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2 LIMITS OF LATIN SQUARES

An extended abstract describing this work appeared in the proceedings of EuroComb2019, [15].

1. Introduction

The purpose of this paper is to lay down the basics of a combinatorial theory of limits of Latin

squares. This is a further addition to a potent approach to discrete structures using analytic tools.

In combinatorics, this research trend blossomed in the early 2000’s with the theories of dense graph

limits initiated by Borgs, Chayes, Lovász, Sós, Szegedy, and Vesztergombi, [9, 10, 34], and sparse

graph limits initiated by Benjamini and Schramm [6]. After that, many other theories followed, and

Razborov provided an alternative, more syntactic limit framework, [37].

Recall that a Latin square is an n × n matrix filled with values of [n] := {1, . . . , n} in such a way

that each row contains each value exactly once, and each column contains each value exactly once, as

well. Let us emphasise that the rows, columns, and symbols in the matrix are ordered (from top to

bottom, from left to right, and from small to large). In the same spirit, a permutation is a bijection

from the naturally ordered set [n] into itself.

In many aspects, our theory parallels those of limits of dense graphs and of permutations. In order

to make a comparison, let us quickly recall the key features of these theories. For foundations of these

two respective theories, see [34] and [20]. So, by a ‘structure’, we mean either a finite graph or a finite

permutation.1

(F1) Both theories introduce a certain space of analytically defined limit objects (graphons and

permutons).

(F2) Both theories introduce a notion of densities t(◦, ?) of a structure ◦ both into a structure ?,

or into a limit object ?.

(F3) Both theories also provide more global, ‘cut-like’, parameters on structures and on limit ob-

jects.

There are three key features in both theories.

(F4) Compactness theorem: Each sequence of structures contains a subsequence that converges

(more precisely, ‘left-converges’) to a suitable limit object with respect to all densities.

(F5) Equivalence of local and global: A sequence of structures converges with respect to all densities

if and only if it converges with respect to the above ‘cut-like’ parameters.

(F6) Sampling lemma: The densities of structures in a limit object provide a notion of random

sampling of a structure Sn of order n from that limit object. The sampling lemma says that

Sn is typically very close to the limit object. More specifically, almost surely, the sequence

(Sn)n converges to the original limit object. As a consequence of the sampling lemma, each

limit object can be approximated by a structure with an arbitrary precision.

In our work, we introduce a class of analytic objects, so-called Latinons. We also introduce certain

notions of densities for Latin squares and Latinons (however, with a slight difference compared to (F2)

which we shall return to later) and ‘cut-like’ parameters, and establish (F5). Of course, the most

important result is the compactness theorem (F4), which we establish as well. The situation with (F6)

is more complicated. Given a Latinon L, we do not have any reasonable way of generating a random

Latin square of order n from L (and probably no such way exists, see Remark 3.4). However, we can

still establish the approximability consequence of (F6) (which is the most important part of (F6)).

Theories of limits of sequences of particular discrete structures have many applications, but two

particular directions stand out. First and foremost, they (and the more syntactic theory of flag

algebras, [37]) have led to solutions to many asymptotic problems in extremal combinatorics. As

some representative examples for the class of graphs, let us mention the solution to the triangle

1But the same could be said about limit theories of many other discrete structures such as uniform hypergraphs.
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versus edge density problem [38], the solution to the Erdős problem on the number of pentagons in

triangle-free graphs [18, 17, 30], or progress on the Sidorenko conjecture [32]. For permutations, we

are aware of only one application so far, but it is a remarkable one. Namely, Král’ and Pikhurko [27]

used the theory of permutation limits to characterise sequences of quasirandom permutations. We

expect the theory we develop in this article to have applications mostly in this area, that is, to answer

asymptotic extremal questions about Latin squares. The set of tools we provide in this article should

be complete for such purposes. A second line of research where limits of discrete structures opened

new possibilities is more probabilistic. Namely, Chatterjee and Varadhan [11] developed a method of

expressing certain density-based large deviation events of Erdős–Rényi random graphs. This theory

in particular allows us to approximately count graphs with a prescribed list of density constraints. A

similar programme was carried out for permutations as well, [26]. We do not offer such tools for Latin

squares in the present article, but in Section 12.3 we discuss a reasonable approach.

1.1. Work on limits of related discrete structures. The crucial feature of the structures whose

limit theory we introduce is that they are ordered; that is, the rows go from top to bottom, the

columns go from left to right, and the entries go from small to large. Arguably, the first class of

ordered structures for which a similar limit theory was developed are posets, [21, 19]. However,

the most related work is a recent paper of Ben-Eliezer, Fischer, Levi, and Yoshida. [5]. In that

paper, a theory of limits of ordered graphs, that is, graphs whose vertices are put into a linear order,

is developed. The limit objects they obtain (which they call ‘orderons’) is less complex than our

Latinons. More precisely, the fact that they are dealing with 0/1-matrices (adjacency matrices of

ordered graphs) whereas we are dealing with more general matrices (the values are the set [n]) is

reflected in that their limit objects are [0, 1]-valued, while ours are distribution-valued. The necessity

of such a more complex limit concept is best illustrated by examples, which we provide in Section 3.1.

Let us point out that the key difference between [5] and our paper is how we view and treat the limit

structure. We believe that our approach is conceptually simpler. We give more details in Section 8.1.

We already mentioned that our Latinons are distribution-valued, a feature that causes substantial

technical complications. While indeed most limit theories lead to real-valued limit objects, the more

general setting was also considered. In this direction, the most relevant paper is [28] which introduces

graphons taking values from the dual of a separable Banach space. Indeed, our Latinons take values

which are probability measures on [0, 1], and these can be viewed as elements in the dual of the space

of continuous functions on [0, 1] (equipped with the uniform norm). However, the notion of densities

considered in [28] is substantially different and we could not find a way to directly relate our setting

to that of [28].

1.2. Representation of a Latin square in a 3-dimensional matrix. Suppose that L is a Latin

square of order n. Then we can associate L with the following 3-uniform hypergraph. It has 3n vertices,

which we label as (k, row), (k, column), (k, value), k ∈ [n]. The hypergraph is partite, that is, only

edges of the form row-column-value are present. More precisely, (i, row), (j, column), (k, value) forms

an edge if and only if Li,j = k. Observe that the hypergraph has n2 edges, and that

• for every i, j ∈ [n] there exists a unique k ∈ [n] such that (i, row), (j, column), (k, value) forms

an edge;

• for every i, k ∈ [n] there exists a unique j ∈ [n] such that (i, row), (j, column), (k, value) forms

an edge;

• for every j, k ∈ [n] there exists a unique i ∈ [n] such that (i, row), (j, column), (k, value) forms

an edge.
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Actually, this defines a one-to-one correspondence between Latin squares and 3-uniform hypergraphs

with the above properties. Thus, our limit theory can be viewed as a limit theory of certain 3-uniform

hypergraphs of density of relative exponent 2/3. Our understanding of general limit theories in such

intermediate densities is limited,2 so in this sense the fact that we have a complete theory may be

suprising. We shall return to this in Section 3.1.4, and shall also use the hypergraph representation

in our proof of the Latinon approximability result, Theorem 3.13.

Let us also note that a counterpart to the above construction of 3-hypergraphs can also be made

in uniformity 2, where it corresponds to permutations, and in uniformity ` > 2, where it leads to

hypergraphs with Θ(n`−1) edges. These hypergraphs were first considered from this perspective by

Linial and Luria [31], who call them higher dimensional permutations. Thus it would be natural to

ask how much of our theory generalises to this setting. We address this in Section 12.4.

1.3. Organisation of the paper. In Section 2 we introduce and summarise necessary basics from

measure theory and the theories of limits of graphs and permutations. In Section 3 we introduce the

basic concepts of our theory, i.e. the definition of the limit objects, the notion of density and state

our main compactness result and approximation results, Theorem 3.12 and Theorem 3.13. We further

give some interesting illustrated examples. In Section 4 we introduce an analogue of the cut distance

for Latinons and state related counting lemmas which imply the equivalence of the two topologies

generated by left-convergence and the cut distance, respectively. We also state a sampling lemma

for Latinons. In Section 5 we recall some results of the theory of dense graph limits generalised to

vectors of bigraphons which we need to prove our results. In Section 6 we introduce a main concept

used by our proofs, an approximation of a Latinon by a vector of bigraphons. In Section 7 we use this

approximation to prove the counting lemma stated in Section 4. In Section 8 we prove the compactness

result stated in Section 3. In Section 9 we prove the sampling lemma for Latinons, which we in turn

use to prove the inverse counting lemma in Section 10. In Section 11 we show how to construct an

approximating sequence of Latin squares for a given Latinon. Finally, we discuss some open questions

in Section 12. The appendix contains proofs of two auxiliary results which are pretty standard, but

which we did not find in the literature. The proof of the equivalent definition of a Latinon can be

found in Appendix A. In Appendix B we prove a result concerning a decomposition of Kn,n,n into

triangles which satisfies certain requirements on densities.

2. Basic definitions and notation

2.1. General notation. For a set S with a strict partial order < and a natural number k we write

Sk< for the set of all k-tuples of S which are in increasing order according to <, i.e.

Sk< := {(x1, . . . , xk) ∈ Sk | xi < xi+1 for all i ∈ [k − 1]} .

For a set S we denote by 1S the indicator function, i.e.

1S(x) :=

1, if x ∈ S;

0, otherwise.

For every k ∈ N we define a partition Jk of [0, 1] into k parts given by Jk,i := [ i−1
k , ik ) for i ∈ [k− 1]

and Jk,k := [k−1
k , 1]. For every d ∈ N we define a partition Dd of [0, 1) into 2d parts given by

Dd,s := [ s−1
2d
, s

2d
) for i ∈ [2d]. We also write D∗ :=

⋃
d∈NDd.

2See [8, 7] for some progress in the case of graphs.
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2.2. Probability theory. We will need the following version of the Chernoff bound, see e.g. [22,

Corollary 2.3].

Lemma 2.1. If X ∼ Bi(N, p), µ = Np, and ε > 0, then

P[|X − µ| ≥ εµ] ≤ 2 exp(−ε2µ/3) .

Further, we recall McDiarmid’s concentration inequality, [36].

Lemma 2.2. Suppose that r ∈ N, and that Z is a random variable on a discrete product probability

space Λ :=
∏r
i=1 Λi. Suppose that c ∈ Rr is a vector with the following property. For each two vectors

x,x′ ∈ Λ that differ on one coordinate, say the i-th, we have |Z(x)− Z(x′)| ≤ ci. Then for each t > 0

we have that

P [|Z − E[Z]| > t] ≤ exp

(
− 2t2∑r

i=1 c2
i

)
.

2.3. Measure theory. When working with measure spaces, we will suppress referring to the under-

lying sigma-algebra, unless it needs to be mentioned explicitly. Recall that measurable sets of zero

measure are called null and their complements are called conull. We denote the Lebesgue measure

on R by λ and by λ⊗n the Lebesgue measure on Rn. Throughout the paper Ω always denotes an

arbitrary separable atomless probability space (Ω, µ). The actual choice of Ω will not be important;

recall that every separable atomless probability space is almost isomorphic to ([0, 1], λ). This means

that there exists a conull set Ω′ ⊂ Ω, a conull set X ⊂ [0, 1] and a measure preserving bijection

b : Ω′ → X such that its inverse b−1 is also measurable. So while we could have worked only with

([0, 1], λ) in the entire paper, we prefer to work with (Ω, µ) at the places where we want to emphasise

that there is no natural linear order on that probability space. We write µ⊗n for the n-th power of µ,

which is a probability measure on Ωn.

Let B(X) denote the space of all Borel probability measures on a metric space X and let B0(X)

denote the space of all Borel signed measures of total measure between [−1, 1] on a metric space X.

Recall that there is a natural notion of a sigma-algebra on B(X) and B0(X); see [23, Section 17.E].

We will not need details, except that this justifies that given a function f : Ω → B(X) we can ask

whether f is measurable or not. We write B := B([0, 1]) and B0 := B0([0, 1]). For p ∈ [0, 1], we write

δp ∈ B for the Dirac measure on p.

2.3.1. Construction of measures from semirings. Quite a bit of the technical work deals with con-

structing measures, in particular in the proof of compactness, where we construct the so-called mea-

sure representation of the limit Latinon (see Section 3.2). Construction of measures on a sigma-algebra

is often conveniently done by extending a premeasure. We recall the necessary definitions.

Definition 2.3 (Semiring). For a given set Ω, a set S of subsets of Ω is called a semiring if

(i) ∅ ∈ S,

(ii) A,B ∈ S ⇒ A ∩B ∈ S,

(iii) if A,B ∈ S, then there exist disjoint sets K1, . . . ,Kn ∈ S such that A \B =
⋃n
i=1Ki.

Definition 2.4 (Premeasure). Suppose that S is a semiring on Ω. We say that µ : S → [0,∞) is

a premeasure if for all sets A ∈ S for which there exists a countable decomposition A =
⋃∞
i=1Ai in

disjoint sets Ai ∈ S, i ∈ N, we have µ(A) =
∑∞

i=1 µ(Ai).

Theorem 2.5 (Carathéodory’s extension theorem). Let S be a semiring on Ω and let µ : S → [0, 1]

be a premeasure on S. Then there exists a measure µ′ : σ(S)→ [0, 1], where σ(S) is the sigma-algebra

generated by S, such that µ′ is the extension of µ.
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2.3.2. Weak convergence. Let us also recall the notion of weak convergence of measures. Suppose

that (X, ρ) is a compact metric space. We say that a sequence of Borel measures ν1, ν2, . . . on X weak

converges to a Borel measure ν if for each continuous function f → R we have that the sequence∫
fdν1,

∫
fdν2, . . . converges to

∫
fdν. It is well known that with the compactness assumption as

above, if we have a sequence of Borel measures ν1, ν2, . . . that are uniformly bounded, say νn(X) ≤ C
for all n, then there exists a subsequence νn1 , νn2 , . . . and a Borel measure ν so that νn1 , νn2 , . . . weak

converges to ν.

2.3.3. Disintegration theorem. The disintegration theorem is a standard result in measure theory. Let

Y and X be two Radon spaces. Let α ∈ B(Y ), let π : Y → X be a Borel-measurable function, and

let β ∈ B(X) be the pushforward measure β = α ◦ π−1. Then there exists a β-almost everywhere

uniquely determined family of measures {αx ∈ B(Y )}x∈X such that

• the function x 7→ αx is measurable,

• for β-almost all x ∈ X, αx(Y \ π−1(x)) = 0,

• for every measurable function s : Y → R, we have∫
y∈Y

s(y)dα(y) =

∫
x∈X

∫
y∈π−1(x)

s(y)dαx(y)dβ(x) .

The collection {αx ∈ B(Y )}x∈X is called the disintegration of α according to π. Quite often, Y will

be of the form Y = X × A and π will be the natural projection. We then say that {αx ∈ B(Y )}x∈X
is the disintegration of α according to the first coordinate.

2.4. Graphons. In this paper, we will borrow many tools from the theory of dense graph limits.

A graphon W is a measurable function W : Ω2 → [0, 1] that is symmetric, i.e., W (x, y) = W (y, x).

Graphons arise as limits of sequences of graphs, and could be informally understood as limits of their

adjacency matrices rescaled into a square of unit area. The symmetricity property is then inherited

from the fact that an adjacency matrix of a graph is symmetric. We will need a non-symmetric

version of this, called bigraphons, and first introduced in [35]. A bigraphon is a measurable function

W : Ω2 → [0, 1]. We can think of a bigraphon as a limit of matrices of bipartite graphs (Gn)n on n+n

vertices, where the two parts are distinguished, say the first part and the second part. Then W can

be thought of as a limit of the ‘bipartite adjacency matrices’ Bn, in which the entry on position (i, j)

is 1 if and only if the i-th vertex in the first part of Gn is adjacent to the j-th vertex in the second

part. The reason why bigraphons will be more relevant in this paper is that the ‘first part’ and the

‘second part’ will encode the rows and the columns of the Latin square respectively. Let W0 be the

space of all bigraphons. A distribution-valued bigraphon is a measurable function W : Ω2 → B. A

distribution-valued signed bigraphon is a measurable function W : Ω2 → B0.

2.4.1. Cut norm and cut distance. Given a function W with domain Ω2
1 and functions α, β : Ω2 → Ω1,

we define Wα,β to be the function with domain Ω2
2 given by Wα,β(x, y) := W (α(x), β(y)) for all

x, y ∈ Ω2. We also use the shorthand Wα := Wα,α. We use SΩ to denote the set of all invertible

measure preserving maps Ω→ Ω.

For X ∈ L∞(Ω2), we define the cut norm of X,

‖X‖� := sup
S,T⊆Ω

∣∣∣∣∫
S×T

X(x, y)d(x, y)

∣∣∣∣ .
The cut distance between bigraphons U,W ∈ W0 is defined as

δ�(U,W ) := inf
ϕ∈SΩ

‖U −Wϕ‖� .
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2.4.2. Degrees in a bigraphon. Suppose that U : Ω2 → [0, 1] is a bigraphon. Given x ∈ Ω, we define

the degree of x in U by degU (x) :=
∫

Ω U(x, y)dy. (So, we choose the convention of integrating over the

second parameter.) We prove that the degree distribution in a cut distance convergent sequence of

graphons is continuous. While this fact is not difficult, we were not able to find an explicit reference

in the literature.

Lemma 2.6. Suppose that U and W are two bigraphons with ‖U −W‖� < ε. Then the measure of

x ∈ Ω for which | degU (x)− degW (x)| >
√
ε is at most 2

√
ε.

Proof. Let A := {x ∈ Ω | degU (x) − degW (x) >
√
ε} and B := {x ∈ Ω | degW (x) − degU (x) >

√
ε}.

We have∫
A×Ω

U(x, y)d(x, y) =

∫
A

degU (x)dx ≥
∫
A

degW (x)dx+ µ(A)
√
ε =

∫
A×Ω

W (x, y)d(x, y) + µ(A)
√
ε .

As ‖U −W‖� < ε, we in particular get
∫
A×Ω U(x, y)d(x, y) <

∫
A×ΩW (x, y)d(x, y) + ε. We conclude

that µ(A) <
√
ε. Similarly, we can get that µ(B) <

√
ε. �

From this result, we immediately obtain the following.

Lemma 2.7. Suppose that W1,W2, . . . is a sequence of bigraphons converging to a bigraphon W in

the cut distance. Then for each open interval I, we have

lim
n
µ({x ∈ Ω | degWn

(x) ∈ I}) = µ({x ∈ Ω | degW (x) ∈ I}) .

2.5. Permutons. We need to recall the notion of permutons, which is actually used as a building

block in our definition of Latinons. For us, a permutation of order n is a bijection π : [n] → [n].

Suppose that ρ is a bijection of order k for some k ≤ n. Then, the density of ρ in π, denoted by t(ρ, π)

is the probability that when picking a random k-set K of [n], the restriction of π on K is ρ. By that

we mean that for any a, b ∈ [k], and for the corresponding a-th smallest element ka of K and the b-th

smallest element kb of K, we have ρ(a) < ρ(b) if and only if π(ka) < π(kb). A permuton is a probability

measure on [0, 1]2 with uniform marginals on both axes. The reader can find more information about

permutons in [27] and [20]. Yet, we find it instructive to recall how each finite permutation can

be represented as a permuton, and also that each sequence of permutations contains a subsequence

‘converging’ to a permuton.3 So, suppose that π : [n] → [n] is a bijection and consider the partition

Jn. Then we can represent π naturally as a permuton by defining it as an n-multiple of the Lebesgue

measure on each square Jn,j × Jn,π(j) and zero elsewhere. Next, suppose that (πn : [n] → [n])n is a

sequence of permutations and that (νn)n are the associated permutons. Then by the compactness

of the weak topology, there exists a subsequence νn1 , νn2 , . . . to which we have a weak limit, say ν.

It is easy to check that such a measure ν must be a probability measure with uniform marginals,

and hence a permuton. In this case, we say that ν is a limit of πn1 , πn2 , . . .. The reason why the

weak convergence is the right concept is that it preserves densities. More precisely, νn1 , νn2 , . . . weak

converges to ν, if and only if for each fixed permutation ρ, we have limi t(ρ, πni) = t(ρ, ν). Here, the

density of a permutation ρ of order k into a permuton ν is defined in the following way. Sample a

k-tuple of independent points (x1, y1), . . . , (xk, yk) ∈ [0, 1]2 according to the law of ν. Let t(ρ, ν) be the

probability that for each a, b ∈ [k] and for the corresponding a-th smallest element xa∗ of {x1, . . . , xk}
and the b-th smallest element xb∗ of {x1, . . . , xk}, we have ρ(a) < ρ(b) if and only if ya∗ < yb∗ .

3We explain later which notion of convergence is suitable for permutons.
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3. Latinons and the statements of the main results

In this section, we introduce the new key definitions. Recall that for us, a Latin square of order n

is a matrix L ∈ [n]n×n such that Li,j 6= Li,k and Lj,i 6= Lk,i for all 1 ≤ i ≤ n and 1 ≤ j < k ≤ n. Our

first goal is to generalise the density notion of permutations to two dimensions.

