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Statistical inference for Bures-Wasserstein barycenters
Alexey Kroshnin,

Vladimir Spokoiny, Alexandra Suvorikova

Abstract

In this work we introduce the concept of Bures–Wasserstein barycenter Q∗, that is essen-
tially a Fréchet mean of some distribution P supported on a subspace of positive semi-definite
d-dimensional Hermitian operators H+(d). We allow a barycenter to be constrained to some
affine subspace ofH+(d), and we provide conditions ensuring its existence and uniqueness. We
also investigate convergence and concentration properties of an empirical counterpart of Q∗ in
both Frobenius norm and Bures–Wasserstein distance, and explain, how the obtained results are
connected to optimal transportation theory and can be applied to statistical inference in quantum
mechanics.

1 Introduction

The space of finite-dimensional Hermitian operators is commonly applied for data representation. For
instance, in quantum mechanics it is used for mathematical description of physical properties of a
quantum system: the real-valued spectrum is associated to measurements observed in a physical
experiment. Real-valued symmetric matrices are also widely used for description of systems in engi-
neering applications, medical studies, neural sciences, evolutionary biology etc. Usually, one assumes
a sample to be random, see, e.g., Goodnight and Schwartz [1997], Calsbeek and Goodnight [2009],
Álvarez-Esteban et al. [2015], Del Barrio et al. [2017], Gonzalez et al. [2017]. Statistical characteristics
of its distribution P, such as mean and variance, are of interest for experimental design, and analysis
of the results for further development of natural science models.

The current study focuses on the space of positive semi-definite Hermitian matrices H+(d) and
presents a theoretical analysis of aggregation methods of the relevant statistical information from
data sets, for which the hypothesis of linearity might be violated. In this case, the widely-used Eu-
clidean mean and variance are not sensitive enough to capture effects of interest. For instance, some
data sets are described by probability measures belonging to some scale-location family, e.g. Álvarez-
Esteban et al. [2018], Muzellec and Cuturi [2018]. The non-linearity assumption requires an adaptation
of the tools of classical statistical analysis. In order to capture non-linear effects, we suggest to endow
H+(d) with the Bures–Wasserstein distance dBW , originally introduced by Bhatia et al. [2018]. For a
pair of positive semi-definite matrices Q,S ∈ H+(d) the distance is defined as:

d2BW (Q,S) = trQ+ trS − 2 tr
(
Q1/2SQ1/2

)1/2
. (1.1)

It is worth noting that being restricted to the sub-space of symmetric positive semidefinite matrices
Sym+(d), dBW turns into the 2-Wasserstein distance between two normal distributions. Let N(0, Q)
and N(0, S) be two centred Gaussians. The 2-Wasserstein distance is

d2W2
(N(0, Q),N(0, S)) = trQ+ trS − 2 tr

(
Q1/2SQ1/2

)1/2
.
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It is worth noting that a natural extension of the Gaussian case is the case of distributions coming from
the same scale-location family (see, e.g., Agueh and Carlier [2011], Section 6, or Álvarez-Esteban
et al. [2018]).

In the last few years, the class of optimal transportation distances and in particular the 2-Wasserstein
distance attract a lot of attention of the both mathematical and machine learning communities. The
latter captures the geometrical similarities between objects coming from non-linear spaces, see, e.g.,
Courty et al. [2016], Montavon et al. [2016], Flamary et al. [2018], while the recent advances in compu-
tations make the distance useful for the real-world problems Cuturi [2013], Uribe et al. [2018], Gramfort
et al. [2015]. For more information on the Wasserstein distance and optimal transportation theory in
general, we recommend the excellent monograph by Villani [2009]. The book by Peyré et al. [2019]
provides a state-of-the-art survey of numerical methods and their applications in data sciences.

This study focuses on the following statistical setting. Let P be a probability distribution supported on
the set of non-negatively definite Hermitian matrices H+(d). Two important characteristics of P are
the Fréchet mean and variance. While the former is a “typical” representative of a data set in hand,
the latter appears in the analysis of data variability, see, e.g., Del Barrio et al. [2015]. We briefly recall
both concepts below. For an arbitrary point Q ∈ H+(d), the Fréchet variance of P is defined as

V(Q) def
=

∫
H+(d)

d2BW (Q,S)dP(S).

