dt → µ ∈ P[T ] narrowly

[T , µ] (canonical representation) – statististical stationary solution

µ(t)|X (marginal) independent of t ∈ R

Application of Birkhoff – Khinchin ergodic theorem

1

T

∫ T

0

F (%(t, ·),m(t, ·))dt → F as T →∞

F bounded Borel measurable on X

for µ−a.a. (%,m) ∈ ω

Related results for incompressible Navier–Stokes system with
conservative boundary conditions

F.Flandoli and D. Gatarek, F.Flandoli and M.Romito (stochastic forcing),
P. Constantin and I. Procaccia, C. Foiaş, O. Manley, R. Rosa, and
R. Temam, M. Vishik and A. Fursikov etc (deterministic forcing)



Back to ergodic hypothesis – conclusion

Ergodicity

µ ergodic ⇔ B ⊂ ω[%,m] shift invariant ⇒ µ[B] = 1 or µ[B] = 0

µ ∈ conv
{

ergodic measures on ω[%,m]
}

State of the art for compressible Navier–Stokes system

Each bounded energy global trajectory generates a stationary
statistical solution – a shift invariant measure µ – sitting on its
ω−limit set ω[%,m]

The weak ergodic hypothesis (the existence of limits of ergodic
averages for any Borel measurable F ) holds on ω[%,m] µ−a.s.

The (strong) ergodic hypothesis definitely holds for enegetically
isolated systems and a class of potential forces F , where all solutions
tend to equilibrium