Let A ∈ Rk×` be a matrix and let O<(A) = (a1, . . . , ar) be the increasing ordering of E(A) =

{ai,j | 1 ≤ i ≤ k, 1 ≤ j ≤ `} according to the natural order <. We denote by pA : E(A) → [r] the

function which assigns to each ai,j its index in O<(A). For example for A =

(
5 6

4 8

)
we have pA(4) =

1, pA(5) = 2, pA(6) = 3, pA(8) = 4 and for A′ =

(
5 5

4 8

)
we have pA′(4) = 1, pA′(5) = 2, pA′(8) = 3.

Definition 3.1 (Structural equivalence).

(i) We say that two matrices A,B ∈ Rk×` are structurally equivalent, written A ≡ B, if pA(ai,j) =

pB(bi,j) for all 1 ≤ i ≤ k and 1 ≤ j ≤ `. Matrices of different orders are never considered

structurally equivalent.

(ii) For a matrix A ∈ Rk×` and a set S ⊆ R we define

RA(S) := {M ∈ Sk×` |M ≡ A} .

Remark 3.2. Note that given k and `, there are only finitely many structural equivalence classes of

matrices in Rk×`.

We will be interested in matrices A in [k`]k×` such that |E(A)| = k`. In particular, this means that

each value from [k`] appears exactly once in A. We denote this set of matrices by R(k, `) and refer to

these as patterns. So, the right way of thinking of a pattern is that it is matrix with a unique smallest

entry, a unique second smallest entry etc. By structural equivalence we do not really worry about

the actual values, but the relative position of those entries. Given A ∈ R(k, `) and B ∈ [0, 1]k×` such

that B ≡ A, we call B a realisation of A.

Let L be a Latin square of order n and I, J ⊆ [n]. We denote by L|(I,J) the submatrix which results

from L after deleting all lines with indices [n] \ I and all columns with indices [n] \ J . This notation

allows us to introduce the key notion of densities in a finite Latin square, very much in parallel to the

notion of densities in a finite permutation.

Definition 3.3 (Densities in Latin squares). Let L be a Latin square of order n and A ∈ R(k, `) for

some k, ` ∈ [n]. We define the density of the pattern A in L by

t(A,L) :=
1(

n
k

)(
n
`

) ∑
x∈[n]k<,y∈[n]`<

1RA([n])(Ln|(x,y)) .

Remark 3.4. Given any sequence (Ln)n of Latin squares of growing orders, observe that if A is a

matrix in [k`]k×` such that there is a repeated entry (i.e. A 6∈ R(k, `)), then the sum in Definition 3.3

is at most O(nk+`−1) and so t(A,Ln)→ 0 as n→∞.

So, (when k = `) restricting a large Latin square to a random k × k submatrix, we typically get a

structure in which each entry appears only once, and such a structure in particular does not correspond

to any Latin square. This is in contrast with limits of dense graphs and limits of permutations, where

in both cases by restricting a large structure to a random sample of size k we get a substructure which

we can interpret in that class (i.e., a graph or a permutation). This is also related to the fact that

we do not think that there is a sensible notion of an ‘L-random Latin square’ (for a Latinon L) while

there is a notion of a ‘W -random graph’ (for a graphon W ) and of a ‘ν-random permutation’ (for a

permuton ν, see Section 2.5).
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In particular, we obtain for each fixed k, ` ∈ N that

(1) lim
n→∞

∑
A∈R(k,`)

t(A,Ln) = 1 .

We are now ready to define our limit objects, Latinons.

Definition 3.5 (Semilatinon and Latinon). A semilatinon is a pair (W, f) such that W : Ω2 → B
is a distribution-valued bigraphon and f : Ω → [0, 1] is measure preserving function. A Latinon is a

semilatinon which satisfies the following properties.

(i) The measure µ1
W,x on [0, 1]2 defined by µ1

W,x(S×T ) :=
∫
y∈f−1(S)W (x, y)(T )dy for all measur-

able S, T ⊆ [0, 1] is a permuton for almost all x ∈ Ω.4

(ii) The measure µ2
W,y on [0, 1]2 defined by µ2

W,y(S×T ) :=
∫
x∈f−1(S)W (x, y)(T )dx for all measur-

able S, T ⊆ [0, 1] is a permuton for almost all y ∈ Ω.

We denote the space of all Latinons by L.

Condition (i) (respectively (ii)) are limit counterparts to the fact that given a Latin square, we can

take its slice at any given row (resp. column) and get a permutation.

Remark 3.6. Note that the conditions of Definition 3.5 ensure for a Latinon (W, f) that there is

no set X ⊂ Ω of positive measure such that W |X×Ω or W |Ω×X is identically equal to δp for some

p ∈ [0, 1].

We identify Latinons if they agree everywhere except a nullset. So we are actually working with

the quotient space under this relation, but we will for convenience still speak of Latinons instead of

equivalence classes.

Given a function f : Ω→ [0, 1] we can introduce a strict partial order <f on Ω by defining x <f y if

and only if f(x) < f(y). We write x ∈ Ωk
<f

to denote x = (x1, . . . , xk) ∈ Ωk such that x is increasingly

ordered according to <f , i.e. f(x1) < f(x2) < · · · < f(xk). Furthermore for measures µ(1,1), . . . , µ(k,`)

on [0, 1] we write
⊗

(i,j)∈[k]×[`] µ(i,j) for the corresponding product measure on [0, 1]k×`. Now we can

extend our notion of density to Latinons.

Definition 3.7 (Densities in Latinons). Let (W, f) be a Latinon over the ground space Ω and A ∈
R(k, `). We denote by t(A, (W, f)) the density of the pattern A in (W, f) and define it to be

t(A, (W, f)) := k!`!

∫
x∈Ωk

<f

∫
y∈Ω`

<f

 ⊗
(i,j)∈[k]×[`]

W (xi, yj)

 (RA([0, 1]))dydx .

Informally, t(A, (W, f)) is the probability that B ≡ A, where B ∈ [0, 1]k×` is a matrix sampled

according to the following random selection. We repeatedly choose x = (x1, . . . , xk) ∈ Ωk and

y = (y1, . . . , y`) ∈ Ω` independently and uniformly at random until we find x and y which are

increasingly ordered according to <f . For each pair (i, j) with 1 ≤ i ≤ k and 1 ≤ j ≤ ` we sample

a real value bi,j from the distribution W (xi, yj) and set B = (bi,j). We describe such a B as being

sampled from (W, f). Also note that according to our earlier definitions B is a realisation of the

pattern A. The sampling view gives us the following counterpart to (1).

Fact 3.8. Suppose that (W, f) is a Latinon. Then
∑

A∈R(k,`) t(A,L) = 1.

The following definition will help us to associate a finite Latin square with a Latinon. The similar-

ities to associating a permuton to a finite permutation as was done in Section 2.5 are obvious.

4µ1
W,x is defined here only on sets of the form S × T . This is sufficient as such sets generate the Borel sigma-algebra

on [0, 1]2.
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Definition 3.9. Let Ln be a Latin square of order n. Given a measure preserving function f : Ω→
[0, 1] we derive a Latinon (WLn , f) over the ground space Ω from Ln by setting

(WLn(x, y)) (S) := n · λ
(
S ∩

[
Lnxy − 1

n
,
Lnxy
n

])
, for x, y ∈ Ω and S ⊆ [0, 1] ,

where Lnxy := Ln(dn · f(x)e, dn · f(y)e).

Note that this indeed defines a Latinon and in fact Latinon-representations of Latin squares have

almost the same densities.

Proposition 3.10. Let Ln be a Latin square of order n and f : Ω → [0, 1] a measure preserving

function. Then for every k, ` ∈ N and every k × ` pattern A we have

|t(A, (WLn , f))− t(A,Ln)| ≤ 2(k+`)2

n .

Proof. Consider the probability that B ≡ A, where B ∈ [0, 1]k×` is a matrix sampled according to the

following random selection. Sample as one would for t(A, (WLn , f)) in Definition 3.7, except rather

than just sampling so that x and y are increasingly ordered according to <f , but also so that for

each i, j we have dn · f(xi)e 6= dn · f(xj)e (and similarly for the yi). The crucial observation is that

this probability is equal to t(A,Ln) by definition of (WLn , f). So define S1 and S2 to be subsets of

[0, 1]k+` such that

S1 :=
{

x ∈ [0, 1]k<f
,y ∈ [0, 1]`<f

| dn · f(xi)e 6= dn · f(xj)e, dn · f(yi)e 6= dn · f(yj)e for i 6= j
}
,

S2 :=
{

x ∈ [0, 1]k<f
,y ∈ [0, 1]`<f

}
\ S1 .

We thus obtain

t(A, (WLn , f)) = k!`!

∫
S1

t(A,Ln)d(x,y) +

∫
S2

 ⊗
(i,j)∈[k]×[`]

W (xi, yj)

 (RA([0, 1]))d(x,y)

 ,

and also by noting that λ⊗k+`(S1) + λ⊗k+`(S2) = 1/(k!`!), we have

|t(A, (WLn , f))− t(A,Ln)| ≤ |k!`!λ⊗k+`(S1)− 1| · t(A,Ln) + k!`!λ⊗k+`(S2) ≤ 2k!`!λ⊗k+`(S2)

= 2

(
1− (n− 1) · · · (n− k + 1)

nk−1
· (n− 1) · · · (n− `+ 1)

n`−1

)
≤ 2

(
nk+`−2 − (n− k − `+ 2)k+`−2

nk+`−2

)
≤ 2(k + `)2

n
.

�

We can now define a notion of left-convergence for Latin squares and Latinons.

Definition 3.11 (Left-convergence). (i) Let (Ln)n∈N be a sequence of Latin squares and let (W, f)

be a Latinon. We say that (W, f) is the limit of (Ln)n∈N, written Ln
left→ (W, f), if

limn→∞ t(A,Ln) = t(A, (W, f)) for every k, ` ∈ N and A ∈ R(k, `).

(ii) Let (Ln)n∈N be a sequence of Latinons and let L be a Latinon. We say that L is the limit of

(Ln)n∈N, written Ln
left→ L, if limn→∞ t(A,Ln) = t(A,L) for every k, ` ∈ N and A ∈ R(k, `).

Note that by Definition 3.9 and Proposition 3.10 we have that a sequence of Latin squares (of

growing orders) converges in the sense of Definition 3.11(i) if and only if their Latinon-representations

converge in the sense of Definition 3.11(ii).

Note that we require the convergence only for countably many sequences of densities, but by

Remark 3.2 this implies convergence for the densities of all A ∈ Rk×`. Note also, that by a standard

abstract compactness argument, if (Ln)n∈N is a sequence of Latin squares of growing orders, then there



LIMITS OF LATIN SQUARES 11

exists a subsequence (Lni)i so that for every k, ` ∈ N and A ∈ R(k, `) we have that limi→∞ t(A,Lni)

exists. A similar type of left-convergence is at the heart of flag algebras, [37]. However, here we aim

to obtain Latinons as a more explicit representation of the limit. One of the main results of this paper

is the following compactness result.

Theorem 3.12 (Compactness for Latinons). Let (Ln)n∈N be a sequence of Latinons over arbitrary

ground spaces. There exists a subsequence (Lni)i∈N and a Latinon (W, f) over the ground space Ω

such that

Lni

left→ (W, f) .

It is worth recalling that in Section 2.5 we sketched an analogous compactness result for permutons,

which follows immediately from the compactness of the weak topology of probability measures on

[0, 1]2. Although we can represent a Latinon by a probability measure (see Definition 3.15), the proof

of Theorem 3.12 is much more complicated. The reason for this is that it is not enough to view

coordinates of different values with global lenses, as our example in Section 3.1.2 shows. (That is, the

probability measure needs to be on Ω2 × [0, 1] rather than [0, 1]3.)

Recall that by Proposition 3.10 this applies to sequences of Latin squares as well. Theorem 3.12

can be accompanied by the following approximation result.

Theorem 3.13. For every Latinon (W, f) ∈ L there exists a sequence (Ln)n∈N of Latin squares such

that Ln
left→ (W, f).

3.1. Examples. In this section, we give some basic examples of sequences of finite Latin squares

and the corresponding limit object. These examples in particular explain why our Latinons are

distribution-valued, and also the role of the function f .

For this section only, for convenience, we will assume that all finite n × n Latin squares have row

numbers, column numbers and values in [0, n− 1] (rather than [n]).

3.1.1. Standard cyclic Latin squares. One of the most natural examples of a sequence of Latin squares

comes from the Cayley tables of cyclic groups. For each n ∈ N define the Latin square Ln by

Ln(x, y) := x + y mod n for all x, y ∈ [0, n − 1]. We define the standard cyclic Latinon (L, f) as a

Latinon on Ω = [0, 1] by letting L : [0, 1]2 → B be defined by L(x, y) := δx+y mod 1 for all x, y ∈ [0, 1],

and by setting f : [0, 1]→ [0, 1] to the identity.

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 2 3

5 0 1 2 3 4

Figure 1. The Latin square L6 and the standard cyclic Latinon (L, f) in which one

should think of x from 0 to 1 as running from left to right, y from 0 to 1 as running

from top to bottom, and within the image, the entries are scaled from white being 0

to black being 1.

It can easily be shown that (L, f) is a Latinon, and in Section 4.2 we will show that (Ln)n converges

to (L, f) as n tends to infinity. As mentioned above Ln is a Cayley table of a cyclic group of order

n. By thinking of x, y and x + y as points on the unit circle, one can also consider (L, f) to be the

Cayley table of the group R/Z.
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3.1.2. Regular versus random alternation. Consider the partition Jn. Let Cn : [0, 1]2 → [0, 1] be the

‘chessboard graphon’, that is Cn is either constant 0 or 1 on each Jn,i × Jn,j depending on the parity

of i+ j. Let Rn be a graphon in which a constant 0 or 1 on each Jn,i× Jn,j (i ≤ j) is chosen uniformly

at random. Recall that Rn can be thought of as the adjacency matrix of an Erdős–Rényi random

graph G(n, 1
2) (except the values on the diagonal). Thus, basic theory of graphons tells us that (Cn)n

converges to the complete balanced bipartite graphon while (Rn)n converges to the constant-one-half

graphon. Our examples below can be thought of as a Latin square counterpart to this difference

between ‘regular fifty-fifty’ versus ‘random fifty-fifty’.

For each n, define an n× n matrix Hn,

Hn(i, j) :=

i+ j mod n if i+ j ≡ 0 mod 2,

−i− j mod n if i+ j ≡ 1 mod 2.

It is easy to check that for n even, Hn is actually a Latin square.

Let us now consider a matrix Pn which should be informally thought of in the following way:

Pn(i, j) :=

i+ j mod n with probability 1/2,

−i− j mod n with probability 1/2.

One could say that Pn is a Latin square ‘in expectation’. By that we mean that for each k ∈
{0, . . . , n− 1}, on each row i, there is exactly one column j so that k = i+ j mod n and exactly one

column j so that k = −i−j mod n, indeed giving that the number of times the symbol k appears is 1

in expectation. As it turns out, it is indeed possible to construct deterministic Latin squares which

behave like Pn. We omit the details here since this construction is described in Section 11. Now,

(Pn)n exhibits the problem that limn→∞ Pn(xn, yn)/n does not exist for x, y ∈ [0, 1]. We expect the

two accumulation points to be x+y mod 1 and −x−y mod 1. A solution to this problem is to let the

limit object be a distribution-valued bigraphon. A candidate for the limit of (Pn)n could therefore

be a distribution-valued bigraphon P defined on [0, 1]2, where one copy of [0, 1] would represent rows

and the other copy would represent columns,

P (x, y) :=
1

2
δ(x+y mod 1) +

1

2
δ(−x−y mod 1) .

However, the sequence (Hn)n shows that such a definition is still not general enough. In the limit

and for values (x, y) ∈ [0, 1]2 we cannot distinguish the odd from the even case. Since in a square

[(x− ε)n, (x+ ε)n]× [(y − ε)n, (y + ε)n] half of the time the value Hn(i, j) will be i+ j mod n and

half of the time −i − j mod n, one could guess that Hn has the same limit as Pn. This is however

not correct, as the densities of substructures in (Hn)n and (Pn)n converge to different limits; one can

check that for the 2× 3 pattern

A :=

(
1 2 3

4 5 6

)
we have that limn→∞ t(A,Hn) > limn→∞ t(A,Pn). We therefore need to be able to encode ‘local

information’ in the limit object, which suggests to consider a limit object like H : Ω2 → B, where in

this case Ω = [0, 1]× {odd, even} and

H ((x, parityx), (y, parityy)) =

x+ y mod 1 if parityx = parityy,

−x− y mod 1 if parityx 6= parityy.

The Latinons for the above two sequences can be described as follows. For the sequence (Hn), we

set (H,h) to be the Latinon on Ω = [0, 1] × {odd, even}, where H : ([0, 1] × {odd, even})2 → B and
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h : [0, 1]× {odd, even} → [0, 1] are defined by

h(x, a) := x , H((x, a), (y, b)) :=

x+ y mod 1 if a = b,

−x− y mod 1 if a 6= b.

For the sequence (Pn), we set (P, p) to be the Latinon on Ω = [0, 1], where p is the identity and

P : [0, 1]2 → B is defined by

P (x, y) :=

x+ y mod 1 with probability 1/2,

−x− y mod 1 with probability 1/2.

The sequence (Hn)n, which shows that in addition to the ‘global position’ of each row/column,

some local information (‘parity-like’) must be recorded as well, nicely illustrates the main difference

between the theory of Latinons and that of permutons. Indeed, recall that permutons record only

the global position by being a measure on [0, 1]2. Also, recall the proof of the compactness result for

permutons, as sketched in Section 2.5. The approach using the weak topology, which is the key tool

in the proof, can only measure the behaviour of the finite permutations on a global scale, that is, it

tracks quantities such as ‘how many elements around 0.4n are mapped by πn to a value of around

0.9n’. In other words, one cannot create any parity-like-based constructions of finite permutations

that would drastically change subpermutation densities.

3.1.3. Very Local Cyclic Latin squares. Let us give a sequence of Latin squares which are constructed

in a similar way to standard cyclic Latin squares, but change their values in a more discontinuous

fashion. For every n = k2 for some k ∈ N, define the Latin square Cn by setting

Cn((i− 1)k + x, (j − 1)k + y) := i+ j + (x+ y − 2)k mod n

for every i, j, x, y ∈ [k]. Now by considering the partition of such a Latin square into k × k blocks

Bi,j , i, j ∈ [k], we see that the blocks differ very little from each other (since the role of i, j is rather

inferior in the definition of Cn) whereas within a block the numbers change much more. One possible

limit representation is a Latinon (C, f) on Ω = [0, 1]× [0, 1] with C((i, x), (j, y)) = (x+y) mod 1 and

f being the identity. We omit a proof, which could be done using the same techniques which we use

in Section 4.2 to prove that (L, f) is a correct limit to standard cyclic Latin squares.

3.1.4. Columns and values swap. Recall that swapping row numbers and column numbers, row num-

bers and values, and column numbers and values of a Latin square again results into a Latin square.

It is not hard to see by the definition of left-convergence that if a sequence (Ln)n of Latin squares

converges, so does the sequence (Mn)n with swapped rows and columns, i.e. Mn(x, y) = Ln(y, x) for

all x, y ∈ [0, n − 1]. However, the situation presents itself differently in the case of swapping column

numbers and values. For a finite n×n Latin square L, we denote by L′ the finite Latin square obtained

from L by swapping column numbers and values; that is for all x, y, z ∈ [0, n − 1] we have that if

L(x, y) = z, then L′(x, z) = y. In this section we prove the following.

Lemma 3.14. There exist two sequences of finite Latin squares (Jn)n∈3N and (Kn)n∈3N so that by

interlacing them, we get a left-convergent sequence, yet by interlacing the respective sequences formed

by column-value swaps, (J ′n)n∈3N and (K ′n)n∈3N we do not get a left-convergent sequence.
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Proof. Suppose n is divisible by 3. Let I1 := [0, n3 − 1], I2 := [n3 ,
2n
3 − 1] and I3 := [2n

3 , n − 1]. Set

x∗ := x mod (n3 ) and y∗ := y mod (n3 ). We define two Latin squares Jn and Kn by

Jn(x, y) :=


3(x∗ + y∗) mod n if x, y ∈ I1, or x ∈ I2 and y ∈ I3, or x ∈ I3 and y ∈ I2;

3(x∗ + y∗ + 1) mod n if x ∈ I2 and y ∈ I1, or x ∈ I1 and y ∈ I2, or x, y ∈ I3;

3(x∗ + y∗ + 2) mod n otherwise;

Kn(x, y) :=


3(x∗ + y∗) mod n if x, y ∈ I1, or x, y ∈ I2, or x, y ∈ I3;

3(x∗ + y∗ + 1) mod n if x ∈ I1 and y ∈ I3, or x ∈ I2 and y ∈ I1, or x ∈ I3 and y ∈ I2;

3(x∗ + y∗ + 2) mod n otherwise.