The Fréchet mean of P is given by the set of global minimizers of the variance V(Q):

Q∗ ∈ argmin
Q∈H+(d)

V(Q). (1.2)

However, in some cases one might be interested in a minimizer belonging to an affine sub-space of
Hermitian operators H(d), A ⊂ H(d):

Q∗ ∈ argmin
Q∈H+(d)∩A

V(Q). (1.3)

For instance, such a necessity arises when considering a random set of quantum density operators.
Section 3.2 discusses this example in more detail. Note that the setting (1.3) covers the setting (1.2).
So, without loss of generality, we further address only (1.3).

Obviously, the first crucial question concerns existence and uniqueness of Q∗. Theorem 2.1 presents
the positive answers to both issues. This immediately allows us to define the global Fréchet variance
of P:

V∗
def
= V(Q∗).

Given an i.i.d. sample S1, . . . , Sn, Si ∼ P, one constructs an empirical version of V(Q), for an
arbitrary Q, as follows:

Vn(Q)
def
=

1

n

n∑
i=1

d2BW (Q,Si).

The empirical Fréchet mean and the global empirical variance also exist and unique:

Qn = argmin
Q∈H+(d)∩A

Vn(Q), Vn
def
= Vn(Qn). (1.4)

Both facts follow from Theorem 2.1.

This work studies the convergence of the estimators Qn and Vn and investigates the concentration
properties of both objects. A discussion of the practical applicability of the obtained results is post-
poned to Section 3. There we explain the connection to optimal transportation theory and present a
possible application to statistical analysis in quantum mechanics.
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1.1 Contribution of the present study

The central limit theorems for Qn and Vn From now on we use bold symbols (e.g., A,B) to
denote operators, whereas a classical font (e.g., A,B) stands for either matrices or vectors.

The first result of this study concerns the asymptotic normality of the approximation error of the popu-
lation Fréchet mean by its empirical counterpart:

√
n (Qn −Q∗)

w−→ N (0,Ξ) ,

where “
w−→” stands for the weak convergence, and Ξ is a covariance operator acting on a linear sub-

space M ⊂ H(d) associated with the affine subspace A. The result is derived under some suitable
assumptions on the distribution P introduced later, in Section 2.

At this point it is worth mentioning that the asymptotic normality ofQn falls in the setting of the asymp-
totic normality of parametric M-estimations with a smooth and convex loss function dBW (·, ·) defined
over the convex set A ∩ H+(d). The convexity and the smoothness of dBW (·, ·) are validated by
Lemma A.5 and Lemma A.6, respectively. However, the current study uses the proof techniques dif-
ferent from a verification of the standard assumptions on M-estimators. We discuss the issue in more
detail in Section 2.4.

The above convergence result cannot be used directly for construction of asymptotic confidence sets,
as it relies on the unknown covariance matrix Ξ. However, Theorem 2.2 ensures that the covariance
operator Ξ can be replaced by an empirical counterpart Ξ̂n:

√
n Ξ̂−1/2n (Qn −Q∗)

w−→ N (0, I) ,

where I denotes the identity operator. Along with the asymptotic normality of
√
n(Qn −Q∗), we are

interested in the limiting distribution of L (
√
ndBW (Qn, Q∗)), where L(X) denotes the distribution

of a random variable X . In what follows ‖A‖F denotes the Frobenius norm of matrix A. Corollary 2.1
ensures

L
(√

ndBW (Qn, Q∗)
) w−→ L (‖ξ‖F ) ,

where ξ is some normally distributed vector. The data-driven asymptotic confidence sets for
√
ndBW (Qn, Q∗)

are obtained by replacing ξ by its empirical counterpart ξn:

dw
(
L
(√

ndBW (Qn, Q∗)
)
,L (‖ξn‖F )

)
→ 0,

where dw is some metric inducing the weak convergence of measures. We also show the asymptotic
normality of the approximation error of the varianceV∗ by its empirical analogueVn (see Theorem 2.3):

√
n (Vn − V∗)

w−→ N
(
0,Var d2BW (Q∗, S)

)
.

All above-mentioned results are closely connected to the convergence of empirical 2-Wasserstein
barycenters. For the sake of transparency we postpone a further discussion of this topic to Section 3.1.

