Photosynthetica, 2014 (vol. 52), issue 1

Photosynthetica 2014, 52(1):63-70 | DOI: 10.1007/s11099-014-0009-x

Interactive effects of elevated CO2 and drought on photosynthetic capacity and PSII performance in maize

Y. Z. Zong1,2, W. F. Wang1,2, Q. W. Xue3, Z. P. Shangguan2,*
1 Shanxi Agricultural University, Taigu, China
2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
3 Texas AgriLife Research and Extension Center at Amarillo, Amarillo, USA

Elevated atmospheric CO2 concentration [CO2] and the change of water distribution in arid and semiarid areas affect plant physiology and ecosystem processes. The interaction of elevated [CO2] and drought results in the complex response such as changes in the energy flux of photosynthesis. The performance of photosystem (PS) II and the electron transport were evaluated by using OJIP induction curves of chlorophyll a fluorescence and the P N-C i curves in the two-factor controlled experiment with [CO2] of 380 (AC) or 750 (EC) [μmol mol-1] and water stress by 10% polyethylene glycol 6000. Compared to water-stressed maize (Zea mays L.) under AC, the EC treatment combined with water stress decreased the number of active reaction centers but it increased the antenna size and the energy flux (absorbed photon flux, trapping flux, and electron transport flux) of each reaction center in PSII. Thus, the electron transport rate was enhanced, despite the indistinctively changed quantum yield of the electron transport and energy dissipation. The combination of EC and the water-stress treatment resulted in the robust carboxylation rate without elevating the saturated photosynthetic rate (P max). This study demonstrated that maize was capable of transporting more electrons into the carboxylation reaction, but this could not be used to increase P max under EC.

Keywords: drought stress; elevated CO2 concentration; OJIP induction curves; PN-Ci curves.

Received: June 30, 2012; Accepted: May 20, 2013; Published: March 1, 2014Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Zong, Y.Z., Wang, W.F., Xue, Q.W., & Shangguan, Z.P. (2014). Interactive effects of elevated CO2 and drought on photosynthetic capacity and PSII performance in maize. Photosynthetica52(1), 63-70. doi: 10.1007/s11099-014-0009-x.
Download citation