Let Mn be the restriction of either of Jn or Kn to Ia × Ib for any fixed a, b ∈ [3]. It is easy to see

that (Mn)n∈3N converges to the standard cyclic Latinon L. Since this is true for any a, b for both Jn

and Kn, it follows that both sequences (Jn)n∈3N and (Kn)n∈3N converge to the same Latinon. (This

Latinon is formed of nine blocks of equal size in a 3× 3 array, which each themselves are a copy of L

scaled down by three.)

Now define J ′n and K ′n to be the respective Latin squares obtained from Jn and Kn by swapping

column numbers and values as described above, and let A be the pattern
(

2 1
)

. A simple calculation

shows that

t(A, J ′n) =
9
(∑n

3
−1

i=0

(n
3
−i
2

)
+
(
i
2

))
+ 2n(n3 )2

n
(
n
2

) ,

whereas

t(A,K ′n) =
9
(∑n

3
−1

i=0

(n
3
−i
2

)
+
(
i
2

))
+ n(n3 )2

n
(
n
2

) .

From this we observe that

lim
n→∞

|t(A, J ′n)− t(A,K ′n)| = lim
n→∞

n(n3 )2

n
(
n
2

) =
2

9
,

and thus (J ′n)n∈3N and (K ′n)n∈3N do not converge to the same Latinon. �

3.2. Two cryptomorphic definitions of Latinons. We give two alternative definitions of a Lati-

non. The first one is as a measure on Ω2 × [0, 1]. In the second one, we do not index the rows (and

columns) of a Latinon by Ω together with the measure preserving function f : Ω → [0, 1] but rather

by [0, 1]×Γ (and without any measure preserving function), where Γ is a standard probability space.

Definition 3.15 (Latinons as measures). A Latinon in measure representation is a pair (ν, f) where

f : Ω → [0, 1] is a measure preserving function and ν is a Borel measure on Ω2 × [0, 1] which has

uniform marginals, that is, for all subsets X,Y ⊆ Ω and Z ⊆ [0, 1] we have ν(X × Y × [0, 1]) =

µ(X)µ(Y ), ν(Ω× Y × Z) = µ(Y )λ(Z), and ν(X × Ω× Z) = µ(X)λ(Z).

Definition 3.16 (Latinons indexed by global and local coordinates). Suppose that Γ is a standard

measure space with a probability measure γ and U is a function U : ([0, 1] × Γ)2 → B. U is said to

be a Latinon indexed by global and local coordinates if for almost every (a, x), (b, y) ∈ [0, 1] × Γ the

measures µ1
a,x on [0, 1]2 defined by µ1

a,x(S×T ) :=
∫
b∈S
∫
y∈Γ U

(
(a, x), (b, y)

)
(T )dydb and µ2

b,y on [0, 1]2

defined by µ2
b,y(S × T ) :=

∫
a∈S

∫
x∈Γ U

(
(a, x), (b, y)

)
(T )dxda are permutons.

We shall see in the sections below that one can indeed transform a Latinon from one representation

to another. It is important that we could translate the notion of density to any of these alternative

definitions. To this end, we only need to be able to sample random rows and columns.

• In case of a representation as a measure, we use the measure µ.
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• In case of a representation indexed by global and local coordinates, we use the product measure

λ× γ.

3.2.1. The role of [0, 1]×Γ in the global-local representation. We saw in Section 3.1 that sometimes we

need to distinguish different types of rows/columns in a matrix even when these rows/columns are very

close together. Because of this necessity f (in Definition 3.5) need not be injective. Definition 3.16

provides an alternative way of recording different types of local behaviour. That is, the component

[0, 1] records the global position of rows/columns of some large Latin square while the coordinate Γ

is used to store different types of rows/columns with a similar global position. Sometimes the local

coordinate is irrelevant, e.g. in the standard cyclic Latinon from Section 3.1.1, whereas for (H,h)

from Section 3.1.2 the space Γ would be partitioned into two pieces of measure half corresponding to

odd and even.5 The example from Section 3.1.3 shows a limit graphon whose values need not depend

on the global coordinate but are highly nonconstant on the local coordinate.

3.2.2. From a standard representation to a representation by a measure. Suppose that (W, f) is a stan-

dard representation of a Latinon. Then define ν by setting ν(X×Y ×T ) :=
∫
x∈X

∫
y∈Y W (x, y)(T )dydx

for each X,Y ⊂ Ω and T ⊂ [0, 1]. Clearly, the uniform marginal condition is satisfied.

3.2.3. From a representation by a measure to a standard representation. Suppose that (ν, f) is a

Latinon as in Definition 3.15. Now, it is enough to define {W (x, y)}x,y∈Ω to be the disintegration

of ν according to Ω2. It is straightforward to check that Latinons are transformed correctly in this

construction.

3.2.4. From a standard representation to a representation with global and local coordinates. The key

to the whole transformation is Proposition 3.17 below. Proposition 3.17 looks like a standard result in

real analysis. However, we were not able to find it anywhere. We thank Jan Greb́ık for suggesting its

proof, and Martin Doležal for discussions about its subtleties. The proof is included in the appendix.

Proposition 3.17. Suppose that (Ω, µ) is a separable atomless probability measure space, and that

f : Ω → [0, 1] is a measure preserving function. Then there exists a measure preserving function

h : [0, 1]× [0, 1]→ Ω such that for almost every (a, x) ∈ [0, 1]× [0, 1] we have f(h(a, x)) = a.

Given Proposition 3.17, it is easy to perform the desired transformation of the domain Ω2 to

([0, 1]2)2. Indeed, given a Latinon (M,f) in standard representation, we take the function h : [0, 1]2 →
Ω from Proposition 3.17 and define U : ([0, 1]2)2 → B by U((a, x), (b, y)) := M(h(a, x), h(b, y)).

3.2.5. From a representation with global and local coordinates to a standard representation. Suppose

that U : ([0, 1] × Γ)2 → B is a Latinon as in Definition 3.16. Define a function g : [0, 1] × Γ → [0, 1]

by (a, x) 7→ a. Clearly, this function is measure preserving. If Ω = [0, 1] × Γ (as a measure space),

then (U, g) is obviously a Latinon as in Definition 3.5. In the general case, we first fix a measure

preserving bijection φ : Ω → [0, 1] × Γ, and set f : Ω → [0, 1], f(z) := g(φ(z)) and W : Ω2 → B,

W (u, v) := U(φ(u), φ(v)). It is straightforward to check that Latinons are transformed correctly in

this construction.

4. A cut distance, counting lemmas, and equivalence of convergence

In this section we introduce a cut distance for Latinons δ4(·, ·), which is a counterpart to the cut

distance for graphons. The definition is given in Definition 4.3. Before giving preliminary definitions

that are needed to this end, let us explain on a high level, the features we want this cut distance to

have. Suppose that we have Latinons L1 = (W, f) and L2 = (U, g) over the ground space Ω. Firstly,

5Note that we do not have a universal partition of Γ into the odd and even part; the partition may change as we vary

the global coordinate.
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suppose that for each interval (a, b) ⊂ [0, 1] we have that the law of W on f−1((a, b)) is the same as

the law of U on g−1((a, b)).6 Informally, this means that for almost every x ∈ [0, 1], W on the fibre

f−1(x) can be obtained by permuting U on the fibre g−1(x) in a measure preserving fashion. In such

a scenario, we clearly want to have δ4(L1, L2) = 0. We want δ4(L1, L2) to be small if and only if we

are in a situation which is only a slightly perturbed version of the above scenario, in that

[cd1] the laws of W and U on the individual fibres need not be equal, but it suffices to be approxi-

mately equal for most fibres,

[cd2] instead of pairing up a fibre f−1(x) with g−1(x), we may pair it up with g−1(x′) if x ≈ x′ (for

most choices of x).

Definition 4.1 quantifies [cd1]. In Definition 4.2 we then introduce ‘order fixing bigraphons’. These

order fixing bigraphons are then used in the terms
∥∥Of −Og◦ϕ∥∥� and

∥∥Of −Og◦ψ∥∥� in the main

formula (2) to quantify [cd2].

Definition 4.1 (Cut norm for distribution-valued signed bigraphons). Let W : Ω2 → B0. We define

‖W‖4 := sup
R,C⊆Ω,

V⊆[0,1] interval

∣∣∣∣∫
x∈R

∫
y∈C

W (x, y)(V )dxdy

∣∣∣∣ .
Definition 4.2 (Order fixing bigraphon). Define O : [0, 1]2 → [0, 1] to be the bigraphon such that

O(x, y) =

1, if x < y;

0, otherwise.

Definition 4.3 (Cut distance for Latinons). Let L1 = (W, f) and L2 = (U, g) be Latinons over the

ground space Ω. We define

(2) δ4(L1, L2) := inf
ϕ,ψ∈SΩ

(∥∥∥Of −Og◦ϕ∥∥∥
�

+
∥∥∥Of −Og◦ψ∥∥∥

�
+
∥∥∥W − Uϕ,ψ∥∥∥

4

)
.

(Here, W −Uϕ,ψ is a difference between two distribution-valued bigraphons, and hence a distribution-

valued signed bigraphon.)

It is easy to verify that δ4(·, ·) is a pseudometric, i.e., it is symmetric and obeys the triangle

inequality.

Remark 4.4. Definition 4.3 can also be extended to semilatinons, in which case it also obeys the

triangle inequality.

The two key lemmas below state that the topologies given by left-convergence and the cut distance

are equivalent. We will prove Lemma 4.5 in Section 7 and Lemma 4.6 in Section 10.

Lemma 4.5 (Counting lemma for Latinons). Let k, ` ∈ N. Then there exists a constant ck,` such that

for every A ∈ R(k, `) and Latinons L1, L2 over the ground space Ω we have

|t(A,L1)− t(A,L2)| < ck,` · δ4(L1, L2)1/(2k`) .

Lemma 4.6 (Inverse counting lemma for Latinons). Let L1 and L2 be Latinons over the ground space

Ω such that δ4(L1, L2) ≥ d > 0. Then for every k > 2(120/d)10
there exists a pattern A ∈ R(k, k) such

that |t(A,L1)− t(A,L2)| ≥ 1
2(k2!)

.

By combining Lemma 4.5 and Lemma 4.6, we immediately get the following.

Theorem 4.7 (Equivalence of convergence). Let (Ln)n∈N be a sequence of Latinons and L be a

Latinon. The following are equivalent.

6Note that these laws are on B-valued functions.
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(i) (Ln)n∈N
left→ L.

(ii) (Ln)n∈N
δ4→ L.

4.0.1. Latinons on different ground spaces. We said that throughout the paper, we will work with a

fixed probability space (Ω, µ) on which all the Latinons will live. There could be a situation where we

need to work with an additional probability space, say (Ω′, µ′). Even in this situation, we can define

the cut distance between a Latinon L over the ground space Ω and a Latinon K over the ground

space Ω′, as follows,

δ∗4(L,K) := inf
ψ:Ω→Ω′ measure preserving bijection

δ4(L,Kψ) .

Here, we use the notation that if K = (U, g) is a Latinon, then Kψ := (Uψ, g ◦ ψ).

Firstly, note that transforming K into Kψ does not change the densities.

Secondly, it is easy to check that δ∗4(·, ·) is an extension of δ4(·, ·), that is, if Ω′ = Ω, then

δ∗4(L,K) = δ4(L,K).

Thirdly, it is straightforward to check that δ∗4(·, ·) is symmetric and it satisfies the triangle in-

equality, i.e., if in addition H is a Latinon over a ground space Ω′′ then we have δ∗4(L,H) ≤
δ∗4(L,K) + δ∗4(K,H).

In view of Theorem 4.7 and Proposition 3.10 it is also reasonable to define a cut distance between

a Latinon L = (W, f) over the ground space Ω and a Latin square Ln via its Latinon-representation

L′ := (WLn , f): we define δ4(L,Ln) := δ4(L,L′).

4.1. A sampling lemma. The key result for proving the inverse counting lemma is a sampling

lemma.7 The sampling lemma, stated below as Lemma 4.9, tells us that a pattern sampled (in the

sense of Definition 3.7) from a Latinon is close in the cut distance.

Recall that we have a way of creating a Latinon from a Latin square (Definition 3.9). We also

require an analogy for general matrices; since the object we start with is not a Latin square, we

cannot hope to produce a Latinon, so we instead produce a semilatinon. The key result is that the

semilatinon that will be associated with a sampled matrix from a Latinon is close to the Latinon in

the cut distance with high probability.

Definition 4.8. Suppose that k ∈ N.

(i) For a distribution-valued matrix A ∈ Bk×k together with a measure preserving map f : Ω →
[0, 1] we define an associated semilatinon LA = (WA, f) in the following way. Given the

partition Jk, set WA(x, y) := Ai,j for x ∈ f−1(Jk,i) and y ∈ f−1(Jk,j).

(ii) For a matrix B ∈ [0, 1]k×k we define the associated semilatinon LB = LA, where A ∈ Bk×k is

the distribution-valued matrix defined by Ai,j = δBi,j for i, j ∈ [k].

(iii) For a pattern C ∈ R(k, k), define the matrix B ∈ [0, 1]k×k by Bi,j := Ci,j/k
2. Then the

associated semilatinon LC of the pattern C is given by LB defined in (ii).

We can now state the sampling lemma. Note that by Remark 4.4, the cut distance can also be

applied to semilatinons.

Lemma 4.9 (Sampling lemma). Suppose that L = (W, f) is a Latinon and k ∈ N is arbitrary. If

A ∈ [0, 1]k×k is sampled from L, then with probability at least 1− 30 exp(−k1/8/10) we have

δ4
(
L, (WA, f)

)
≤ 30

log(k)1/8
.

We prove the sampling lemma in Section 9.

7This approach parallels that for graphons; see Section 10.6 of [33].
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4.2. Return to the standard cyclic Latinon example. Recall the standard cyclic Latinon (L, f)

and the Latin squares Ln from Section 3.1. We can now proceed with the proof that Ln
left→ (L, f).

First let L′n := (WLn , f) denote the Latinon-representation of Ln. By Proposition 3.10 and Lemma 4.5,

it suffices to show that L′n
δ4→ (L, f).

By taking φ and ψ to be the identity, we obtain

δ4(L′n, (L, f)) ≤ sup
R,C,V⊆[0,1]
V interval

∫
x∈R

∫
y∈C

WLn(x, y)(V )− L(x, y)(V )dydx.(3)

Next by the uniform marginals property of Latinons, we have for any interval V = [z1, z2],∫
x∈[0,1]

∫
y∈[0,1]

WLn(x, y)(V )− L(x, y)(V )dydx ≤ z2 − z1.(4)

We have one of the following three conditions:

• There exists an integer a ∈ [0, n− 1] such that a
n ≤ z1 < z2 ≤ a+1

n ;

• There exists an integer a ∈ [1, n− 1] such that a−1
n ≤ z1 ≤ a

n ≤ z1 ≤ a+1
n ;

• We can write V as [z1,
a
n ] ∪ [ an ,

b
n ] ∪ [ bn , z2] for integers a, b ∈ [0, n− 1], a < b.

Thus via (3) and (4) we obtain

δ4(L′n, (L, f)) ≤ 2

n
+ sup

R,C⊆[0,1]
a,b∈[0,n−1]

∫
x∈R

∫
y∈C

WLn(x, y)

([
a

n
,
b

n

])
− L(x, y)

([
a

n
,
b

n

])
dydx,(5)

where a, b ∈ [0, n− 1] and a < b. For each r, c ∈ [0, n− 1] define

Ar,c :=

{
(x, y) | x ∈ Jn,r, y ∈ Jn,c, x+ y ≤ (r + c mod n) + 1

n

}
;

Br,c :=

{
(x, y) | x ∈ Jn,r, y ∈ Jn,c, x+ y >

(r + c mod n) + 1

n

}
.

We have ∫
(x,y)∈Ar,c

WLn(x, y) (Jn,v) dydx =

 1
2n2 if v = r + c mod n;

0 otherwise;∫
(x,y)∈Br,c

WLn(x, y) (Jn,v) dydx =

 1
2n2 if v = r + c mod n;

0 otherwise;∫
(x,y)∈Ar,c

L(x, y) (Jn,v) dydx =

 1
2n2 if v = r + c mod n;

0 otherwise;∫
(x,y)∈Br,c

L(x, y) (Jn,v) dydx =

 1
2n2 if v = r + c− 1 mod n;

0 otherwise.

Combining the above we have∫
(x,y)∈Dr,c

WLn(x, y) (Jn,v)− L(x, y) (Jn,v) dydx

=


1

2n2 if D = B and v = r + c mod n;

− 1
2n2 if D = B and v = r + c− 1 mod n;

0 otherwise.
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Now by a telescoping sum we obtain∫
(x,y)∈Dr,c

WLn(x, y)

([
a

n
,
b

n

])
− L(x, y)

([
a

n
,
b

n

])
dydx

=


1

2n2 if D = B and b = r + c− 1 mod n;

− 1
2n2 if D = B and a = r + c− 1 mod n;

0 otherwise.

From this it is clear that the supremum in (5) is bounded by 1
2n (since at most there are n areas of

weight 1
2n2 in any choice of R and C). Thus we have limn→∞ δ4(L′n, (L, f))→ 0 as required.

5. Vectors of bigraphons

In our proofs we will often reduce the assertion to a claim about a vector of bigraphons. We

therefore recall several results of this theory which we will use later on. We can define a metric δN� on

WN
0 by setting

(6) δN�((Un)n∈N, (Wn)n∈N) := inf
ϕ∈SΩ

∞∑
n=1

1

2n
· ‖Un −Wϕ

n ‖� .

Note that this is not the same as
∑∞

n=1
1

2n δ�(Un,Wn) and therefore compactness of (WN
0 , δ

N
�) does

not follow immediately from Tychonoff’s theorem applied to (W0, δ�).

Theorem 5.1 (Generalised compactness for bigraphons). (WN
0 , δ

N
�) is compact.

Theorem 5.1 is not really new. In fact, most proofs of the Lovász–Szegedy compactness theorem

generalise. Nevertheless, we provide a sketch of the generalisation of the original proof of Lovász

and Szegedy. To this end, we need the following ‘multicolour’ version of the (weak) regularity lemma.

Given a measurable partition P of Ω and a bigraphon W , we write W1P for the stepping of W accord-

ing to P. For each A,B ∈ P, W1P on A×B is defined to be a constant 1
µ(A)µ(B) ·

∫
A×BW (x, y)d(x, y).

Recall that P is an equipartition if each cell has measure 1
|P| .

Next, let us state a weak regularity lemma for tuples of bigraphons.

Lemma 5.2. Suppose that r,m ∈ N are arbitrary. Let (W1, . . . ,Wm) be an m-tuple of bigraphons on

Ω2. Let P∗ be an arbitrary partition of Ω. Then,

(i) there exists a partition P of Ω into at most r · |P∗| classes that refines P∗ and such that∥∥Wi − (Wi)
1P∥∥

� <
√

2m
log(r) for each i ∈ [m], and

(ii) there exists an equipartition K of Ω into at most r2 · |P∗| classes that refines P∗ and such that∥∥Wi − (Wi)
1K∥∥

� <
√

2m
log(r) + 2

r for each i ∈ [m].

We consider Lemma 5.2 standard enough to omit giving a full proof, but still provide a summary.

Let us start with Part (i). Like in the usual proofs of the weak regularity lemma (for a single

graph/graphon), the central quantity is that of an index of a partition. That is, we start with a

trivial partition P := P∗, and record m indices of that partition with respect to all bigraphons

(W1, . . . ,Wm). Now, if
∥∥Wi − (Wi)

1P∥∥
� ≥

√
2m

log(r) for some i, then there exists a refinement of P in

which each cluster is split into at most 2, and such that i-th index goes up by at least m
log(r) . Also, a

refinement of a partition never decreases an index, which in particular applies to the remaining m− 1

indices. Since the sum of the indices is between 0 and m, we conclude that we end up with a regular

partition in at most m/ m
log(r) = log(r) steps. So the number, say N , of clusters at the end of this

process will be at most |P∗| · 2log(r) = r · |P∗|.
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For the proof of Part (ii) we use the proof for Part (i), but need to turn the partition into an

equipartition. We cut each cell X of P arbitrarily into bµ(X)
rN c cells, of individual measure 1

rN each;

of course, there is a possible leftover of measure less than 1
rN . We aggregate all the leftover sets;

this aggregate set A has measure less than N · 1
rN = 1

r . We cut A arbitrarily into µ(A)
rN cells, of

individual measure 1
rN each (note that µ(A) is an integer multiple of 1

rN , so this is really possible).

Clearly, we now have an equipartition K with exactly rN ≤ r2 · |P∗| parts. Furthermore, it is a

property of the cut norm distance that it does not increase due to refinements. So, the only increase

in the cut norm distance could have been caused by the leftover A, that is,
∥∥Wi − (Wi)

1K∥∥
� ≤∥∥Wi − (Wi)

1P∥∥
� + 2µ(A) <

√
2m

log(r) + 2
r , as needed.

Sketch of proof of Theorem 5.1. Let us consider an arbitrary sequence W1,W2, . . . of countable tuples

of bigraphons, Wi = (W i
1,W

i
2, . . .). For a given i and m ∈ N, let us write Wi

�m for the m-tuple

Wi
�m := (W i

1,W
i
2, . . . ,W

i
m−1,W

i
m). Let us take a sequence (ε`)`∈N of positive numbers that tend to 0.