The concentration ofQn and Vn The technique of the proof of the central limit theorem, developed
in the current study, appears to be suitable for an investigation of the concentration properties of
Qn and Vn. To validate the concentration, we suppose the distribution P to be sub-Gaussian, see
Assumption 3. This assumption ensures the following bounds which hold with high probability:

‖Q−1/2∗ QnQ
−1/2
∗ − I‖F ≤

C(
√
m+ t)√
n

, dBW (Qn, Q∗) ≤
C(
√
m+ t)√
n

,
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where m is the dimension of M, t ≥ 0, and C denotes a generic constant. For more details see
Theorem 2.4 and Corollary 2.2, respectively. To the best of our knowledge, these results appear to
be novel. Along with concentration of the empirical barycenter, we investigate the concentration of the
empirical variance Vn which holds with high probability:

|Vn − V∗| ≤ max

(
µt2

n
,
νt√
n

)
+

C(
√
m+ t)2

n

where µ and ν are some parameters depending on the distribution of d2BW (Q∗, S), m is the dimen-
sion of M, C stands for a generic constant, and the parameter is t ≥ 0. The result is presented in
Theorem 2.5. We discuss its relation to the existing results in Section 3.1.

The paper is organised as follows. Section 2 presents the obtained results in more detail. Section 3
illustrates the connection to other scientific problems. Finally, Section 4 suggests to use barycenters
for replacement of the lost data. It contains a description of the idea, and experimental estimation of
convergence rates for barycenters using both an artificial and a real data set. The latter one is related
to the climate modelling.

2 Results

Following Bhatia et al. [2018], we continue to investigate properties of dBW (Q,S). Further we present
an alternative analytical expression for the distance. The result is well-known for the case of real-
valued symmetric matrices Q,S ∈ Sym+(d), see Olkin and Pukelsheim [1982]. The proposition
below extends it to the case of Hermitian matrices H+(d).

Proposition 2.1. Let Q,S ∈ H+(d) and Q � 0. Then (1.1) can be rewritten as

d2BW (Q,S) =
∥∥(T SQ − I)Q1/2

∥∥2
F
= tr

(
T SQ − I

)
Q
(
T SQ − I

)
,

where the optimal map from Q to S is

T SQ
def
= argmin

T :TQT ∗=S

∥∥(T − I)Q1/2
∥∥
F

= S1/2
(
S1/2QS1/2

)−1/2
S1/2 = Q−1/2

(
Q1/2SQ1/2

)1/2
Q−1/2. (2.1)

By
(
S1/2QS1/2

)−1/2
we denote the pseudo-inverse matrix

((
S1/2QS1/2

)1/2)+
.

Note that being restricted to the sub-space Sym++(d), T
S
Q coincides with the optimal push-forward

(also known as the optimal map) between two centred normal distributions N(0, Q) and N(0, S):
T SQ#N(0, Q) = N(0, S). For more details on general optimal transportation maps see Brenier
[1991], for a particular case of scale-location families one may refer to Álvarez-Esteban et al. [2018],
Takatsu et al. [2011]. The differentiability of T SQ is one of the key ingredients in the proofs. It is validated
in Lemma A.2. Note that for a particular choice of A in (1.3), A = Sym++(d), the differentiability of
optimal transportation maps are proved in Rippl et al. [2016]. Section A.2 is dedicated to the investi-
gation of properties of T SQ and its differential dT S

Q . Section A.3 investigates properties of dBW . We
highly recommend to at least look through these two sections for a better understanding of the tools
used in the proofs of central limit theorems and concentrations.

DOI 10.20347/WIAS.PREPRINT.2788 Berlin 2020



Inference for Bures-Wasserstein barycenters 5

2.1 Existence and uniqueness of Q∗ and Qn

Along with investigation of properties of the distance in hand, and before moving to more general
questions, one should ask her- or himself, whether the Fréchet mean Q∗ exists and, if so, is it unique
or not. We further assume that A has a non-empty intersection with the space of positive definite
operators:

Assumption 1. Given the setting (1.3), we suppose an affine subspaceA ⊂ H(d) to be s.t.H++(d)∩
A 6= ∅. By M we denote the linear subspace of H(d) associated with A, i.e. the following represen-
tation holds: A = {Q0}+M for some Q0 ∈ H(d).