Supplementary files

Download filephs-201401-0008_S1.pdf

File size: 70.46 kB

References

  1. Ainsworth, E.A., Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. - Plant Cell Environ. 30: 258-270, 2007. Go to original source...
  2. Albert, K.R., Mikkelsen, T.N., Michelsen, A., Ro-Poulsen, H., van der Linden, L.: Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. - J. Plant Physiol. 168: 1550-1561, 2011. Go to original source...
  3. de Graaff, M.A., van Groenigen, K.J., Six, J. et al.: Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. - Global Change Biol. 12: 2077-2091, 2006. Go to original source...
  4. Furbank, R.T., Chitty, J.A., von Caemmerer, S., Jenkins, C.L.D.: Antisense RNA inhibition of RbcS gene expression reduces Rubisco level and photosynthesis in the C4 plant Flaveria bidentis. - Plant Physiol. 111: 725-734, 1996. Go to original source...
  5. Ghannoum, O., Evans, J.R., von Caemmerer, S.: Nitrogen and water use efficiency in C4 plants. - In: Raghavendra, A.S., Sage, R.F. (ed.): C4 photosynthesis and related CO2 concentrating mechanisms Pp. 129-146. Springer, Dordrecht 2011. Go to original source...
  6. Ghannoum, O., von Caemmerer, S., Ziska, L.H., Conroy, J.P.: The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. - Plant Cell Environ. 23: 931-942, 2000. Go to original source...
  7. Grodzinski, B., Jiao, J., Leonardos, E.D.: Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2. - Plant Physiol. 117: 207-215, 1998. Go to original source...
  8. Guan, X., Gu, S.: Photorespiration and photoprotection of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) under water stress. - Photosynthetica 47: 437-444, 2009. Go to original source...
  9. Gutiérrez, D., Gutiérrez, E., Pérez, P. et al.: Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. - Physiol. Plantarum 137: 86-100, 2009. Go to original source...
  10. Jin, S.-H., Wang, D., Zhu, F.-Y. et al.: Up-regulation of cyclic electron flow and down-regulation of linear electron flow in antisense-rca mutant rice. - Photosynthetica 46: 506-510, 2008. Go to original source...
  11. Lawlor, D.W., Tezara, W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. - Ann. Bot. 103: 561-579, 2009. Go to original source...
  12. Lazár, D.: Modelling of light-induced chlorophyll a fluorescence rise (O-J-I-P transient) and changes in 820 nmtransmittance signal of photosynthesis. - Photosynthetica 47: 483-498, 2009. Go to original source...
  13. Lazár, D., Nauš, J., Matoušková, M., Flašarová, M.: Mathematical modeling of changes in chlorophyll fluorescence induction caused by herbicides. - Pestic. Biochem. Phys. 57: 200-210, 1997. Go to original source...
  14. Lazár, D.: The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. - Funct. Plant Biol. 33: 9-30, 2006. Go to original source...
  15. Long, S.P., Ainsworth E.A., Rogers A., Ort D.R.: Rising atmospheric carbon dioxide: Plants FACE the future. - Annu. Rev. Plant Biol. 55: 591-628, 2004. Go to original source...
  16. Markelz, R.J.C., Strellner, R.S., Leakey, A.D.B.: Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. - J. Exp. Bot. 62: 3235-3246, 2011. Go to original source...
  17. Maroco, J.P., Edwards, G.E., Ku, M.S.B.: Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. - Planta 210: 115-125, 1999. Go to original source...
  18. Martínez-Carrasco, R., Pérez, P., Morcuende, R.: Interactive effects of elevated CO2, temperature and nitrogen on photosynthesis of wheat grown under temperature gradient tunnels. - Environ. Exp. Bot. 54: 49-59, 2005. Go to original source...
  19. Oukarroum, A., Schansker, G., Strasser, R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  20. Prins, A., Mukubi, J.M., Pellny, T.K. et al.: Acclimation to high CO2 in maize is related to water status and dependent on leaf rank. - Plant Cell Environ. 34: 314-331, 2011. Go to original source...
  21. Reich, P.B., Hungate, B.A., Luo, Y.Q.: Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. - Annu. Rev. Ecol. Evol. S. 37: 611-636, 2006.
  22. Sage, R.F., Kubien, D.S.: Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. - Photosynth. Res. 77: 209-225, 2003. Go to original source...
  23. Sarker, B.C., Hara, M.: Effects of elevated CO2 and water stress on the adaptation of stomata and gas exchange in leaves of eggplants (Solanum melongena L.). - Bangl. J. Bot. 40: 1-8, 2011.
  24. Schansker, G., Tóth, S.Z., Strasser, R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. - Biochim. Biophys. Acta-Bioenergetics 1706: 250-261, 2005. Go to original source...
  25. Srivastava, A., Guisse, B., Greppin, H., Strasser, R.J.: Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. - Biochim. Biophys. Acta-Bioenergetics 1320: 95-106, 1997. Go to original source...
  26. Stirbet, A., Govindjee, Strasser, B.J., Strasser, R.J.: Chlorophyll a fluorescence Induction in higher plants: Modelling and numerical simulation. - J. Theor. Biol. 193: 131-151, 1998. Go to original source...
  27. Stitt, M.: Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. - Plant Cell Environ. 14: 741-762, 1991. Go to original source...
  28. Strasser, B.J., Strasser, R.J. Measuring fast fluorescence transients to address environmental questions: the JIP test. - In: Mathis, P. (ed.): Photosynthesis: From Light to Biosphere. Pp. 997-980, Kluwer Academic, Dordrecht 1995. Go to original source...
  29. Strasser, R., Tsimilli-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  30. Strasser, R.J., Tsimilli-Michael M., Qiang, S., Goltsev, V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - Biochim. Biophys. Acta-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  31. Taiz, L., Zeiger, E.: Photosynthesis: the light reactions - In: Taiz, L., Zeiger, E. (ed.): Plant Physiology. Pp. 70-71; 124-135, Sinauer Associates, Inc., Sunderland 2006.
  32. Tsimilli-Michael, M., Strasser, R.J.: In vivo assessment of stress impact on plant's vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants. - In: Varma, A. (ed.): Mycorrhiza: Genetics and Molecular Biology, Eco-function, Biotechnology, Ecophysiology, and Structure and Systematics. Pp. 679-703. Springer, Berlin 2008. Go to original source...
  33. von Caemmerer, S., Furbank, R.: Modeling C4 photosynthesis. - In: Sage, R.F., Monson, R.K. (ed.): C4 Plant Biology. Pp. 173-211, Academic Press, San Diego 1999. Go to original source...
  34. Vu, J.C.V., Allen, L.H.: Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. - J. Plant Physiol. 166: 107-116, 2009. Go to original source...
  35. Wand, S.J.E., Midgley, G.F., Jones, M.H., Curtis, P.S.: Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. - Global Change Biol. 5: 723-741, 1999. Go to original source...
  36. Wilhelm, C., Selmar, D.: Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. - J. Plant Physiol. 168: 79-87, 2011. Go to original source...
  37. Zhou, Z.C., Shangguan, Z.P.: Effects of elevated CO2 concentration on the biomasses and nitrogen concentrations in the organs of sainfoin (Onobrychis viciaefolia Scop.). - Agr. Sci. China. 8: 424-430, 2009. Go to original source...
  38. Zhu, X.-G., Govindjee, Baker, N.R. et al.: Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem II. - Planta 223: 114-133, 2005. Go to original source...