Set j0 := (1, 2, . . .) and P0,q := {Ω} for each q ∈ N. Set r0 := 1 and ri+1 := ri · 22/ε3i .

Now, for ` = 1, 2, . . . we do the following. Set m := b1/ε`c. For each q = 1, 2, . . ., we apply

Lemma 5.2 with a prepartition P`−1,q, m-tuple of bigraphons that is q-th with respect to j`−1, that is,

W
j`−1(q)
�m , with prepartition P`−1,q. Lemma 5.2 yields a partition Q`,q, |Q`,q| ≤ ri · |P`−1,q| ≤ r`, which

refines P`−1,q and with the property that δ�

(
W

j`−1(q)
i , (W

j`−1(q)
i )1Q`,q

)
< ε` for each i ∈ [d1/ε`e]. We

now prepare ourselves for the step `+ 1. We pass to an infinite subsequence j` ⊂ j`−1 so that in this

subsequence all the partitions Q`,q have the same size, say R, and so that we have the following.

• Order the cells ofQ`,q arbitrarily asQ`,q;1, . . . , Q`,q;R. Then the vectors (µ(Q`,q;1), . . . , µ(Q`,q;R))

converge, as q →∞,

• For each i ∈ [d1/ε`e], the bigraphons (W
j`(q)
i )1Q`,q , when viewed as R × R matrices ordered

as above, converge, as q →∞.

Note that such a subsequence exists, since the above convergence notions refer to the (compact) spaces

[0, 1]R and [0, 1]R
2
, respectively. We can proceed with the step `+ 1.

Now, the diagonalisation is done as in the Lovász–Szegedy proof. �

We will also need to consider homomorphism densities of oriented graphs in m-tuples of bigraphons.

This extension of the concept of a homomorphism to tuples plays a prominent role for example

in [46]. Recall that in an oriented graph, each edge has an initial and a terminal vertex; parallel or

counterparalled edges and self-loops are not allowed.

Definition 5.3 (Densities in vectors of bigraphons). Let W = (W1, . . . ,Wm) be an m-tuple of bi-

graphons on Ω2, let F be an oriented graph and let α : E(F )→ [m] be any map. We then set

tα(F,W) :=

∫
x∈ΩV (F )

∏
(xi,xj)∈E(F )

Wα(xi,xj)(xi, xj)dx .

We will make use of a counting lemma which is the following slightly generalised version of a lemma

from [46].

Lemma 5.4 (Counting lemma for bigraphons). Let U = (U1, . . . , Um) and W = (W1, . . . ,Wm) be

two m-tuples of bigraphons. Suppose that ‖Wi − Ui‖� ≤ ε for each i ∈ [m]. Then for any oriented

graph F and any map α : E(F )→ [m] we have

|tα(F,U)− tα(F,W)| ≤ ε · e(F ) .

Furthermore, we will make use of the following ‘First sampling lemma’ for bigraphons in a form

analogous to that stated in [33] for graphons. Note that considering bigraphons does not affect the

argument of the proof, so the analogous statement holds. Given a bigraphon U on [0, 1]2, k ∈ N, and
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S, T ∈ [0, 1]k, we define U [S, T ] to be the bigraphon on [0, 1]2 defined in the following way. For every

i, j ∈ [k] and x ∈ Jk,i, y ∈ Jk,j we set U [S, T ](x, y) := U(Si, Tj).

Lemma 5.5 (First sampling lemma for bigraphons). Let k ≥ 1, and let U be a bigraphon on [0, 1]2.

If S, T are chosen independently uniformly at random from [0, 1]k, then with probability at least 1 −
4 exp(−

√
k/10),

‖U [S, T ]‖� − ‖U‖� ≤
8

k1/4 .

We will need an ordered version which fits better to Definition 4.8. It follows immediately from

Lemma 5.5 by noting that
∥∥Uϕ,ψ∥∥� = ‖U‖� for every ϕ,ψ ∈ S[0,1].

Lemma 5.6 (First sampling lemma for bigraphons (ordered version)). Let k ≥ 1, and let U be a

bigraphon on [0, 1]2. If S, T are chosen independently uniformly at random from [0, 1]k<, then with

probability at least 1− 4 exp(−
√
k/10),

‖U [S, T ]‖� − ‖U‖� ≤
8

k1/4 .

6. Compressions of Latinons

Several of our proofs are based on the idea that we can approximate a Latinon by a vector of

bigraphons, where the length of the vector depends on the precision of the approximation. We will

also consider vectors of infinite length which contain all of the finite approximations.

Definition 6.1 (Compressions of Latinons). Let d ∈ N. For a distribution-valued bigraphon W on

Ω2 we define the compression of depth d of W to be the 2d-tuple of bigraphons on Ω2

Wd = (Wd,1, . . . ,Wd,2d) ,

where for every s ∈ [2d] we have

Wd,s(x, y) = W (x, y)(Dd,s) for all x, y ∈ Ω .

We define the infinite compression of W to be the vector WN ∈ WN
0 with

WN = (W1,W2, . . . ) .

For a Latinon L = (W, f) we define the compression of depth d of L to be the 2d+1-tuple of bigraphons

on Ω2

Ld = (Of ,Wd) .

We define the infinite compression of L to be the vector LN ∈ WN
0 with

LN = (Of ,WN) .

The next observation states that most times when working with a Latinon, it does not make a

difference whether we work with open, closed or half open intervals in the definition of a compression.

Observation 6.2. Suppose that L = (W, f) is a Latinon. Then there exists a nullset S ⊆ Ω2 such

that for every (x, y) ∈ Ω2 \S we have that W (x, y)((a, b)) = W (x, y)([a, b]) for all a, b ∈ Q∩ [0, 1] with

a < b.

Proof. It is enough to prove that for each t ∈ [0, 1], the set of (x, y) ∈ Ω2 for which W (x, y)({t}) > 0

is null. Indeed, once this is settled, it is enough to take S to be the union of these exceptional

nullsets, over all t ∈ Q ∩ [0, 1]. But the former easily follows from the uniform marginals property

(Definition 3.5), ∫
x∈Ω

∫
y∈Ω

W (x, y)({t})dxdy = λ({t}) = 0 .

�
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Thus, with the help of Observation 6.2, we have the following nestedness property.

Observation 6.3. Suppose that L = (W, f) is a Latinon. Then there exists a nullset S ⊆ Ω2 such

that for each d ∈ N and each (x, y) ∈ Ω2 \ S we have for its compressions of depth d and d + 1 and

each i ∈ [2d] that Wd,i(x, y) = Wd+1,2i−1(x, y) +Wd+1,2i(x, y).

In particular, for (x, y) ∈ Ω2 \ S we have
∑2d

i=1Wd,i(x, y) = 1.

Next, we show how to proceed in the other direction, from compressions to Latinons.

Definition 6.4. Suppose that d ∈ N. Given a 2d-tuple of bigraphons W = (W1, . . . ,W2d) on Ω2 with

(7)

2d∑
i=1

Wi(x, y) = 1

for each (x, y) ∈ Ω2, we can define a distribution-valued bigraphon, denoted by ∇(W), for any (x, y) ∈
Ω2 and measurable set X ⊂ [0, 1], by

∇(W)(x, y)(X) :=
2d∑
i=1

Wi(x, y) · 2d · λ(X ∩ Dd,i) .

Note that (7) ensures that the values of ∇(W) are indeed probability distributions.

The following observations are immediate.

Fact 6.5. Suppose that (W, f) is a Latinon and d ∈ N. Let (Of ,W1, . . . ,W2d) be the compression

of depth d of W . Then (∇(W1, . . . ,W2d), f) is a Latinon. Further, its compression of depth d is

(Of ,W1, . . . ,W2d).

Fact 6.5 allows to extend the symbol ∇(·) even to compressions of Latinons.

Lemma 6.6 (Latinon-distance of compressions). Let d ∈ N.

(i) If W is a distribution-valued bigraphon with uniform marginals and Wd its compression of

depth d, then ∥∥∥W −∇(Wd)
∥∥∥
4
≤ 1

2d−1
.

(ii) If L is a Latinon and Ld its compression of depth d, then

δ4
(
L,∇(Ld)

)
≤ 1

2d−1
.

Proof. For (i) let S, T ⊆ Ω and V ⊆ [0, 1] be an interval with its smallest value in Dd,s and its largest

in Dd,t. We then have∫
S

∫
T
W (x, y)(V )dydx

=

∫
S

∫
T

t−1∑
i=s+1

Wd,i(x, y)dydx+

∫
S

∫
T
W (x, y) (V ∩ (Dd,s ∪ Dd,t)) dydx

=

∫
S

∫
T

Wd(x, y)(V )dydx± 2
2d
,

where we use that W has uniform marginals for the last equality.

Next, observe that (ii) follows immediately from (i). �

The next fact helps to compare compressions of Latinons by comparing the individual bigraphons

via cut distance.



LIMITS OF LATIN SQUARES 23

Proposition 6.7. Let d ∈ N, let W1, W2 be distribution-valued bigraphons with uniform marginals,

and let W1
d = (W d,1

1 , . . . ,W d,2d

1 ) and W2
d = (W d,1

2 , . . . ,W d,2d

2 ) be their compressions of depth d.

Then ∥∥∥W1
d −W2

d
∥∥∥
4
≤

2d∑
i=1

∥∥∥W d,i
1 −W

d,i
2

∥∥∥
�
.

Proof. Set Ud := W1
d −W2

d and Ud,i := W d,i
1 −W d,i

2 . For S, T ⊆ Ω and an interval V ⊆ [0, 1] we

then have ∣∣∣∣∫
S

∫
T

Ud(x, y)(V )dxdy

∣∣∣∣ =

∣∣∣∣∣∣
∫
S

∫
T

2d∑
i=1

Ud(x, y) (V ∩ Dd,i) dxdy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2d∑
i=1

2d · λ (V ∩ Dd,i) ·
∫
S

∫
T
Ud,i(x, y)dxdy

∣∣∣∣∣∣
≤

2d∑
i=1

∥∥∥W d,i
1 −W

d,i
2

∥∥∥
�
.

�

We conclude the section by showing that the infinity-distance of infinite compressions bounds the

Latinon-distance of the finite compressions.

Proposition 6.8. Let d ∈ N. If L1 and L2 are Latinons, then

δ4(L1
d,L2

d) < 22d+1 · δN�(L1
N,L2

N).

Proof. We write L1
N = (Of ,W1,1, . . . ), L2

N = (Og, U1,1, . . . ) and δ = δN�(L1
N,L2

N). Now there exists

ϕ ∈ SΩ such that

1
2

∥∥∥Of◦ϕ −Og∥∥∥
�

+
∞∑
d=1

2d∑
k=1

1

22d+k−1

∥∥∥Wϕ
d,k − Ud,k

∥∥∥
�
< 2δ ,

and therefore by Proposition 6.7,

δ4(L1
d,L2

d) ≤ 2
∥∥∥Of◦ϕ −Og∥∥∥

�
+

2d∑
k=1

∥∥∥Wϕ
d,k − Ud,k

∥∥∥
�
< 22d+1

δ .

�

7. Proof of the counting lemma

In this section, we prove the counting lemma, Lemma 4.5. We make use of the compressions of

Latinons defined in Section 6.

Proof of Lemma 4.5. Let L1 = (W, f) and L2 = (U, g) be Latinons, A ∈ R(k, `) and d ∈ N. We write

L1
d = (Of ,Wd,1, . . . ,Wd,2d) and L2

d = (Og, Ud,1, . . . , Ud,2d) for the corresponding compressions of

depth d. The calculations below are valid for each d ∈ N, which we will choose only in the last step

of the proof.

Note that by Definition 4.3 there exist ϕ,ψ ∈ SΩ such that

δ4(L1, L2) ≥
∥∥∥Of −Og◦ϕ∥∥∥

�
,

δ4(L1, L2) ≥
∥∥∥Of −Og◦ψ∥∥∥

�
,
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and

δ4(L1, L2) ≥
∥∥∥W − Uϕ,ψ∥∥∥

4

≥ sup
R,C⊆Ω

∣∣∣∣∫
x∈R

∫
y∈C

W (x, y)(Dd,i)− Uϕ,ψ(x, y)(Dd,i)dxdy

∣∣∣∣
= sup
R,C⊆Ω

∣∣∣∣∫
x∈R

∫
y∈C

Wd,i(x, y)− Ud,i(ϕ(x), ψ(y))dxdy

∣∣∣∣ =
∥∥∥Wd,i − Uϕ,ψd,i

∥∥∥
�
,

for every i ∈ [2d]. We now set W = (Of , Of ,Wd,1, . . . ,Wd,2d) and U = (Og◦ϕ, Og◦ψ, Uϕ,ψd,1 , . . . , U
ϕ,ψ
d,2d

).

We also define an oriented graph F with vertex set

{ai | i ∈ [k]} ∪ {bi | i ∈ [`]}

and edge set

{(ai, bj) | i ∈ [k], j ∈ [`]} ∪ {(ai, aj) | 1 ≤ i < j ≤ k} ∪ {(bi, bj) | 1 ≤ i < j ≤ `} .

Furthermore, given a matrix P = (pi,j)i∈[k],j∈[`] ∈ RA([2d]), we define a map αP : E(F )→ [2 + 2d] by

(ai, aj) 7→ 1, (bi, bj) 7→ 2, and (ai, bj) 7→ pi,j + 2 for i ∈ [k], j ∈ [`]. We then get by Lemma 5.4 and

the above inequalities that

(8) |tαP (F,W)− tαP (F,U)| ≤ |F | · δ4(L1, L2) = (k`+
(
k
2

)
+
(
`
2

)
) · δ4(L1, L2) .

We will make use of the following notation. Let S be a set and (mi,j) = M ∈ Sk×`. Furthermore

given a partition Q = (Q1, . . . , Qd) of a collection of subsets of S, we write M ⊥ Q if there are no

(i1, j1), (i2, j2) ∈ [k]× [`] and s ∈ [d] such that (i1, j1) 6= (i2, j2) and mi1,j1 ,mi2,j2 ∈ Qs.

Claim 7.1. We have∑
P∈RA([2d])

tαP (F,W) =

∫
x∈Ωk

<f

∫
y∈Ω`

<f

 ⊗
(i,j)∈[k]×[`]

W (xi, yj)

 ({M ∈ RA([0, 1]) |M ⊥ Dd})dydx .

Proof of Claim 7.1. Indeed,∑
P∈RA([2d])

tαP (F,W) =
∑

P∈RA([2d])

∫
x∈Ωk

∫
y∈Ω`

k∏
i=1

∏̀
j=1

Wd,pi,j (xi, yj)1Ωk
<f

(x)1Ω`
<f

(y)dydx

=
∑

P∈RA([2d])

∫
x∈Ωk

<f

∫
y∈Ω`

<f

k∏
i=1

∏̀
j=1

Wd,pi,j (xi, yj)dydx

=
∑

P∈RA([2d])

∫
x∈Ωk

<f

∫
y∈Ω`

<f

k∏
i=1

∏̀
j=1

W (xi, yj)(Dd,pi,j )dydx

=

∫
x∈Ωk

<f

∫
y∈Ω`

<f

 ⊗
(i,j)∈[k]×[`]

W (xi, yj)

 (
⋃

P∈RA([2d])

(Dd,pi,j )(i,j)∈[k]×[`])dydx

=

∫
x∈Ωk

<f

∫
y∈Ω`

<f

 ⊗
(i,j)∈[k]×[`]

W (xi, yj)

 ({M ∈ RA([0, 1]) |M ⊥ Dd})dydx .

�

Claim 7.2. We have∑
P∈RA([2d])

tαP (F,U) =

∫
x∈Ωk

<g

∫
y∈Ω`

<g

 ⊗
(i,j)∈[k]×[`]

U(xi, yj)

 ({M ∈ RA([0, 1]) |M ⊥ Dd})dydx .
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Proof of Claim 7.2. The calculations are similar as in Claim 7.1, but in addition use that ϕ and ψ

are measure preserving bijections.

∑
P∈RA([2d])

tαP (F,U) =
∑

P∈RA([2d])

∫
x∈Ωk

∫
y∈Ω`

k∏
i=1

∏̀
j=1

Ud,pi,j (ϕ(xi), ψ(yj))1Ωk
<g

(ϕ(x))1Ω`
<g

(ψ(y))dydx

=
∑

P∈RA([2d])

∫
x∈Ωk

∫
y∈Ω`

k∏
i=1

∏̀
j=1

Ud,pi,j (xi, yj)1Ωk
<g

(x)1Ω`
<g

(y)dydx

=

∫
x∈Ωk

<g

∫
y∈Ω`

<g

 ⊗
(i,j)∈[k]×[`]

U(xi, yj)

 ({M ∈ RA([0, 1]) |M ⊥ Dd})dydx .

�

Claim 7.3. We have∫
x1∈Ω

∫
y1∈Ω

∫
y2∈Ω

W (x1, y1)(Dd,r)W (x1, y2)(Dd,r)dy2dy1dx1 =
(

1
2d

)2
and ∫

x1∈Ω

∫
x2∈Ω

∫
y1∈Ω

W (x1, y1)(Dd,r)W (x2, y1)(Dd,r)dy1dx2dx1 =
(

1
2d

)2
Proof of Claim 7.3. It is enough to prove the first equality, the second equality follows by symmetry

of the following argument.

∫
x1∈Ω

∫
y1∈Ω

∫
y2∈Ω

W (x1, y1)(Dd,r)W (x1, y2)(Dd,r)dy2dy1dx1

=

∫
x1∈Ω

∫
y1∈Ω

W (x1, y1)(Dd,r)

∫
y2∈Ω

W (x1, y2)(Dd,r)dy2dy1dx1

=

∫
x1∈Ω

∫
y1∈Ω

W (x1, y1)(Dd,r)µ
1
W,x1

(Ω× Dd,r)dy1dx1

=

∫
x1∈Ω

µ1
W,x1

(Ω× Dd,r)

∫
y1∈Ω

W (x1, y1)(Dd,r)dy1dx1

=

∫
x1∈Ω

µ1
W,x1

(Ω× Dd,r)µ
1
W,x1

(Ω× Dd,r)dx1

=

∫
x1∈Ω

1
2d

1
2d
dx1

=
(

1
2d

)2
,

where we use the fact that the 2-dimensional measure µ1
W,x1

has uniform marginals for almost every

x1 ∈ Ω, as (W, f) is a Latinon. �

Claim 7.4. We have∫
x1∈Ω

∫
x2∈Ω

∫
y1∈Ω

∫
y2∈Ω

W (x1, y1)(Dd,r)W (x2, y2)(Dd,r)dy2dy1dx2dx1 =
(

1
2d

)2
.
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Proof of Claim 7.4.∫
x1∈Ω

∫
x2∈Ω

∫
y1∈Ω

∫
y2∈Ω

W (x1, y1)(Dd,r)W (x2, y2)(Dd,r)dy2dy1dx2dx1

=

∫
x1∈Ω

∫
y1∈Ω

W (x1, y1)(Dd,r)

∫
x2∈Ω

∫
y2∈Ω

W (x2, y2)(Dd,r)dy2dx2dy1dx1

=

∫
x1∈Ω

∫
y1∈Ω

W (x1, y1)(Dd,r)

∫
x2∈Ω

µ1
W,x2

(Dd,r)dx2dy1dx1

= 1
2d

∫
x1∈Ω

∫
y1∈Ω

W (x1, y1)(Dd,r)dy1dx1

= 1
2d

∫
x1∈Ω

µ1
W,x1

(Dd,r)dx1

=
(

1
2d

)2
,

where we use the fact that the 2-dimensional measure µ1
W,x has uniform marginals for almost every

x ∈ Ω, as (W, f) is a Latinon. �

We therefore get∣∣∣∣∣∣t(A,L1)− k!`!
∑

P∈RA([2d])

tαP (F,W)

∣∣∣∣∣∣
C7.1
= k!`!

∫
x∈Ωk

<f

∫
y∈Ω`

<f

 ⊗
(i,j)∈[k]×[`]

W (xi, yj)

 ({M ∈ RA([0, 1]) |M 6⊥ Dd})dydx

≤k!`!
∑
r∈[2d]

∑
(i1,j1)
6=(i2,j2)
∈[k]×[`]

∫
x∈Ωk

y∈Ω`

W (xi1 , yj1)(Dd,r)W (xi2 , yj2)(Dd,r)
∏

(i,j)∈[k]×[`]
6=(i1,j1),(i2,j2)

W (xi, yj)([0, 1])dydx

=k!`!
∑
r∈[2d]

∑
i1,i2∈[k],j1,j2∈[`]
i1 6=i2,j1 6=j2

∫
(xi1 ,xi2 )∈Ω2

(yj1 ,yj2 )∈Ω2

W (xi1 , yj1)(Dd,r)W (xi2 , yj2)(Dd,r)d(yj1 , yj2)d(xi1 , xi2)

+k!`!
∑
r∈[2d]

∑
i1,i2∈[k],j1,j2∈[`]
i1=i2,j1 6=j2

∫
xi1∈Ω

(yj1 ,yj2 )∈Ω2

W (xi1 , yj1)(Dd,r)W (xi1 , yj2)(Dd,r)d(yj1 , yj2)d(xi1)

+k!`!
∑
r∈[2d]

∑
i1,i2∈[k],j1,j2∈[`]
i1 6=i2,j1=j2

∫
(xi1 ,xi2 )∈Ω2

yj1∈Ω

W (xi1 , yj1)(Dd,r)W (xi2 , yj1)(Dd,r)dyj1d(xi1 , xi2)

C7.3,7.4
= k!`! · 2d · k`(k`− 1) · ( 1

2d
)2 = k!`! · k`(k`− 1) · 1

2d
.