Without loss of generality we assume that P assigns positive probability to the space of positive definite
Hermitian matrices H++(d). We also suppose P to be s.t. the spectrum of S is on average bounded
away from infinity:

Assumption 2. Let data distribution P, S ∼ P, be s.t.

P (H++(d)) > 0, E trS < +∞.

The next theorem ensures existence and uniqueness of the Fréchet mean introduced in (1.3).

Theorem 2.1 (Existence and uniqueness of Fréchet mean Q∗). Under Assumptions 1 and 2, there
exists unique positive-definite barycenterQ∗ of P,Q∗ � 0. Moreover, it is characterised as the unique
solution of the equation

ΠM ET SQ =ΠMI, Q ∈ H++(d), (2.2)

whereΠM is the orthogonal projector ontoM.

Note that for any fixed Q ∈ H++(d), T SQ is a random variable because it is a continuous function
of the random variable S. The equation (2.2) generalises the result for scale-location families in 2-
Wasserstein space, presented in Álvarez-Esteban et al. [2015], Theorem 3.10, and originally obtained
for the Gaussian case in the seminal work Agueh and Carlier [2011], Theorem 6.1. Namely, if A =
Sym++(d), then Q∗ exists and is the unique solution of a fixed-point equation:

Q = E
(
Q1/2SQ1/2

)1/2
.

Note that it is similar to (2.2), as by multiplying the above equation from both sides by Q−1/2 one
obtains ET SQ = I . Existence, uniqueness, and measurability of the estimator Qn defined in (1.4) are
a direct corollary of the above theorem. The proof of Theorem 2.1 is presented in Section A.4.

2.2 Limiting distributions of
√
n(Qn −Q∗),

√
ndBW (Qn, Q∗), and√

n(Vn − V∗)

Armed with the knowledge about properties of dBW (·, ·), Q∗, and Qn, we are now equipped enough
to introduce the first main result of the current study. In what follows we denote the variance of optimal
transportation map from the population barycenter Q∗ to any S ∼ P as

Var
(
T SQ∗
)
= E(T SQ∗ − I)⊗ (T SQ∗ − I), with ET SQ∗ = I, (2.3)

where ⊗ stands for the tensor product. Theorem 2.2 presents the asymptotic convergence of Qn to
Q∗.

DOI 10.20347/WIAS.PREPRINT.2788 Berlin 2020
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Theorem 2.2 (Central limit theorem for the Fréchet mean). Under Assumptions 1 and 2 the approxi-
mation error rate of the Fréchet mean Q∗ by its empirical counterpart Qn is

√
n (Qn −Q∗)

w−→ N (0,Ξ) , (A)

where Ξ is a self-adjoint linear operator acting fromM toM defined in (A.7). Moreover, if Var
(
T SQ∗
)

is non-degenerated, then √
n Ξ̂−1/2n (Qn −Q∗)

w−→ N (0, (I)M) , (B)

where Ξ̂n is a data-driven empirical counterpart of Ξ defined in (A.8).

Remark 1. The notation (A)M denotes a linear operator associated to the restriction of a quadratic
formA to the subspaceM:

(A)M : M→M, X 7→ΠMA(X).

We intentionally postpone the explicit definitions of Ξ and Ξ̂n, because they require an introduction of
many technical details. This would make the description of the main results less transparent. It is worth
noting that the result (B) enables construction of data-driven asymptotic confidence sets. However,
inversion of the empirical covariance might be a problem. For instance, numerical simulations show
that Ξ̂n might be degenerated if P is supported on a set of diagonal matrices. This immediately raises
a question concerning introduction of a resampling approach which would make the computations
tractable. We consider this as a subject for the further research.

The proof of the central limit theorem relies on the Fréchet differentiablilty of T SQ by the lower argument
Q at the point Q∗:

T SQn
= S1/2

(
S1/2QnS

1/2
)−1/2

S1/2, T SQn
≈ T SQ∗ + dT

S
Q∗(Qn −Q∗),

where dT S
Q∗ is a differential of T SQ at the point Q∗.

SinceH+(d) is endowed with the Bures–Wasserstein distance, the convergence properties of dBW (Qn, Q∗)
are also of great interest. The result is a corollary of the above theorem.

Corollary 2.1 (Asymptotic distribution of dBW (Qn, Q∗)). Under conditions of Theorem 2.2 it holds

L
(√

ndBW (Qn, Q∗)
) w−→ L

(∥∥∥Q1/2
∗ dT

Q∗
Q∗

(Z)
∥∥∥
F

)
,

where Z ∈M ⊂ H(d) is a random matrix, Z ∼ N (0,Ξ).

Moreover, replacing in the limiting distributionQ∗ and Z by their empirical counterpartsQn and Zn ∼
N
(
0, Ξ̂n

)
, Zn ∈M, respectively, one obtains the following convergence

dw

(
L
(√

ndBW (Qn, Q∗)
)
,L
(∥∥∥Q1/2

n dTQn

Qn
(Zn)

∥∥∥
F

))
→ 0,

where dw is some metric inducing the weak convergence.

To illustrate the result, we consider the case of a diagonalQ∗ = diag(q1, . . . , qd). This setting admits
the explicit form of the limiting distribution:

L
(√

ndBW (Qn, Q∗)
) w−→ L

√√√√ d∑
i,j=1

Z2
ij

2(qi + qj)

 ,
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Inference for Bures-Wasserstein barycenters 7

where Z = (Zij)
d
i,j=1. This representation of the limiting distribution is derived in the proof of Corol-

lary 2.1 which is based on the fact that

d2BW (Qn, Q∗) = −
1 + oP (1)

2

〈
dTQ∗

Q∗
(Qn −Q∗), Qn −Q∗

〉
,

with oP (·) being o-small in probability, and an explicit formula for dT S
Q from Lemma A.2. We discuss

the above approximation of d2BW (Qn, Q∗) in more detail later in Section 2.4.

The last result concerning convergence of empirical barycenter is the central limit theorem for the
empirical variance Vn.

Theorem 2.3 (Central limit theorem for Vn). Let Assumptions 1 and 2 be fulfilled and E(trS)2 <∞.
Then √

n (Vn − V∗)
w−→ N

(
0,Var d2BW (Q∗, S)

)
.

All proofs are collected in Section A.4. Section 4.1 illustrates the asymptotic behaviour ofL (
√
n‖Qn −Q∗‖F ),

L (
√
ndBW (Qn, Q∗)), and L (

√
n|V∗ − Vn|).

2.3 Concentration of Qn and Vn

This section discusses the concentration properties of Qn under the assumption of sub-Gaussianity
of P:

Assumption 3 (Sub-Gaussianity of
√
trS). Let

√
trS be sub-Gaussian:

P
{√

trS ≥ t
}
≤ Be−bt

2

for any t ≥ 0,

with some constants B, b > 0.

The first result concerns the concentration of Q−1/2∗ QnQ
−1/2
∗ in Frobenius norm. This is a crucial

step in the proof of concentration of dBW (Qn, Q∗). From now on we denote the operator norm of a
matrix A or an operatorA as ‖A‖, ‖A‖, respectively. The notations λmin(A), λmin(A) denote their
smallest eigenvalues.

Theorem 2.4 (Concentration of Q−1/2∗ QnQ
−1/2
∗ in F-norm). Let Assumptions 1, 2, and 3 be fulfilled,

then

P
{∥∥Q−1/2∗ QnQ

−1/2
∗ − I

∥∥
F
≥ cQ√

n
(
√
m+ t)

}
≤ 2me−ntF + e−t

2/2 + (1− p)n

for any t ≥ 0 and n ≥ c2Q(
√
m+ t)2, where

m
def
= dim(M), p

def
= P

(
H++(d)

)
,

cQ
def
=

4‖Q∗‖σT
λmin(F ′)

, tF
def
= Cmin

(
λmin(F

′)

U log1/2 (U/σF )
,
λ2min(F

′)

σ2
F

)
,

where the operatorF ′ is defined in (B.3), constant σT comes from auxiliary Proposition B.2, constants
σF and U are defined in auxiliary Proposition B.1, and C denotes a generic constant.