(9)

A similar calculation to (9) which uses Claim 7.2 instead of Claim 7.1 yields

(10)

∣∣∣∣∣∣t(A,L2)− k!`!
∑

P∈RA([2d])

tαP (F,U)

∣∣∣∣∣∣ ≤ k!`! · k`(k`− 1) · 1
2d
.

We are now in a position to bound |t(A,L1)− t(A,L2)|. Hence, take d such that

1
δ4(L1,L2)1/(2k`) ≤ 2d ≤ 2

δ4(L1,L2)1/(2k`)
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and set ck,` := 2k!`!k`(k`− 1) + 2k`k!`!(k`+
(
k
2

)
+
(
`
2

)
). Starting with the triangle inequality, we get

|t(A,L1)− t(A,L2)|

≤

∣∣∣∣∣∣t(A,L1)− k!`!
∑

P∈RA([2d])

tαP (F,W)

∣∣∣∣∣∣
+ k!`!

∑
P∈RA([2d])

|tαP (F,W)− tαP (F,U)|

+

∣∣∣∣∣∣k!`!
∑

P∈RA([2d])

tαP (F,U)− t(A,L2)

∣∣∣∣∣∣
C7.1, (8),C7.2

≤ 2k!`!k`(k`− 1)/2d + |RA([2d])|k!`!(k`+
(
k
2

)
+
(
`
2

)
)δ4(L1, L2)

≤2k!`!k`(k`− 1)/2d + 2dk`k!`!(k`+
(
k
2

)
+
(
`
2

)
)δ4(L1, L2)

≤2k!`!k`(k`− 1)δ4(L1, L2)1/(2k`) + 2k`k!`!(k`+
(
k
2

)
+
(
`
2

)
)
√
δ4(L1, L2)

≤ck,`δ4(L1, L2)1/(2k`) .

�

8. Proof of compactness

In this section, we prove Theorem 3.12. In fact, Theorem 3.12 follows from Lemma 4.5, remarks in

Section 4.0.1 and the proposition below, which we prove instead.

Proposition 8.1. The space (L, δ4) is compact.

Proposition 8.1 follows immediately from Lemma 8.3 and Lemma 8.6 below. To state these lem-

mata, we introduce a function ι which maps a Latinon to its infinite compression (see Definition 6.1),

i.e.

ι : (L, δ4)→ (WN
0 , δ

N
�), L 7→ LN .

As we show in the lemma below, the function ι is injective.

Lemma 8.2. The function ι is injective.

Proof. Suppose that L = (W, f), L′ = (W ′, f ′) ∈ L are such that δN�(ι(L), ι(L′)) = 0. We need

to show that δ4(L,L′) < α for an arbitrary given α > 0. Let us write h = d4/αe. Let us write

ι(L) = (Of ,W1,1,W1,2, . . . ) and ι(L′) = (Of
′
,W ′1,1,W

′
1,2, . . . ). Let ϕ ∈ SΩ be as in (6) such that

(11)
1

2

∥∥∥Of −Of ′◦ϕ∥∥∥
�

+

∞∑
`=1

2`∑
q=1

1

22`+q−1
·
∥∥W`,q − (W ′`,q)

ϕ
∥∥
�
<

α

23+2h+1 .

Taking ϕ = ψ in (2), we see (by (11)) that the sum of the first and the second term is at most
4α

23+2h+1 < α/4. To conclude that δ4(L,L′) < α, it thus remains to bound ‖W − (W ′)ϕ‖4. So,

let R,C ⊆ Ω be arbitrary, and let V = [v1, v2] ⊆ [0, 1] be an interval. Let V ′ = [w1, w2] be an

interval whose endpoints w1, w2 are dyadic rationals with dyadic denominators at most 2h and with

|wi − vi| < α/4 (clearly, such a dyadic approximation exists). By the uniform marginals property, we

have∫
x∈R

∫
y∈C

(W−(W ′)ϕ)(x, y)(V )dydx =

∫
x∈R

∫
y∈C

(W−(W ′)ϕ)(x, y)(V ′)dydx ± (|w1−v1|+|w2−v2|) ,
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and so it suffices to prove that |
∫
x∈R

∫
y∈C(W − (W ′)ϕ)(x, y)(V ′)dydx| < α/4, which we do now. Let

us write Q ⊂ [2h] for the indices of dyadic intervals at depth h encoding V ′, i.e., Q := {i ∈ [2h] |
Dh,i ⊂ V ′}. Then we have∣∣∣∣∫

x∈R

∫
y∈C

(W − (W ′)ϕ)(x, y)(V ′)dydx

∣∣∣∣ =

∣∣∣∣∣∣
∫
x∈R

∫
y∈C

∑
i∈Q

(Wh,i − (W ′h,i)
ϕ)(x, y)dydx

∣∣∣∣∣∣
≤
∑
i∈Q

∣∣∣∣∫
x∈R

∫
y∈C

(Wh,i − (W ′h,i)
ϕ)(x, y)dydx

∣∣∣∣
≤
∑
i∈Q

∥∥Wh,i − (W ′h,i)
ϕ
∥∥
�

(11)
< α/4 ,

proving the statement. �

Lemma 8.3. The space (ι(L), δN�) is compact.

Proof. Let (Ln)n∈N be a sequence of Latinons. We have to show that (ι(Ln))n∈N contains a convergent

subsequence with respect to δN�. For each n ∈ N we write ι(Ln) = (On,Wn
1,1,W

n
1,2, . . . ). By Theo-

rem 5.1 there exist bigraphons Õ, W̃d,k, d ∈ N, k ∈ [2d], such that, after passing to a subsequence, we

have that

(12) (On,Wn
1,1,W

n
1,2,W

n
2,1,W

n
2,2,W

n
2,3, . . . )

δN�→ W̃ = (Õ, W̃1,1, W̃1,2, W̃2,1, W̃2,2, W̃2,3, . . . ) .

Again by passing to a subsequence we can additionally assume that for every n ∈ N,

(13) δN�(ι(Ln),W̃) < 1
2n+2 ,

and in particular we can fix ϕn ∈ SΩ for every n ∈ N such that

(14) 1
2

∥∥∥On,ϕn − Õ
∥∥∥
�

+

∞∑
d=1

2d∑
k=1

1

22d+k−1

∥∥∥Wn,ϕn

d,k − W̃d,k

∥∥∥
�
< 1

2n+1 .

We have to show that there exists a Latinon L = (ν, f) such that ι(L) = W̃ = (Õ, W̃1,1, W̃1,2, W̃2,1, . . . ).

First, we derive a measure preserving map f : Ω→ [0, 1] from Õ by setting f(x) := deg
Õ

(x). Note

that then Of = Õ up to a null set. Since the degree distribution function of each On,ϕn is measure

preserving, Lemma 2.7 implies that this property is inherited to the limit, i.e. f is indeed measure

preserving.

For the definition of the Latinon-measure ν note that the dyadic intervals D∗ together with ∅ form

a semiring which we call R, and that R generates the Borel sigma-algebra on [0, 1).8 Consequently,

R′ := {S × T × J | S, T ⊆ Ω Borel measurable, J ∈ D∗} ∪ {∅}

is a semiring which generates the Borel sigma-algebra on Ω2 × [0, 1). We define

ν∗(S × T × Dd,s) :=

∫
S

∫
T
W̃d,s(x, y)dxdy

for all S, T ⊂ Ω, d ∈ N and s ∈ [2d]. We want to show that ν∗ defines a premeasure on Ω2 × [0, 1).

This is shown by the following claim.

Claim 8.4. For every partition S × T × Dd′,k′ =
⋃∞
i=1 Si × Ti × Ddi,ki, where S, T, Si, Ti ⊆ Ω and

Dd′,k′ ,Ddi,ki ∈ D∗, we have

ν∗(S × T × Dd′,k′) =
∞∑
i=1

ν∗(Si × Ti × Ddi,ki) .

8See Section 2.3.1 for constructions of measures from semirings.
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Proof of Claim 8.4. Let S × T × Dd′,k′ =
⋃∞
i=1 Si × Ti × Ddi,ki be as in the assumption. We need to

show that for an arbitrary ε > 0 (which we consider fixed from now on) there exists N0 ∈ N such that

for every N > N0 we have

(15)

∣∣∣∣∣ν∗(S × T × Dd′,k′)−
N∑
i=1

ν∗(Si × Ti × Ddi,ki)

∣∣∣∣∣ < ε .

We define a map g : Dd′,k′ → N by

(16) g(p) := min

r ∈ N | µ⊗2

S × T \ ⋃
i∈[r] s.t. p∈Ddi,ki

Si × Ti

 < ε/4

 .

Note that g is measurable and finite everywhere and that
∑∞

i=1 λ(g−1(i)) = λ(
⋃
i∈N g

−1(i)) = λ(Dd′,k′) ≤
1 is convergent. Therefore there exists N0 ∈ N such that

(17)
∞∑

i=N0+1

λ(g−1(i)) < ε/4 .

We set E :=
⋃∞
i=N0+1 g

−1(i). We now prove the following claim.

Claim 8.5. Suppose that (U, h) is an arbitrary Latinon. Then

∞∑
i=N0+1

∫
Si

∫
Ti

U(x, y)(Ddi,ki)dxdy < ε/2 .

Proof. U induces a measure on Ω2 × [0, 1] with uniform marginals. Let {ξp}p∈[0,1] be the family on

Ω2 given by applying the disintegration theorem to this measure with respect to the third coordinate.

It follows from the uniform marginals property that almost every measure {ξp}p∈[0,1] is a probability

measure. Then

∞∑
i=N0+1

∫
Si

∫
Ti

U(x, y)(Ddi,ki)dxdy

=
∞∑

i=N0+1

∫
[0,1]

1Ddi,ki
(p) · ξp(Si × Ti)dp =

∞∑
i=N0+1

∫
Dd′,k′

1Ddi,ki
(p) · ξp(Si × Ti)dp

=

∫
Dd′,k′

ξp

 ⋃
i>N0 s.t. p∈Ddi,ki

Si × Ti

 dp

=

∫
E
ξp

 ⋃
i>N0 s.t. p∈Ddi,ki

Si × Ti

 dp+

∫
Dd′,k′\E

ξp

 ⋃
i>N0 s.t. p∈Ddi,ki

Si × Ti

 dp

≤
∫
E
ξp
(
Ω2
)
dp+

∫
Dd′,k′\E

ξp

 ⋃
i>N0 s.t. p∈Ddi,ki

Si × Ti

 dp
(16),(17)
< ε/4 + ε/4 = ε/2 .

�

Let us now return to proving (15). Suppose that N > N0 is arbitrary. Choose M ∈ N such that
N+1
M < ε/2 and dmax = max({di | i ∈ [N ]} ∪ {d′}). By (14) there exists n0 ∈ N such that for all

n ≥ n0, d ≤ dmax and k ∈ [2d],

(18)

∣∣∣∣∫
S

∫
T
Wn,ϕn

d,k (x, y)dxdy −
∫
S

∫
T
W̃d,k(x, y)dxdy

∣∣∣∣ < 1
M .



30 LIMITS OF LATIN SQUARES

Recalling the definition of ν∗, we then get for n ≥ n0 that∣∣∣∣∣ν∗(S × T × Dd′,k′)−
N∑
i=1

ν∗(Si × Ti × Ddi,ki)

∣∣∣∣∣
≤
∣∣∣∣ν∗(S × T × Dd′,k′ −

∫
S

∫
T
Wn,ϕn

d′,k′ (x, y)dxdy

∣∣∣∣
+

∣∣∣∣∣
∫
S

∫
T
Wn,ϕn

d′,k′ (x, y)dxdy −
N∑
i=1

∫
Si

∫
Ti

Wn,ϕn

di,ki
(x, y)dxdy

∣∣∣∣∣
+

N∑
i=1

∣∣∣∣∫
Si

∫
Ti

Wn,ϕn

di,ki
(x, y)dxdy − ν∗(Si × Ti × Ddi,ki)

∣∣∣∣
2×(18)

≤ 1
M +

∣∣∣∣∣
∞∑

i=N+1

∫
Si

∫
Ti

Wn,ϕn

di,ki
(x, y)dxdy

∣∣∣∣∣+ N
M

C8.5
< ε ,

indeed proving (15). �

By Claim 8.4 we now have that ν∗ defines a premeasure on R′. Therefore by Carathéodory’s

extension theorem (Theorem 2.5) there exists a unique measure ν on Ω2 × [0, 1] such that ν(S × T ×
Dd,s) =

∫
S

∫
T W̃d,s(x, y)(Dd,s)dxdy for all d ∈ N and s ∈ [2d]. Lastly, we need to check that ν has

uniform marginals; this will also verify that the total mass of ν is 1. Note that it is sufficient to

restrict ourselves to sets of the semiring R′. Let S, T ⊆ Ω and J ∈ D∗. By making use of the uniform

marginals of Wn we get

ν(S × T × [0, 1]) = lim
n→∞

∫
S

∫
T
Wn,ϕn(x, y)([0, 1])dxdy = lim

n→∞
µ(S)µ(T ) = µ(S)µ(T ) ,

ν(Ω× T × J) = lim
n→∞

∫
Ω

∫
T
Wn,ϕn(x, y)(J)dxdy = lim

n→∞
µ(T )λ(J) = µ(T )λ(J) ,

ν(S × Ω× J) = lim
n→∞

∫
S

∫
Ω
Wn,ϕn(x, y)(J)dxdy = lim

n→∞
µ(S)λ(J) = µ(S)λ(J) .

Hence ν is a Latinon according to Definition 3.15. �

To state Lemma 8.6, we need to recall that ι−1 is well-defined by Lemma 8.2.

Lemma 8.6. The map ι−1 : (ι(L), δN�)→ (L, δ4) is continuous.

Proof. let ε > 0. We fix d ∈ N large enough such that 1
2d−2 < ε/2 and then choose δ > 0 small enough

such that 22d+1 · δ < ε/2. Let L1 and L2 be a pair of Latinons such that δN�(ι(L1), ι(L2)) < δ. By

Lemma 6.6 and Proposition 6.8 we get that

δ4(L1, L2) ≤ δ4(L1,L1
d) + δ4(L1

d,L2
d) + δ4(L2

d, L2) ≤ 1
2d−2 + 22d+1

δ < ε .

�

Proof of Proposition 8.1. By Lemma 8.3, the space (ι(L), δN�) is compact. By Lemma 8.6, ι−1 is

continuous. Since a continuous image of a compact space is compact, we conclude that (L, δ4) is

compact. �

8.1. An additional application of the method: compactness of orderons. Here, we show how

a simplified version of the above approach can be used to treat orderons. An orderon, as defined [5], is

a symmetric function W : ([0, 1]× [0, 1])2 → [0, 1]. Here, the first component [0, 1] encodes the global

position and the second component [0, 1] is used to encode local information. Definition 2.7 of [5] gives

a definition of ‘CS-distance’ between two orderons U and W . The philosophy behind the ‘CS-distance’

is to modify the usual cut distance — in which one would consider all measure preserving bijections ψ
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from [0, 1]× [0, 1] to itself and take the infimum of
∥∥U −Wψ

∥∥
� — by penalising those ψ that shuffle

the global coordinates substantially. So, instead of repeating the definition from [5], let us give an

alternative but equivalent one:9 define

δ4(U,W ) := inf
ψ

∥∥∥Oπ1 −Oπ1◦ψ
∥∥∥
�

+
∥∥∥U −Wψ

∥∥∥
�
,

where ψ is as above, π1 : [0, 1] × [0, 1] → [0, 1] is the projection on the first coordinate and O is the

order fixing bigraphon.

Let us show that this alternative view together with the strategy we used to prove Proposition 8.1

allows us to easily establish compactness of orderons (with respect to δ4); the original proof occupies

Section 4 of [5]. Indeed, suppose that we are given a sequence of orderons W1,W2,W3, . . .. We

represent these orderons as pairs (Oπ1 ,W1), (Oπ1 ,W2), (Oπ1 ,W3), . . .. Applying Theorem 5.1 (on

pairs rather than on infinite vectors), we get that there exists a sequence of indices i1 < i2 < . . ., a

bigraphon Õ, a graphon W̃ , and a sequence of measure preserving bijections ψi1 , ψi2 , . . . such that∥∥∥Oπ1◦ψin − Õ
∥∥∥
�
→ 0 , and∥∥∥Wψin

in
− W̃

∥∥∥
�
→ 0 .

We might stop here and say that the pair (Õ, W̃ ) is the sought after accumulation point. But let us

do one more step and transform (Õ, W̃ ) back into the global-local representation which is used in [5].

We proceed as described in Section 3.2.4. That is, we appeal to Proposition 3.17 with a function f :

[0, 1]× [0, 1]→ [0, 1], f((a, x)) := deg
Õ

((a, x)) and get a function h : [0, 1]× [0, 1]→ [0, 1]× [0, 1]. Then

W ∗((a, x), (b, y)) := W̃ (h(a, x), h(b, y)) is the accumulation point in the global-local representation.

9. Proof of the sampling lemma for Latinons

In this section we prove the sampling lemma, Lemma 4.9. The proof splits into two parts. In the

first part, we show that we can approximately mimic sampling from a Latinon L on Ω2 by sampling

from a suitably chosen Latinon (U, id) on [0, 1]2. In the second part, we show that a pattern sampled

from a Latinon (U, id) on [0, 1]2 is close to (U, id) in the cut distance for Latinons. We start with the

first part contained in the following lemma.

Lemma 9.1. Suppose that L = (W, f) is a Latinon on Ω2, k ∈ N, and ε > 0. Then there exists a

Latinon L′ = (U, id) on [0, 1]2 such that

(i) δ∗4(L,L′) < ε and

(ii) there exists a coupling C of sampling a k × k pattern A from L and sampling a k × k pattern

B from L′ such that PC [A 6= B] < εk2.

Proof. Choose m ∈ N such that 2/m < ε. Given the partition Jm, for each i ∈ [m] we choose an

arbitrary measure preserving bijection ϕi : f−1(Jm,i) → Jm,i (where the domain is equipped with

the restriction of the measure µ and the codomain is equipped with the Lebesgue measure). Define

ϕ : Ω → [0, 1] by ϕ(x) = ϕi(x), if x ∈ Jm,i. We define U to be the distribution-valued bigraphon on

[0, 1]2 with U(x, y) = W (ϕ−1(x), ϕ−1(y)). Note that then for L′ = (U, id) we have

δ∗4(L,L′) ≤ 2
∥∥∥Oid −Of◦ϕ−1

∥∥∥
�

+
∥∥∥U −Wϕ−1

∥∥∥
4
≤ 2/m+ 0 < ε ,

as f ◦ϕ−1 only reorders elements inside each Jm,i. We define the coupling for the sampling process in

the following way. We sample k-sets R,C ⊆ Ω and order them according to <f , written (r1, . . . , rk)

and (c1, . . . , ck). We then consider the sets ϕ(R) and ϕ(C) and reorder the k-tuples according to

9‘Equivalent’ meaning that it generates the same topology as Definition 2.7 of [5]. This is routine to check.
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<, written (ϕ(rσ(1)), . . . , ϕ(rσ(k))) and (ϕ(cτ(1)), . . . , ϕ(cτ(k))). We then sample values ai,j = bσ(i),τ(j)

from W (ri, cj) = U(ϕ(ri), ϕ(cj)). Thus the event A 6= B can only happen if τ 6= id or σ 6= id, which

in turn can only happen if two elements of R (or C) lie in the same set f−1(Jm,i) for some i ∈ [k].

Hence

PC [A 6= B] ≤ 2 ·
(
k

2

)
·m · (1/m)2 ≤ k2/m < εk2 .

�

We can now move to the second part of the argument in which show that a pattern sampled from a

Latinon (U, id) on [0, 1]2 is close to (U, id) in the cut distance. To this end we first need the following

auxiliary lemma.

Lemma 9.2. Suppose that k ∈ N. Suppose that L = (W, id) is a semilatinon on [0, 1]2 which is

constant on every set Jk,i× Jk,j for each i, j ∈ [k]. For each i, j ∈ [k] sample from W (Jk,i, Jk,j) a value

ai,j and call the resulting k × k matrix A. Then with probability at least 1− exp(−5k) we have∥∥W −WA
∥∥
4 ≤ 6/k1/4 .

Proof. We choose d = log(k1/4) and ε = 2/
√
k. For every s ∈ [2d] and i, j let Xs

i,j ∈ {0, 1} be the

random variable Xs
i,j = 1ai,j∈Dd,s

. Let S, T ⊆ [k]. For every S, T ⊆ [k] and s ∈ [2d] we have by

Lemma 2.2 (with Z =
∑

i∈S
∑

j∈T X
s
i,j and t = εk2) that with probability at least 1− exp(−2ε2k2)

(19)

∣∣∣∣∣∣
∑
i∈S

∑
j∈T

(Xs
i,j − E[Xs

i,j ])

∣∣∣∣∣∣ ≤ εk2 .

Hence we have with probability at least 1− 22k2d exp(−2ε2k2) > 1− exp(−5k) that for every s ∈ [2d]

and S, T ⊆ [k]∣∣∣∣∣
∫
⋃

i∈S Jk,i

∫
⋃

j∈T Jk,j

WA
d,s(x, y)−Wd,s(x, y)dxdy

∣∣∣∣∣ =

∣∣∣∣∣∣ 1
k2

∑
i∈S

∑
j∈T

(Xs
i,j − E[Xs

i,j ])

∣∣∣∣∣∣ < ε .

Note that, since WA
d,s−Wd,s is a step-function, the maximum

∥∥∥WA
d,s −Wd,s

∥∥∥
�

is attained on
⋃
i∈S Jk,i×⋃

j∈T Jk,j for some S, T ⊆ [k] and therefore∥∥WA
d,s −Wd,s

∥∥
�
< ε .

By Lemma 6.6 and Lemma 6.7 we therefore get that with probability at least 1− exp(−5k)∥∥WA −W
∥∥
4 ≤

∥∥∥WA − (WA)
d
∥∥∥
4

+
∥∥∥(WA)

d −Wd
∥∥∥
4

+
∥∥∥Wd −W

∥∥∥
4

≤ 4
2d

+ 2dε ≤ 6/k1/4 .

�

We also need the following definition of sampling a distribution-valued step-bigraphon, which can

be seen as an intermediate step of sampling a pattern.

Definition 9.3. Let U be a distribution-valued bigraphon on [0, 1]2 and R,C ∈ [0, 1]n< be k-tuples. We

write R = (r1, . . . , rk), C = (c1, . . . , ck). We define U [R,C] to be the distribution-valued bigraphon

defined by U [R,C](x, y) := U(ri, cj), if x ∈ Jk,i and y ∈ Jk,j.

Now we can prove the second part of the overall argument.

Lemma 9.4. Suppose that (U, id) is a Latinon on [0, 1]2 and k ∈ N. If A is a k × k pattern sampled

from (U, id), then with probability at least 1− 29 exp(−k1/8/10) we have

δ4((U, id), (WA, id)) < 29/
√

log(k) .
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Proof. Set m, r = k1/8 and d = log(log(k)1/4) (we omit rounding symbols and assume that m, k and d

are integers). Let Ld = (O,Ud,1, . . . , Ud,2d) be the compression of L of depth d. Consider the partition

Jr. By Lemma 5.2(ii) we find an equipartition P of [0, 1] refining Jr, i.e. Jr,j = Pj,1 ∪ · · · ∪ Pj,m, and

such that, for every 1 ≤ i ≤ 2d,

(20)
∥∥Ud,i − (Ud,i)

1P∥∥
� ≤

√
2d+1

log(m) + 2
m .

This defines a step Latinon LdP = (U1, id) where U1 = ∇(((Ud,i)
1P)i∈[2d]). Now, let R,C ∈ [0, 1]n<

be k-sets chosen uniformly at random. We write L[R,C] for the semilatinon (U [R,C], id), Ld[R,C]

for the semilatinon (Ud[R,C], id) and LdP [R,C] for the semilatinon (U2, id), where U2 = U1[R,C].

Furthermore, let A be the pattern generated by sampling Ai,j from U(ri, cj) for each i, j ∈ [k]. We

then have with probability at least

1− (2d · 4 exp(−
√
k/10) + 20 exp(−k1/8/10) + exp(−5k)) > 1− 29 exp(−k1/8/10)

that Claims 9.5, 9.6, 9.7 (stated and proven below) and Lemma 9.2 hold. Hence with probability at

least 1− 29 exp(−k1/8/10) we have

δ4((U, id), (WA, id)) ≤ δ4(L,Ld) (Lemma 6.6)

+ δ4(Ld, LdP) (Claim 9.5)

+ δ4(LdP , L
d
P [R,C]) (Claim 9.7)

+ δ4(LdP [R,C], Ld[R,C]) (Claim 9.6)

+ δ4(Ld[R,C], L[R,C]) (Lemma 6.6)

+ δ4(L[R,C], (WA, id)) (Lemma 9.2)

≤ 1
2d−2 + 2d+1

(√
2d+1

log(m) + 2
m

)
+ 4

k1/16 + 8·2d
k1/4 + 6

k1/4

≤ 29
log(k)1/8 .

Claim 9.5. We have

δ4(Ld, LdP) ≤ 2d ·
(√

2d+1

log(m) + 2
m

)
.

Proof. The Latinons Ld and LdP share the same order-fixing bigraphon Of . Thus, their distance can

be bounded using Proposition 6.7 with (20) for each i ∈ [2d]. �

Claim 9.6. We have with probability at least 1− 2d · 4 exp(−
√
k/10) that

δ4(LdP [R,C], Ld[R,C]) ≤ 8·2d
k1/4 + 2d

(√
2d+1

log(m) + 2
m

)
.

Proof. Let us fix an i ∈ [2d]. By Lemma 5.6 we have with probability at least 1−4 exp(−
√
k/10) that∣∣∥∥Ud,i[R,C]− (Ud,i)

1P [R,C]
∥∥
� −

∥∥Ud,i − (Ud,i)
1P∥∥

�

∣∣ ≤ 8
k1/4 ,

and hence together with (20) that∥∥Ud,i[R,C]− (Ud,i)
1P [R,C]

∥∥
�

≤
∣∣∥∥Ud,i[R,C]− (Ud,i)

1P [R,C]
∥∥
� −

∥∥Ud,i − (Ud,i)
1P∥∥

�

∣∣+
∥∥Ud,i − (Ud,i)

1P∥∥
�

≤ 8
k1/4 +

√
2d+1

log(m) + 2
m .
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Since this holds for any i ∈ [2d] we get by the union bound and Proposition 6.7 that with probability

at least 1− 2d · 4 exp(−
√
k/10) we have

δ4(LdP [R,C], Ld[R,C]) ≤
2d∑
i=1

∥∥Ud,i[R,C]− (Ud,i)
1P [R,C]

∥∥
� ≤

8·2d
k1/4 + 2d

(√
2d+1

log(m) + 2
m

)
.

�

Claim 9.7. We have with probability at least 1− 20 exp(−k1/8/10) that

δ4(LdP , L
d
P [R,C]) ≤ 4

k1/16 .

Proof. Recall that LdP = (U1, id) and LdP [R,C] = (U2, id). Furthermore we write R = (r1, . . . , rk)

and C = (c1, . . . , ck). For ri ∈ R and ci ∈ C we assign an interval of measure 1/k by setting

Jk,ri := Jk,ci := Jk,i. Also we want to count how many elements of R fall into the intervals of Jr and

their refinement P by setting Ri := R∩ Jr,i and Ri,j := R∩Pi,j . Similarly, we write Ci := C ∩ Jr,i and

Ci,j := C ∩ Pi,j . Finally we write R′i,j :=
⋃
x∈Ri,j

Jk,x and C ′i,j :=
⋃
x∈Ci,j

Jk,x. The key observation is

that by the definition of the sampling process the two distribution-valued bigraphons U1 and U2 are

very similar. Both are step Latinons and U1 takes the same value on Pi,j × Ps,t as U2 on R′i,j × C ′s,t.
The only difference lies in the size and the position of the steps. It will turn out that with high

probability most of R′i,j and C ′i,j actually lies in Jr,i and is of similar measure as Pi,j . Hence a suitable

reordering inside each Jr,i matches U1 to U2 up to a small error set of [0, 1]2.

We first observe that with high probability the chosen elements of R distribute among the partite

sets Pi,j as expected. By Lemma 2.1 with ε = 1/k5/16 and µ = λ(Pi,j) · k = k/(mr) = k3/4 we have

with probability at least (1− rm · exp(−k1/8/3)) > 1− 10 exp(−k1/8/10) that

(21) |Ri,j | = λ(Pi,j) · k ± k11/16λ(Pi,j) = k3/4 ± k7/16 for every i ∈ [r], j ∈ [m] .

Now, we can observe that most of R′i,j is contained in Jr,i . In the worst case each of the at most rm

intervals before R′i,j are too short (or too long) by the maximum size, by (21) i.e. rm ·k7/16 · 1/k, and

hence

λ(R′i,j ∩ Jr,i) = λ

 ⋃
x∈Ri,j

Jk,x

 ∩ Jr,i

 ≥ λ(Pi,j)− rm/k9/16 = 1/k1/4 − 1/k5/16 .

Thus for each i, j we can choose sets Ai,j ⊆ R′i,j∩Jr,i and Bi,j ⊆ Pi,j ⊆ Jr,i of measure 1/k1/4−1/k5/16

and a bijection ϕi,j : Ai,j → Bi,j . Let ϕ : [0, 1]→ [0, 1] be defined by

x 7→

ϕi,j(x), if x ∈ Ai,j ,

x, otherwise.

Note that then, since ϕ only permutes elements inside each Jr,i , that

‖O −Oϕ‖� ≤ r · 1/r
2 = 1/r = 1/k1/8 .

With probability at least 1 − 10 exp(−k1/8/10) we can repeat the same procedure for C to get sets

A′i,j ⊆ C ′i,j ∩ Jr,i and B′i,j ⊆ Pi,j ⊆ Jr,i of measure 1/k1/4 − 1/k5/16 and a bijection ψ defined in an

analogous way such that ∥∥∥O −Oψ∥∥∥
�
≤ 1/k1/8 .

Note that then Uϕ,ψ1 (x, y) = U2(x, y) for every x ∈
⋃
i∈[r],j∈[m]Ai,j and y ∈

⋃
i∈[r],j∈[m]A

′
i,j . Thus

Uϕ,ψ1 and U2 agree everywhere on [0, 1]2 except on a set of measure at most 2 · rm · 1/k5/16 = 2/k1/16

and we have ∥∥∥Uϕ,ψ1 − U2

∥∥∥
�
≤ 2/k1/16 .
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Hence in total with probability at least 1− 20 exp(−k1/8/10)

δ4((U1, id), (U2, id)) ≤ 2
k1/16 + 2

k1/8 <
4

k1/16 .

�

�

We can now prove Lemma 4.9.

Proof of Lemma 4.9. Let k ∈ N. By Lemma 9.1 with ε = exp(−k)/k2 there exists a Latinon L′ =

(U, id) on [0, 1]2 such that

δ∗4(L,L′) < exp(−k)/k2 ,

and a coupling C of sampling a k × k pattern A from L and a k × k pattern B from L′ such that

PC [A 6= B] < εk2 = exp(−k) .

By Lemma 9.4 we then have with probability at least 1 − 29 exp(−k1/8/10) − exp(−k) > 1 −
30 exp(−k1/8/10) that

δ∗4(L, (WA, id)) ≤ δ∗4(L,L′) + δ∗4(L′, (WB, id)) ≤ exp(−k) + 29
log(k)1/8 <

30
log(k)1/8 .

�

10. Proof of the inverse counting lemma

In this section we prove the inverse counting lemma, Lemma 4.6. To this end, we need to draw a

connection between sampled realisations and patterns. The following definition will be useful.

Definition 10.1. Given ε > 0, we say that a finite multiset S ⊂ [0, 1] is ε-spread if for each interval

I ⊂ [0, 1] we have that |I ∩ S| = (λ(I)± ε)|S|.

Our first observation is that sampled realisations are almost always spread.

Lemma 10.2. Let L be a Latinon on ground space Ω, and k ∈ N. Let S be the (random) multiset of

k2 values obtained from L by k × k-sampling. Then we have with probability at least 1 − exp(−k0.1)

that S is (4k−0.4)-spread.

Proof. Let us fix an arbitrary set Y ⊂ [0, 1]. Let (i, j) ∈ [k]2 be arbitrary. Now, consider the sampling

from L for the value v corresponding to the i-th sampled row and j-th sampled column.10 By the

uniform marginals property we have

P[v ∈ Y ] = λ(Y ) .

Thus, by the linearity of expectation we have for the multiset of all k2 sampled values that

E[|S ∩ Y |] = λ(Y )k2 .

In the rest of the proof, we argue that this value is concentrated. To this end we want to use

McDiarmid’s inequality, Lemma 2.2. We need to set up a suitable product probability space. There

is an option which reflects our sampling. The first k coordinates will be copies of Ω representing the

selection of rows, the next k coordinates will be copies of Ω representing the selection of columns,

and the last k2 coordinates should model the choice of the individual entries of the sampled matrix

M . We have to be careful because these last probability spaces need to be fixed from the beginning

in the setting of McDiarmid’s inequality. Let Λ = Ωk × Ωk × [0, 1]k×k. For (i, j) ∈ [k]2, and w ∈ Λ,

let qij be defined as follows. Take Dij := L(wi,wk+j). That is, Dij is the distribution on [0, 1] at the

10Notice that we are really talking about the row that was sampled as the i-th, not about the row that has the i-th

smallest global position. Same for the column.
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i-th sampled row and the j-th sampled column. Let FDij be the cumulative distribution function of

Dij . Now, let qij be the infimum of t’s for which FDij (t) > wk+i+kj . This construction ensures that

the matrix (qij)i,j has the same distribution as the matrix sampled from L (before reordering of rows

and columns).

We can now define a map Z : Λ→ R, Z(w) :=
∑

i,j 1qij∈Y . The above justifies that Z satisfies the

requirements of Lemma 2.2 with c being k on the first 2k coordinates and being 1 on the remaining

k2 coordinates. Thus, Lemma 2.2 tells us that for each t > 0 we have

(22) P
[∣∣Z − λ(Y )k2

∣∣ > t
]
≤ exp

(
− 2t2

2k · k2 + k2 · 12

)
≤ exp

(
− 2t2

3k3

)
.

Now, let us take t := dk1.6e, and let us apply the above for intervals Y`1,`2 :=
[
`1
t ,

`2
t

]
, 0 ≤ `1 <

`2 ≤ t, `1, `2 ∈ N. The union bound over (22) tells us that

P
[
for each `1 and `2 we have ||S ∩ Y`1,`2 | − λ(Y`1,`2)k2| ≤ dk1.6e

]
≥ 1− t2 exp

(
− 2t2

3k3

)
≥ 1− exp(−k0.1) .

(23)

Now, we claim that if the good event from (23) is satisfied, then S is (40k−0.5)-spread. Indeed, let

I ⊂ [0, 1] be an arbitrary interval. We now choose a minimal interval Y`+1 ,`
+
2

which contains I. Note

that λ(Y`+1 ,`
+
2

) ≤ λ(I) + 2
dk1.6e . Then we have

|S ∩ I| ≤ |S ∩ Y`+1 ,`+2 | ≤ λ(Y`+1 ,`
+
2

)k2 + dk1.6e ≤
(
λ(I) +

2

dk1.6e

)
k2 + dk1.6e

≤
(
λ(I) + 4k−0.4

)
k2 .

Similarly, taking a maximal interval Y`−1 ,`
−
2

which is contained in I, we can obtain that |S ∩ I| ≥(
λ(I)− 4k−0.4

)
k2. This concludes the proof. �

Our second observation is that realisations which are spread and belong to the same pattern are

close in the cut norm.

Lemma 10.3. Let A ∈ R(k, k) be a k × k pattern and A∗ ∈ RA([0, 1]) be a realisation. Let LA =

(WA, id) and LA
∗

= (WA∗ , id) be the associated semilatinons with ground space [0, 1]. If A∗ is ε-

spread, then

(24)
∥∥∥WA −WA∗

∥∥∥
4
≤ 4ε+ 4

k2 .

Proof. Observe that Ai,j = |{A∗} ∩ [0, A∗i,j ]| = k2(A∗i,j ± ε) for each fixed i, j ∈ [k], where the first

equality holds because of A∗ ∈ RA([0, 1]) and the second, as A∗ is ε-spread.

In order to verify (24) using Definition 4.1, let R,C ⊆ [0, 1] be arbitrary and V := [a, b] ⊆ [0, 1] an

arbitrary interval. Set Y := {(i, j) ∈ [k]2 | k−2Ai,j ∈ V,A∗i,j /∈ V } and Y ∗ := {(i, j) ∈ [k]2 | A∗i,j ∈
V, k−2Ai,j /∈ V }. Since A∗i,j = k−2Ai,j ± ε, the set Y ′ := {(i, j) ∈ [k]2 | k−2Ai,j ≥ a,A∗i,j < a} has

size at most εk2 + 1. Similarly the set Y ′′ := {(i, j) ∈ [k]2 | k−2Ai,j ≤ b, A∗i,j > b} has size at most

εk2 + 1. Then |Y | ≤ |Y ′|+ |Y ′′| ≤ 2εk2 + 2. We similarly obtain |Y ∗| ≤ 2εk2 + 2.

Therefore∣∣∣∣∫
x∈R

∫
y∈C

WA(x, y)[V ]−WA∗(x, y)[V ]dxdy

∣∣∣∣ ≤ 1
k2 (|Y |+ |Y ∗|) ≤ 1

k2 (4εk2 + 4) ≤ 4ε+ 4
k2 .

�

We now have all the tools to prove Lemma 4.6.
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Proof of Lemma 4.6. We set ε := 4k−0.4. For patterns A ∈ R(k, k) and realisations A∗ ∈ [0, 1]k×k

we will work with the associated semilatinons LA = (WA, id) and LA
∗

= (WA∗ , id) over the ground

space [0, 1]. Furthermore we set

A1 := {A ∈ R(k, k) | δ∗4(LA, L1) < d/2} ,

A2 := {A ∈ R(k, k) | δ∗4(LA, L2) < d/2} ,

A∗,ε1 := {A∗ ∈ [0, 1]k×k | A∗ is ε-spread and δ∗4(LA
∗
, L1) < d/4} ,

A∗,ε2 := {A∗ ∈ [0, 1]k×k | A∗ is ε-spread and δ∗4(LA
∗
, L2) < d/4} .

Note that the triangle inequality for δ∗4 implies that A1 ∩ A2 = ∅. Furthermore, as the choice of

ε and the condition on the size of k guarantee that 4ε + 4/k2 < d/4, we have by Lemma 10.3 that

the following holds. If A ∈ R(k, k) and A∗ ∈ RA([0, 1]) is ε-spread and such that δ∗4(LA
∗
, L1) < d/4,

then δ∗4(LA, L1) < 4ε + 4/k2 + d/4 ≤ d/2. Therefore we have that for every A∗ ∈ A∗,ε1 there exists

A ∈ A1 such that A∗ ≡ A. Hence we have for uniformly chosen <f -ordered k-sets S, T ⊆ Ω that∑
A∈A1

t(A,L1) ≥ P[L[S, T ] ∈ A∗,ε1 ] ,

and, as the size of k guarantees 30
log(k)1/10 < d/4, it follows from Lemma 4.9 and Lemma 10.2 that

P[L[S, T ] ∈ A∗,ε1 ] ≥ 1− exp(−k0.1)− exp(−4k/ log(k)0.25) ≥ 3
4 .

Similarly we have ∑
A∈A2

t(A,L2) ≥ P[L[S, T ] ∈ A∗,ε2 ] ≥ 3
4 ,

and therefore ∑
A∈A1

t(A,L2) ≤ 1−
∑
A∈A2

t(A,L2) ≤ 1
4 .

Thus ∑
A∈A1

(t(A,L1)− t(A,L2)) ≥ 1
2

and by averaging, and since |A1| ≤ k2!, there exists a pattern A ∈ A1 such that

|t(A,L1)− t(A,L2)| ≥

∑
A∈A1

t(A,L1)−
∑
A∈A1

t(A,L2)

 /(k2!) ≥ 1
2(k2!)

.

�

11. Approximating Latinons

In this section, we prove Theorem 3.13. In fact, Theorem 3.13 is a direct corollary of the lemma

below, which we prove instead.

Lemma 11.1. Let L be a Latinon on Ω. For every ε > 0 and n0 ∈ N there exists n ≥ n0 and a Latin

square Ln of order n with the property that

δ∗4(L,Ln) < ε .

To find such a Latin square we first approximate the given Latinon L by a step Latinon.

Definition 11.2. A step Latinon (U, f) on Ω is a Latinon such that there exists a partition P =

(P1, . . . , Pm) of Ω and a partition Q = (Q1, . . . , Qd) of [0, 1] consisting of consecutive intervals such

that there exist αi,j,k ∈ [0, 1], i, j ∈ [m], k ∈ [d], such that for every I ⊆ Qk,

U(x, y)[I] = αi,j,k
λ(I)

λ(Qk)
for every (x, y) ∈ Pi × Pj .
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In other words, the distribution of U is constant on each Pi×Pj, and consists of a linear combination

(with coefficients between 0 and 1) of Lebesgue measures on {Qk}k∈[d].

Our first technical lemma says that each Latinon can be approximated by a step Latinon. For

technical reasons, we wish to switch in this approximation from the ground space Ω to ground space

[0, 1]. We leave the proof of the lemma for later.

Lemma 11.3. Let L be a Latinon on Ω. For every ε > 0 there exists a step Latinon (U, id) on [0, 1]

such that its corresponding partitions P and Q consist of intervals and

δ∗4(L, (U, id)) < ε .

Then we find a Latin square which is close to the previously constructed step Latinon.

Lemma 11.4. Let ε > 0 and n0 ∈ N. If (U, id) is a step Latinon on [0, 1] whose corresponding

partitions consist of intervals, then there exists n ≥ n0 and a Latin square Ln of order n with the

property that

δ4((U, id), Ln) < ε .

Using both lemmas the proof of Lemma 11.1 then follows immediately.

Proof of Lemma 11.1. Given ε > 0, we use Lemma 11.3 with ε/2 in place of ε to get a step Latinon

(U, id) on [0, 1] with δ4(L, (U, id)) < ε/2. We then use Lemma 11.4 again with ε/2 in place of ε to

get a number n ≥ n0 and a Latin square Ln of order n such that δ4((U, id), Ln) < ε/2. Together we

therefore get

δ∗4(L,Ln) ≤ δ∗4(L, (U, id)) + δ4((U, id), Ln) < ε/2 + ε/2 = ε .

�

We first show the proof of Lemma 11.3 and defer the proof of Lemma 11.4 to Section 11.1. For

this we introduce the phrase for α sufficiently smaller than β, written α � β, meaning that for any

β > 0 there exists α0 > 0 such that for any α ≤ α0 the subsequent statement holds.

Proof of Lemma 11.3. First we choose constants d, r,m ∈ N such that

1
r �

1
d ,

1
m � ε .

Let L = (W, f) be the given Latinon. Let Ld = (Of ,Wd,1, . . . ,Wd,2d) be the compression of L of

depth d. Consider the partition Jm. By Lemma 5.2(i) we find a partition P = {Pj,t | j ∈ [m], t ∈ [r]}
of Ω refining f−1(Jm), i.e. f−1(Jm,j,) = Pj,1 ∪ · · · ∪ Pj,r, j ∈ [m], and such that, for every 1 ≤ i ≤ 2d,

(25)
∥∥Wd,i − (Wd,i)

1P∥∥
� ≤

√
2d+1

log(r) .

Note that this defines a step Latinon LdP = (W ′, f) with W ′ = ∇((Wd,1)1P , . . . , (Wd,2d)1P) on Ω and

we get by Lemma 6.6, Proposition 6.7, and (25) that

(26) δ4(L,LdP) ≤ δ4(L,Ld) + δ4(Ld, LdP) ≤ 1
2d−1 + 2d ·

√
2d+1

log(r) < ε/2 .

We now fix arbitrarily for every j ∈ [m] another partition Qj = {Qj,1, . . . , Qj,r} of Jm,j such that

Qj,t is an interval and λ(Qj,t) = µ(Pj,t) for every t ∈ [r]. Note that this is possible, as
∑

t∈[r] µ(Pj,t) =

λ(Jm,j) for j ∈ [m]. Then Q = {Qj,t | j ∈ [m], t ∈ [r]} is a partition of [0, 1] consisting of intervals. We

now use this partition to define a step Latinon (U, id) on [0, 1] by setting for every x ∈ Qi,s, y ∈ Qj,t
and I ⊆ [0, 1] that U(x, y)(I) := W ′(x′, y′)(I) for some x′ ∈ Pi,s and y′ ∈ Pj,t. Note that since LdP is

a step Latinon this definition does not depend on the choice of x′, y′ and also consequently (U, id) is

a step Latinon.

Next, we observe that (U, id) is close to LdP in the generalised cut distance δ∗4 (see Section 4.0.1)

which can compare Latinons defined on different ground spaces.
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Claim 11.5. We have

δ∗4(LdP , (U, id)) < ε/2.

Proof of Claim 11.5. For every j ∈ [m], t ∈ [r] let ϕj,t : Qj,t → Pj,t be an arbitrary measure preserving

bijection. These bijections altogether naturally define a measure preserving bijection ϕ : [0, 1] → Ω.

Note that then (W ′)ϕ,ϕ(x, y) = U(x, y) for every x, y ∈ [0, 1] by definition of U . Furthermore, we also

have ϕ(Jm,k) = f−1(Jm,k) and therefore (f ◦ ϕ)(Jm,k) = Jm,k for every k ∈ [m]. Thus

δ∗4((U, id), LdP) ≤ 2
∥∥∥O −Of◦ϕ∥∥∥

�
+
∥∥U − (W ′)ϕ,ϕ

∥∥
4 ≤ 2

∑
k∈[m]

λ(Jm,k)
2 = 2

m < ε/2 .

�

We therefore have by (26), Claim 11.5, and the generalised triangle inequality from Section 4.0.1

that

δ∗4(L, (U, id)) ≤ δ4(L,LdP) + δ∗4(LdP , (U, id)) < ε/2 + ε/2 = ε .

�

11.1. Constructing Latin squares. It is more convenient to represent the sought Latin square Ln

as in Lemma 11.4 as a K3-decomposition of the complete tripartite graph Kn,n,n. Indeed, given any

Latin square Ln of order n, we view the three parts of Kn,n,n as numbering rows, columns, and values,

respectively. Then each entry of Ln corresponds to a triangle in Kn,n,n, and the collection of all the

entries corresponds to a K3-decomposition of Kn,n,n, that is a partition of E(Kn,n,n) into triangles.

In fact, it is easy to see that once the role of the three parts of Kn,n,n and their numberings are

fixed, there is a one-to-one correspondence between Latin squares of order n and K3-decompositions

of Kn,n,n.

We will need to recall some notation and facts from the theory of designs, mainly following Keevash’s

breakthrough results [24, 25]. As we explained above, it suffices to recall these results in the special case

of K3-decompositions of tripartite graphs. Given a graph G, a vertex v ∈ V (G), and S, V1, V2 ⊆ V (G)

where V1 ∩ V2 = ∅, we write NG(v, S) = NG(v) ∩ S for the neighbourhood of v in S. We also write

NG(S) =
⋂
w∈S NG(w) for the common neighbourhood of S and dG(V1, V2) = |E(G[V1,V2])|

|V1||V2| for the

density of the pair (V1, V2).

Definition 11.6. Let G be a tripartite graph with partite sets V1, V2, V3 and densities d{i,j} =
|E(G[Vi,Vj ])|
|Vi||Vj | , {i, j} ∈

(
[3]
2

)
.

(i) We say that G is (partite) K3-decomposable if there exists an edge-disjoint collection of copies

of K3 in G which covers E(G).

(ii) We say that G is K3-balanced if for every {i, j, k} = [3] and every v ∈ Vk, deg(v, Vi) =

deg(v, Vj).

(iii) Let c > 0 and h ∈ N. We say that G is (c, h)-typical, if for every pair of distinct i, j ⊆ [3],

and every set S ⊆ Vi ∪ Vj with |S| ≤ h we have that |NG(S) ∩ Vk| = (1± c)d|S∩Vi|{i,k} d
|S∩Vj |
{j,k} |Vk|,

where k ∈ [3] \ {i, j}.

It is easy to see that a K3-decomposable tripartite graph needs to be K3-balanced. Now, the

important result from the theory of designs we want to use is that for typical graphs the converse

is also true. The first theorem we need is that a typical graph can be approximately decomposed

such that the leftover graph has bounded degree. The existence of an approximate decomposition was

shown first by Rödl in [39]. For our purposes we need a slightly stronger version, i.e. the additional

degree condition for the leftover graph. This follows from a more general theorom of Alon and Yuster

in [4]. For completeness we explain how to derive our version in Appendix B.
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Theorem 11.7 ([39]). Suppose that 1
n � c � α � d ≤ 1. Let G be a tripartite graph with partite

sets V1, V2, V3 such that |V1| = |V2| = |V3| = n and dG(Vi, Vj) = (1 ± c)d for all {i, j} ⊆ [3]. If G is

(c, 24500)-typical, then there exists a subgraph S ⊆ E(G) such that

(1) G− S has a partite K3-decomposition, and

(2) ∆(S) ≤ αn.

The second theorem we need is that typical K3-balanced tripartite graphs are K3-decomposable

and is a direct application of Theorem 1.7 from [25].

Theorem 11.8 ([25]). Suppose that 1
n � c � d ≤ 1. Let G be a K3-balanced tripartite graph with

partite sets V1, V2, V3 such that |V1| = |V2| = |V3| = n and dG(Vi, Vj) ≥ d for all {i, j} ∈
(

[3]
2

)
. If G is

(c, 24500)-typical, then G has a partite K3-decomposition.

We will also make use of the following simple lemma stating that selecting edges independently and

uniformly at random from a typical graph results in a typical subgraph with high probability.

Lemma 11.9. Suppose that 1/n� c1 � c2 � 1/h, ρ, d ≤ 1. Let G be a (c1, h)-typical tripartite graph

with vertex classes V1, V2, V3 with |V1| = |V2| = |V3| and dG(Vi, Vj) = (1± c1)d for every {i, j} ∈
(

[3]
2

)
.

If we select each edge of G with probability ρ independently and uniformly at random for a subgraph

H, then with probability 1− exp(−Θ(n)) we have

(i) dH(Vi, Vj) = (1± c2)ρd for every {i, j} ∈
(

[3]
2

)
,

(ii) H is (c2, h)-typical, and

(iii) G−H is (c2, h)-typical.

Proof. For every {i, j} ∈
(

[3]
2

)
we have that E[|H[Vi, Vj ]|] = ρ(1 ± c1)dn2 and by Lemma 2.1 we then

get that

P
[
||H[Vi, Vj ]| − ρ(1± c1)dn2| ≥ (c2/2)ρdn2

]
≤ 2 exp(−c2

2ρdn
2/12) .

Therefore by the union bound (i) holds with probability 1 − exp(−Θ(n)). Furthermore, for every

{i, j, k} = [3], and every set S ⊆ Vi ∪ Vj with |S| ≤ h we have that

E
[
|NH(S) ∩ Vk|

]
= (1± c1)(ρ(1± c1)d)|S|n ,

and again by Lemma 2.1 we then get that

P
[
||NH(S)| − (1± c1)(ρ(1± c1)d)|S|n| ≥ (c2/2)(ρd)|S|n

]
≤ 2 exp(−c2

2(ρd)|S|n/12) .

Again by using the union bound the probability that H is (c2, h)-typical is at least 1 − h ·
(

3n
h

)
·

exp(−c2
2(ρd)hn/12) = 1 − exp(−Θ(n)). Similarly, one can show that (iii) holds with probability

1− exp(−Θ(n)). Therefore with probability 1− exp(−Θ(n)), (i)-(iii) hold altogether. �

With these tools at hand we can prove Lemma 11.4. As we explained at the beginning of Sec-

tion 11.1, we will find a triangle decomposition of Kn,n,n which represents the Latin square we want

to construct. We partition the three copies of [n], which represent the rows, columns and values, into

clusters corresponding to the parts of [0, 1] defined by the given step Latinon (U, id). The construction

itself has three steps. First, we remove a sparse reservoir R ⊂ E(Kn,n,n) at random. Second, we find

an approximate K3-decomposition11 B of Kn,n,n−R with the key property that between any triple of

clusters (traversing the three colour classes of Kn,n,n) the number of triangles of B spanned by these

three clusters is proportional to the value of U on the steps corresponding to these three clusters.

Theorem 11.7 is used to this end. Third, we use Theorem 11.8 to find a K3-decomposition in the

11By an ‘approximate K3-decomposition’ we mean that a small number of edges of Kn,n,n − R will not be covered;

here the number of edges will be chosen to be much smaller than that of R.
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graph Kn,n,n −B. Theorem 11.8 indeed applies in this setting as Kn,n,n −B is almost identical to R

(recall Footnote 11) which has excellent typicality properties because of Lemma 11.9.

Proof of Lemma 11.4. First note that by passing to a refinement we may assume that (U, id) has the

same corresponding partition C = {C1, . . . , C`} for each coordinate. Since (U, id) is a step Latinon we

therefore have real values Ki,j,k, i, j, k ∈ [`], such that U(x, y)(I) = Ki,j,kλ(I)/λ(Ck) for every x ∈ Ci,
y ∈ Cj , and I ⊆ Ck. Let ε > 0, set h = 24500, and K := min{Ki,j,k | i, j, k ∈ [`],Ki,j,k > 0}. Choose

additional constants such that

1
n � c1 � c2 � α� c� ρ� 1

M ,
1
q �

1
n0
, 1
` ,K,

1
h , ε,min

i
λ(Ci) ,

and such that m := n/(qM) = 2d for some d ∈ N.

In the following we want to approximate (U, id) with another step Latinon (U ′, id) whose corre-

sponding partition fulfills some convenient divisibility conditions. Let (Ud,1, . . . , Ud,m) be the com-

pression of U of depth d, i.e. Ud,i(x, y) = U(x, y)(Dd,i) for every x, y ∈ [0, 1], i ∈ [m]. We now set

U ′ := ∇((Ud,1)1Dd , . . . , (Ud,m)1Dd) and note that (U ′, id) is a step Latinon. Set X := {i ∈ [m] | Dd,i 6⊆
Cj for all j ∈ [`]} and Y :=

⋃
i∈X Dd,i. Since Dd consists of smaller intervals than C we therefore

have |X| ≤ ` and λ(Y ) ≤ `/m. Then the 3-dimensional measures ∇(Ud,1, . . . , Ud,m) and U ′ agree

everywhere except on Q = (Y × [0, 1] × [0, 1]) ∪ ([0, 1] × Y × [0, 1]) ∪ ([0, 1] × [0, 1] × Y ), that is, for

each Z ⊂ [0, 1]3 \Q we have

∇(Ud,1, . . . , Ud,m)(Z) = U ′(Z) .

Hence by the uniform marginals we get∥∥∇(Ud,1, . . . , Ud,m)− U ′
∥∥
4 ≤ 3`/m = 3`qM

n < ε/6 .

Also by Proposition 6.6(i) we have that

‖U −∇(Ud,1, . . . , Ud,m)‖4 ≤
2
m < ε/6

and therefore

(27)
∥∥U − U ′∥∥4 ≤ ‖U −∇(Ud,1, . . . , Ud,m)‖4 +

∥∥∇(Ud,1, . . . , Ud,m)− U ′
∥∥
4 < ε/3 .

Since (U ′, id) is a step Latinon we therefore have real values Mi,j,k, i, j, k ∈ [m], such that U ′(x, y)(I) =

Mi,j,kλ(I)/λ(Dd,k) for every x ∈ Dd,i, y ∈ Dd,j , and I ⊆ Dd,k. By the uniform marginals of (U ′, id) we

also have for every i, j ∈ [m] that

(28)
∑
k∈[m]

Mi,j,k =
∑
k∈[m]

Mk,i,j =
∑
k∈[m]

Mi,k,j = 1 .

From now on we will only work with (U ′, id) and construct a corresponding 3-partite graph. For

this we equipartition each interval Dd,i, i ∈ [m], further into consecutive intervals Pi,1, . . . , Pi,M .

Next, we define a corresponding partition of [n] into sets Ai,r, i ∈ [m], r ∈ [M ] by setting Ai,r :=

{1+((i−1)M+r−1)q, . . . , ((i−1)M+r)q}. Note that |Ai,r| = q = λ(Pi,r)·n for every i ∈ [m], r ∈ [M ].

Consider Kn,n,n; we want to find a K3-decomposition of Kn,n,n whose corresponding Latin square is

ε-close to (U ′, id) in the Latinon cut distance. For this we first include each edge of Kn,n,n uniformly

at random with probability ρ in a reservoir graph R. The following claim follows directly from

Lemma 11.9. We denote the partite sets of Kn,n,n by V1, V2 and V3.

Claim 11.10. We have with probability 1− o(1) that

(i) |R[Vi, Vj ]| = (1± c1)ρn2 for every {i, j ⊆ [3]},
(ii) R is (c1, h)-typical, and

(iii) G′ := G−R is (c1, h)-typical.



42 LIMITS OF LATIN SQUARES

We can therefore choose an outcome of the random selection such that Claim 11.10 (i)-(iii) hold.

In the following we will denote by A
(a)
i,r , i ∈ [m], r ∈ [M ], a ∈ [3] the copy of Ai,r in Va. We now

make a further random selection; every edge will be independently at random selected for one of

the graphs Gr,s,ti,j,k, i, j, k ∈ [m], r, s, t ∈ [M ]. For every {i, j} ⊆ [m] and {r, s} ⊆ [M ] we add an

edge {u, v} ∈ G′[A(1)
i,r , A

(2)
j,s ] to one of the graphs Gr,s,ti,j,k with the probability to be selected for Gr,s,ti,j,k

being Mi,j,k/M , k ∈ [m], t ∈ [M ]. Similarly, for every {i, k} ⊆ [m] and {r, t} ⊆ [M ] we add an edge

{u, v} ∈ G′[A(1)
i,r , A

(3)
k,t ] with probability Mi,j,k/M to the subgraph Gr,s,ti,j,k, j ∈ [m], s ∈ [M ]. Lastly, for

every {j, k} ⊆ [m] and {s, t} ⊆ [M ] we add an edge {u, v} ∈ G′[A(2)
j,s , A

(3)
k,t ] with probability Mi,j,k/M

to the subgraph Gr,s,ti,j,k, i ∈ [m], r ∈ [M ]. Note that by (28) the probabilities for each edge indeed sum

up to 1 and that we may assume V (Gr,s,ti,j,k) = A
(1)
i,r ∪A

(2)
j,s ∪A

(3)
k,t .

Claim 11.11. We have with probability 1− o(1) that for every i, j, k ∈ [m] and r, s, t ∈ [M ]

(i) |E(Gr,s,ti,j,k[Va, Vb])| = (1± c2)(1− ρ)q2 ·Mi,j,k/M for all {a, b} ⊆ [3] and

(ii) Gr,s,ti,j,k is (c2, h)-typical.

Proof of Claim 11.11. For fixed i, j, k ∈ [m] and r, s, t ∈ [M ] we can model the random selection

of Gr,s,ti,j,k by a random selection from the (c1, h)-typical graph G − R according to the distribu-

tion Bi(n,Mi,j,k/M). Therefore by Lemma 11.9 we have that (i) and (ii) hold with probability

1 − exp(−Θ(n)) for Gr,s,ti,j,k. By using the union bound we get that the probability that (i) or (ii)

does not hold for all i, j, k ∈ [m] and r, s, t ∈ [M ] is at most
∑

i,j,k∈[m]

∑
r,s,t∈[M ] exp(−Θ(n)) ≤

m3M3 exp(−Θ(n)) = exp(−Θ(n)) which proves the assertion. �

For every i, j, k ∈ [m] and r, s, t ∈ [M ], we can now use Theorem 11.7 on Gr,s,ti,j,k to get an almost

K3-decomposition T r,s,ti,j,k of the edge set such that the leftover graph has maximum degree at most αq.

After having done this for every Gr,s,ti,j,k we denote the set of leftover edges of G′ by F and note that

∆(F ) < (mM)2αq = αmMn. Let us write B :=
⋃
i,j,k∈[m],r,s,t∈[M ]E(T r,s,ti,j,k ). Now, G′′ := G − B is

K3-balanced, as it is the leftover of the K3-balanced graph Kn,n,n after removing a set of edge-disjoint

triangles. Furthermore, note that G′′ = R ∪ F is (c, h)-typical with density at least ρ, as for every

S ⊆ Vi∪Vj , {i, j} ⊆ [3], with |S| ≤ h we have that |NR∪F (S)| = (1±c1)ρ|S|n±αmMn = (1±c)ρ|S|n.

We can therefore use Theorem 11.8 with ρ in place of d to find a K3-decomposition D′ of G′′ and

hence D := D′ ∪B is a K3-decomposition of Kn,n,n corresponding to a Latin square which we denote

by Ln. Note that we have for the linear 3-uniform hypergraph H which corresponds to Ln that

(29)
∣∣∣E(H[A

(1)
i,r , A

(2)
j,s , A

(3)
k,t ])

∣∣∣ = (1± 2ρ)Mi,j,kq
2/M, for all i, j, k ∈ [m], r, s, t ∈ [M ] .

It now only remains to show that Ln is ε-close to (U, id). We write L := (WLn , id) for the Latinon-

representation of Ln over [0, 1], and recalling (27) and δ4((U, id), Ln) = δ4((U, id), L), it suffices to

show ‖U ′ −WLn‖4 ≤ 2ε/3. So let S, T ⊆ [0, 1] and V ⊆ [0, 1] be an interval. Since 1/M � ε we can

choose S′, T ′, V ′ ⊆ [0, 1] such that V ′ is an interval and suitable index sets QS
′

i , Q
T ′
j , Q

V ′
k ⊆ [M ], for

i, j, k ∈ [m], such that

• S′ =
⋃
i∈[m]

⋃
r∈QS′

i
Pi,r,

• T ′ =
⋃
j∈[m]

⋃
s∈QT ′

j
Pj,s,

• V ′ =
⋃
k∈[m]

⋃
t∈QV ′

k
Pk,t, and

• λ(S4S′), λ(T4T ′), λ(V4V ′) < ε/3.
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We then have by the uniform marginals property of (U ′, id) and L that

(30)

∣∣∣∣∫
S

∫
T

(U ′(x, y)−WLn(x, y))(V )dxdy

∣∣∣∣ < ∣∣∣∣∫
S′

∫
T ′

(U ′(x, y)−WLn(x, y))(V ′)dxdy

∣∣∣∣+ ε/3 .

Furthermore, note that Pi,r := [(min{Ai,r} − 1)/n,max{Ai,r}/n] and therefore the partitions of L

and U ′ conveniently coincide. We then have that

∣∣∣∣∫
S′

∫
T ′
U ′(x, y)(V ′)−WLn(x, y)(V ′)dxdy

∣∣∣∣
=

∣∣∣∣∣∣∣
∑

i,j,k∈[m]

∑
r∈QS′

i ,s∈QT ′
j ,t∈QV ′

k

∫
Pi,r

∫
Pj,s

U ′(x, y)(Pk,t)−WLn(x, y)(Pk,t)dxdy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

i,j,k∈[m]

∑
r∈QS′

i ,s∈QT ′
j ,t∈QV ′

k

∫
Pi,r

∫
Pj,s

U ′(x, y)(Pk,t)− |E(H[A
(1)
i,r , A

(2)
j,s , A

(3)
k,t ])|/q

2dxdy

∣∣∣∣∣∣∣
(29)

≤
∑

i,j,k∈[m]

∑
r∈QS′

i ,s∈QT ′
j ,t∈QV ′

k

|λ(Pi,s)λ(Pj,t)(Mi,j,kλ(Pk,t)/λ(Qd,k)− (1± 2ρ)Mi,j,k/M)|

≤
∑

i,j,k∈[m]

M3 · (q2/n2) · 2ρMi,j,k/M

= (2ρ/m2) ·
∑

i,j,k∈[m]

Mi,j,k = 2ρ < ε/3 ,

and thus together with (30) we obtain ‖U ′ −WLn‖4 ≤ 2ε/3 as required. �

12. Possible further work

Here, we include some questions which would be a natural continuation of the theory we introduced

in this paper.

12.1. Removal lemma for Latin squares. The removal lemma for graphs [41, 2, 14] states that if

a large n-vertex graph G contains only o(nv(H)) copies of H then by removing a suitable set of o(n2)

edges from G we obtain a graph with no copies of H at all. It could be that a similar statement

for Latin squares, which we state as a conjecture, can be obtained with not so much work using the

theory we introduce here.

Conjecture 12.1. Suppose that k, ` ∈ N and A ∈ R(k, `) are given. For every ε > 0 there exists

δ > 0 such that the following holds. If L is a Latin square of order n with t(A,L) < δ then we can

replace at most εn2 entries with a ∗ to obtain a matrix L∗ with t(A,L∗) = 0. Here, L∗ is not a Latin

square anymore, and we define t(A,L∗) so that no entry with a ∗ contributes to it.

Such a removal lemma is often insufficient, as we are genuinely deleting some entries from the Latin

square, and so the result is not a Latin square anymore. Perhaps, we can even get the following much

stronger result.

Conjecture 12.2. Suppose that k, ` ∈ N and A ∈ R(k, `) are given. For every ε > 0 there exists

δ > 0 such that the following holds. If L is a Latin square of order n with t(A,L) < δ then we can

modify entries of L on at most εn2 entries and obtain a Latin square L′ with t(A,L′) = 0.

Conjecture 12.1 relates to Conjecture 12.2 as the graph removal lemma relates to the induced graph

removal lemma [3].
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12.2. Quasirandomness for Latinons. The concept of pseudorandomness is omnipresent in con-

temporary mathematics. In graph theory, several related concepts appeared in the late 1980’s,

[43, 13, 40]; all these concepts stemmed from properties of the then recent regularity lemma of Sze-

merédi [42]. It turns out that the (now well established) concept of quasirandomness is best formalised

in the language of graphons. In that language, the most comprehensive of the above results, the fa-

mous Chung–Graham–Wilson Theorem [13] states that, among others, the following properties are

equivalent for a graphon W ,

(a) W is a constant-p function, almost everywhere;

(b) t(H,W ) = pe(H) for every graph H;

(c) t(H,W ) = pe(H) for H = K2 and for H = C4.

Counterparts of the Chung–Graham–Wilson Theorem were obtained for other combinatorial struc-

tures, including uniform hypergraphs [44, 1] and classes of oriented graphs [12, 16]. Of course, the

direction (a)⇒(b)⇒(c) is trivial in the graph case as well as in counterparts for other structures. So,

the challenging direction is in proving that imposing finitely many density constraints forces the limit

object to be uniform. Král’ and Pikhurko [27] proved a Chung–Graham–Wilson Theorem for permu-

tations. Namely, they proved that if a permuton P satisfies a set of density constraints t(π, P ) = 1
4! for

each π ∈ S4, then P is the Lebesgue measure on [0, 1]2. We pose a Chung–Graham–Wilson theorem

for Latin squares as an open question. Again, it is more convenient to pose it in the limit language.

Conjecture 12.3. There exist k, ` ∈ N such that the following holds. If (W, f) is a Latinon such that

t(A, (W, f)) = 1
(k`)! for every A ∈ R(k, `), then W (x, y) is the uniform distribution on [0, 1] for every

(x, y) ∈ [0, 1]2.

The reason why we failed to resolve the conjecture was the additional difficulty of dealing with

global and local information at the same time. Actually, the same difficulty arises in the setting of

ordered graphs (as considered in [5]), where we lack an analogue to a Chung–Graham–Wilson theorem

yet, too.

Note that thanks to Theorem 4.7 we at least have an equivalence of counterparts of (a) and (b) for

Latinons.

12.3. Entropy and counting of Latin squares. It is a basic calculation in the theory of random

graphs that for any ε > 0 and any graph H, asymptotically almost every (as n → ∞) graph G of

order n satisfies that the density of H in G is (1 ± ε)(1
2)e(H). Rephrased in the limit language: if

(Gn)n is a sequence of uniformly random graphs of order n, then almost surely, (Gn)n converges to a

graphon W ≡ 1
2 .

Here, we prove a Latinon counterpart of this result.

Theorem 12.4. Given any ε > 0, k, ` ∈ N and A ∈ R(k, `), asymptotically almost every (as n→∞)

Latin square L of order n satisfies that t(A,L) = 1
(k`)! ± ε. Rephrased in the limit language: if (Ln)n

is a sequence of uniformly random Latin squares of order n, then almost surely, (Ln)n converges to a

Latinon W ≡ λ�[0,1].

To prove Theorem 12.4 we use the following nontrivial result of Kwan and Sudakov.

Theorem 12.5 (Theorem 3 in [29]). Asymptotically almost every (as n → ∞) Latin square L of

order n satisfies that for each set R ⊂ [n] of row indices, for each set C ⊂ [n] of column indices, and

each set V ⊂ [n] of values, we have∣∣∣∣{(i, j) ∈ R× C | Lij ∈ V } − |R| |C| |V |n

∣∣∣∣ = O
(
n3/2 log n

)
.

With this result, Theorem 12.4 follows simply by computing the cut distance between Latinons.
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Proof of Theorem 12.4. That is, we show asymptotically almost surely δ4(W,Ln) tends to zero as n

tends to infinity, where W ≡ Lebesgue[0, 1] and (Ln, id) is the Latinon-representation of a uniformly

random Latin square of order n. Since we have

δ4(W,Ln) ≤ ‖W − Ln‖� = sup
R,C,V⊆[0,1],
V interval

∣∣∣∣∫
x∈R

∫
y∈C

(W − Ln)(x, y)(V )dxdy

∣∣∣∣
we may assume that the R,C, V used in the supremum are at least Ω(1) in measure; then Theo-

rem 12.5 implies that
∫
x∈R

∫
y∈C Ln(x, y)(V )dxdy = λ(R)λ(C)λ(V ) + O( logn√

n
) for all such R,C, V .

Then δ4(W,Ln) = O( logn√
n

) which tends to zero as n tends to infinity, as required. �

We believe that the concept of Latinons records counts of finite Latin squares. To this end, we

introduce the entropy of a Latinon, thus paralleling previous work on graphons [11] and for permu-

tons [26]. Suppose that L = (W, f) is a Latinon. Suppose that for almost every (x, y) ∈ Ω2, the

measure W (x, y) has a Radon–Nikodym derivative g(x, y, ·) with respect to the Lebesgue measure.

Then define the entropy of L by Ent(L) :=
∫
x∈Ω

∫
y∈Ω

∫
z∈[0,1] g(x, y, z) log g(x, y, z)dxdydz.

The number of Latin squares of order n is ((1± o(1)) n
e2

)n
2
, [45]. We believe that the entropy tells

us how many Latin squares there are close to a given Latinon. More precisely, we believe that there

are ((1± o(1)) · eEnt(L) · n
e2

)n
2

Latin squares of order n close to a given Latinon L. The easiest way to

state this formally is the following.

Conjecture 12.6. Suppose that (Ai ∈
⋃
k,`R(k, `))i∈I is a finite collection of patterns and (ai)i∈I

are reals in [0, 1]. Let α := sup Ent(L), where L ranges through all Latinons with t(Ai, L) = ai for

each i ∈ I. Then for each ε > 0 there exists δ > 0 and n0 such that for each n > n0 we have that for

the number N of Latin squares K of order n satisfying t(Ai,K) = ai ± δ for each i ∈ I we have

1

n2
· log

(
N

( n
e2

)n2

)
= α± ε .

12.4. Higher dimensional permutations. It has been a long programme of Linial to identify

higher-dimensional counterparts to common combinatorial objects. Let us introduce his concept of

higher dimensional permutations here. For n ∈ N, any {0, 1}-sequence with n entries which contains

n− 1 zeros and 1 one is called a 0-dimensional permutation. Now, inductively we say that a (d+ 1)-

dimensional {0, 1}-array whose each coordinate is indexed by [n] is a d-dimensional permutation of

order n if restricting this array by fixing arbitrarily one coordinate we get a (d − 1)-dimensional

permutation. So, there is a one-to-one correspondence between 1-dimensional permutations and ordi-

nary permutations on [n] (represented as the corresponding permutation matrix), and 2-dimensional

permutations correspond to Latin squares. It is very likely that with the same approach that we

developed in this paper, one could create a theory of limits of permutations of any fixed dimension.

However, there is a substantial technical challenge. Indeed, our Latinons can be encoded as compres-

sions of graphons. Going up, say, by one dimension, we would have to work with compressions of

3-uniform hypergraphons. It is likely that many steps in our proof would actually need a substantial

revision in that setting. For example, there are substantial difficulties with any ‘cut distance’ for

3-uniform hypergraphs (see Section 3 of [46]).
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Appendix A. Proof of Proposition 3.17

Proof of Proposition 3.17. We replace Ω by the unit interval I = [0, 1] with the Lebesgue measure

(which we still denote by µ). Again, this can be assumed without loss of generality, since every

separable atomless probability space is measure isomorphic to I. Note that the unit interval now

appears in the modified setting of Proposition 3.17 in two different contexts; however the numerical

values of elements in the space now replacing Ω are irrelevant. So, we shall use the symbol I to denote

just this replacement of Ω. For example, we view f as a function from I to [0, 1]. In this setting, we

want to find h : [0, 1]× [0, 1]→ I satisfying that f(h(a, x)) = a.

Let Λ : [0, 1]→ B be a disintegration of µ through f , that is, Λ satisfies

Λ(r)(f−1(r)) = 1 for almost every r ∈ [0, 1], and(31) ∫
x∈I

Λ(f(x))(A)dµ = µ(A) for every A ⊂ I.(32)

Let {Cn}n∈N be an enumeration of all non-degenerate closed intervals with rational endpoints in I.

Let i : Ω → {0, 1}N be a map defined on its n-th coordinate by (i(ω))n := 1ω∈Cn . Since {Cn}n∈N
separates points, we have that i is injective. Next, we use i to construct a linear order ≺∗ on I as

follows. Suppose that ω1, ω2 ∈ I are two distinct elements. If f(ωi) < f(ω3−i) for some i ∈ {1, 2}
then put ωi ≺∗ ω3−i. It remains to order ω1 and ω2 in case that f(ω1) = f(ω2). In that case, we

order ω1 and ω2 in ≺∗ in a way that is consistent with the lexicographic ordering of i(ω1) and i(ω2).

Let B ⊂ I be the set of elements ω ∈ I that are atoms for the measure Λ(f(ω)). We claim that B

is a Borel set. Indeed, this follows upon writing

B = {ω ∈ I | Λ(f(ω))(ω) > 0} ,

and recalling that Λ is a Borel map.

Let I ′ := I \ B, f ′ := f � I ′, and let µ′ be the restriction of µ on I ′. Also, for r ∈ [0, 1], let Λ′(r)

be the restriction of Λ(r) on I ′. We then have

Λ′(r)(f−1(r)) = 1− Λ(r)(B) for almost every r ∈ [0, 1], and(33) ∫
x∈I′

Λ′(f(x))(A)dµ′ = µ′(A) for every A ⊂ I.(34)

For each ω ∈ I, write JωK := {x ∈ f−1(f(ω)) | x �∗ ω}.
For the time being, it is convenient to work with a slight modification of the Lebesgue measure on

[0, 1]2. Define a measure γ on [0, 1]2 by setting

γ(A) :=

∫
x

Λ′(x)[0, 1] · λ({y ∈ [0, 1] | (x, y) ∈ A})dλ(x) .

We are now going to define a key map m : I ′ → [0, 1]2. Given ω ∈ I ′, set

m(ω) :=

(
f(ω) ,

1

1− Λ(f(ω))(B)
· Λ′(f(ω))JωK

)
.

The following claim is obvious.

Claim A.1. The map m is measure preserving with respect to the measures µ′ and γ.

The following claim is crucial.

Claim A.2. There exists I∗ ⊂ I ′ with µ(I∗) = µ(I ′) so that m is injective on I∗.

Proof. Let us introduce a piece of notation. Suppose that d ∈ N and p ∈ {0, 1}d. Then define

∧
p

(Cn)n := I ′ ∩
⋂

i∈[d]:pi=1

Ci \

 ⋃
i∈[d]:pi=0

Ci

 .
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In other words,
∧

p(Cn)n are the elements of I ′ whose encoding using indicator functions of the sets

(Cn)n agrees with p on the first d coordinates.

For each t ∈ [0, 1] and each p ∈
⋃∞
d=1{0, 1}d, let w(t,p) := f−1(t)

(∧
p(Cn)n

)
. For a given

p ∈
⋃∞
d=1{0, 1}d, let Tp = {t ∈ [0, 1] | w(t,p) = 0}. Observe that Tp is a Borel subset of [0, 1].

Let L ⊂ I ′ be defined as follows. Take ω ∈ I ′. We put ω in L if and only if there exists k such that

for each ` > k either (i(ω))` = 0, or w(f(ω),p) = 0, where p ∈ {0, 1}` has the first `−1 coordinates as

in i(ω) and the `-th set to 0. L is a Borel set. Furthermore, observe that for each t ∈ [0, 1], f−1(t)∩L
is at most countable. Since Λ(t) is atomless on I ′, we conclude that Λ(t)(L) = 0. Integrating, we get

that µ(L) = 0. Set I∗ := I ′ \ L. By the above, I∗ has full measure in I ′.
We claim that m is injective on I∗. Indeed, suppose that ω1, ω2 ∈ I∗ are two distinct elements.

If f(ω1) 6= f(ω2) then clearly m(ω1) 6= m(ω2). So, it remains to assume that f(ω1) = f(ω2) = t for

some t ∈ [0, 1]. Without loss of generality, assume that i(ω1) is smaller in the lexicographic order

than i(ω2), and that the first coordinate on which i(ω1) and i(ω2) differ is, say, h. Since ω2 6∈ L, we

know that there exists ` > h such that the `-th coordinate of i(ω2) is 1, and w(f(ω),p) > 0, where

p ∈ {0, 1}` has the first `− 1 coordinates equal to i(ω2) and the `-th is 0. We have Jω1K ⊂ Jω2K with

Jω1K ∩ f−1(t) ∩
∧

p(Cn)n = ∅, yet f−1(t) ∩
∧

p(Cn)n ⊂ Jω2K. Since Λ(t)
(∧

p(Cn)n

)
= w(t,p) > 0, we

have that

Λ(t) (Jω2K) ≥ Λ(t) (Jω1K) + Λ(t)

(∧
p

(Cn)n

)
> Λ(t) (Jω1K) .

In particular, we conclude that m(ω2) and m(ω1) are different on the second coordinate, as was

needed. �

Now, let J ⊂ [0, 1]2 be the image of I∗ under m. As m is measure preserving and I∗ is conull, we

conclude that J is conull in [0, 1]2 with respect to γ. Let g : [0, 1]2 → I∗ be defined as the inverse

map to m on J , and arbitrarily on the rest (which is null).

We are now ready to define the map h. Suppose that (a, x) ∈ [0, 1]2 is given. If x < 1 − Λ(a)(B)

then define h(a, x) := g(a, x
1−Λ(a)(B)). Otherwise, let h(a, x) be the atom ζ ∈ B ∩ f−1(a) for which

1− Λ(a)(B) + Λ(a) (JζK) > x > 1− Λ(a)(B) + Λ(a) (JζK \ {ζ}) .

Such an atom exists for almost every choice of x ∈ [0, 1]; the exceptions are at most countably many

values for which the down-interval from that atom has exactly that measure.

Obviously, h has all the properties we want. �

Appendix B. Proof of Theorem 11.7

We will derive Theorem 11.7 from the following theorem of Alon and Yuster [4]. Let H = (V,E)

be an r-uniform hypergraph. Recall that the degree of a vertex v is the number of edges in H that

contain v, and that the codegree of two distinct vertices u and v is the number of edges in H that

contain u and v. We write δ(H) for the minimum degree, ∆(H) for the maximum degree, and ∆2(H)

for the maximum codegree. Let F ⊆ 2V and let 0 ≤ α ≤ 1. A matching M in H is (α,F)-perfect if

for each F ∈ F , at least α|F | vertices of F are covered by M . Also we write s(F) = minF∈F{|F |}
and g(H) = ∆(H)/∆2(H).

Theorem B.1 (Theorem 1.2 [4]). For an integer r ≥ 2, a real C > 1 and a real ε > 0 there exists a

real µ = µ(r, C, ε) and a real K = K(r, C, ε) so that the following holds: If the r-uniform hypergraph

H = (V,E) on N vertices satisfies:

(1) δ(H) ≥ (1− µ)∆(H),

(2) g(H) > max{1/µ,K(log(N))6},
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then for every F ⊆ 2V with |F| ≤ Cg(H)1/(3r−3)
and with s(F) ≥ 5g(H)1/(3r−3) log(|F|g(H)) there is

a (1− ε,F)-perfect matching in H.

Proof of Theorem 11.7. Recall that we have for the given constants that

1/n� c� α� d .

Let µ and K be the constants given by Theorem B.1 applied with r = 3, C = 2 and ε = α. Therefore

we may also assume that

1/n� c� µ, 1/K .

We define H = (V,E) to be the 3-uniform hypegraph with vertex set V = E(G) and edge set

E = {{{x, y}, {y, z}, {x, z}} ⊆ V | {x, y}, {y, z}, {x, z} ∈ E(G)}. In other words, the vertices of H

are the edges of G and the hyperedges of H are the triangles of G. Furthermore, for every x ∈ V (G)

we define Fx := {{x, y} | y ∈ NG(x)}, and set F := {Fx | x ∈ V (G)}. Note that F ⊆ 2V , |F| = 3n,

and that by the (c, h)-typicality of G,

s(F) = min
F∈F
{|F |} = 2(1± 2c)dn .

Furthermore, also by the (c, h)-typicality of G, we have that |V | = |E(G)| = 3(1 ± c)dn2, ∆(H) =

(1± c)d2n, δ(H) = (1± c)d2n, and ∆2(H) = 1. Hence

g(H) = ∆(H)/∆2(H) = (1± c)d2n/1 = (1± c)d2n .

We check the conditions for applying Theorem B.1.

δ(H) ≥ (1− c)d2n ≥ (1− µ)(1 + c)d2n ≥ (1− µ)∆(H) .

Also

g(H) ≥ (1− c)d2n ≥ max{1/µ,K(log(3(1± c)dn2))6} .

Also note that

|F| ≤ 3n ≤ C((1+c)d2n)1/6
,

and

s(F) ≥ 2(1− 2c)dn ≥ n1/3 ≥ 5((1 + c)d2n)1/6 log(3n(1 + c)d2n) ≥ 5g(H)1/6 log(|F|g(H)) .

Hence there exists a (1 − α,F)-perfect matching T for H. Note that elements of T correspond to

edge-disjoint triangles in G and that each vertex x ∈ V (G) lies in at least (1− α)|Fx| triangles of T .

Therefore

∆(G− T ) ≤ α∆(G) ≤ αn .

�
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