DOI 10.20347/WIAS.PREPRINT.2788 Berlin 2020
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To make the result more transparent, we further discuss it in a less formal way. The proof is based on
three steps, and each step yields a bounding term. The first step gives the term 2me−ntF . It deals
with the concentration of some auxiliary empirical operator F ′

n defined in (B.2) in the vicinity of its
population counterpart F ′. These two operators are essentially a price to pay for moving from the
space of optimal transportation maps T SQ to the space of barycenters. The concentration of F ′

n is
derived from a result by Koltchinskii [2011] which is presented in Proposition B.1. The constants σF
and U appear due to this concentration. Some prior bounds on σF and U are obtained in Lemma B.3.
The second step yields the term e−t

2/2. It ensures the concentration of
∥∥ 1
n

∑
i T

Si
Q∗
− I
∥∥
F

, and relies
on the result by Hsu et al. [2012]. To make the text self-contained, we introduce it in Proposition B.2.
The constant σT comes from a bound on

∥∥ 1
n

∑
i T

Si
Q∗
− I
∥∥
F

. The last step yields the term (1− p)n.
It comes from the requirement on non-degeneracy of Qn. In other words, a high degeneracy leads to
a smaller p and, thus, to worse bounds.

The next result deals with the concentration of dBW (Qn, Q∗). It is a corollary of the above theorem.

Corollary 2.2 (Concentration of Qn in dBW distance). Under the conditions of Theorem 2.4 the fol-
lowing result holds:

P
{
dBW (Qn, Q∗) ≥ cQ‖Q∗‖1/2√

n
(
√
m+ t)

}
≤ 2me−ntF + e−t

2/2 + (1− p)n.

The last important result of the current study describes the concentration properties of the empirical
Fréchet variance Vn.

Theorem 2.5 (Concentration of Vn). Let Assumptions 1, 2, and 3 be fulfilled, then, in the notation of
Theorem 2.4,

P {|Vn − V∗| ≥ z(µ, ν, d, n, t)} ≤ 2me−ntF + 3e−t
2/2 + (1− p)n

with
z(b, ν, d, n, t)

def
= max

(
µt2

n
, νt√

n

)
+ 3

c2Q‖F
′‖

n
(
√
m+ t)2.

A pair (ν, µ) is the parameters of a sub-exponential r.v. d2BW (Q∗, S).

All the proofs are collected in Section B.

2.4 Central limit theorem and asymptotic normality of M-estimators

A possible approach to obtain the central limit theorem is to look at a more general result concerning
the asymptotic normality of M-estimators. To make the text self-contained, we briefly recall the subject
following Section 5.4 in the book by Van De Geer [2006]. Under the setting (1.4), d2BW (Q,S) might
be considered as a loss function parametrized by elements of the affine subspace, Q ∈ A ∩H+(d).
Thus, the proof of the CLT for an empirical barycenter is equivalent to a validation of the following
conditions.

(C1) There exists a function ψQ : H+(d)→ H(d) which is L2(P)-integrable, s.t.

lim
Q→Q∗

|d2BW (Q,S)− d2BW (Q∗, S)− 〈ψQ∗(S), Q−Q∗〉|
‖Q−Q∗‖

= 0.

DOI 10.20347/WIAS.PREPRINT.2788 Berlin 2020



Inference for Bures-Wasserstein barycenters 9

(C2) As Q→ Q∗, it holds ∫ (
d2BW (Q,S)− d2BW (Q∗, S)

)
dP(S)

=
1

2
〈Q−Q∗,V (Q−Q∗)〉+ o(‖Q−Q∗‖),

where V is some positive definite operator.

(C3) Let Q 6= Q∗, and define gQ(S)
def
=

d2BW (Q,S)−d2BW (Q∗,S)

‖Q−Q∗‖ . Suppose that for some ε > 0, the

class {gQ(S), Q : ‖Q − Q∗‖ ≤ ε} has an envelope G ∈ L2(P) and that it is a Donsker
class.

Lemma A.6 presents differentiability of the Bures–Wasserstein distance and ensures the following
quadratic approximation. For any Q ∈ H++(d) it holds:

− 2(
1+λ

1/2
max(Q

−1/2
∗ QQ

−1/2
∗ )

)2 〈dT S
Q∗(Q−Q∗), Q−Q∗

〉
≤ d2BW (Q,S)− d2BW (Q∗, S) + 〈T SQ∗ − I,Q−Q∗〉
≤ − 2(

1+λ
1/2
min(Q

−1/2
∗ QQ

−1/2
∗ )

)2 〈dT S
Q∗(Q−Q∗), Q−Q∗

〉
,

where λmax(A) and λmin(A) stand for maximal and minimal eigenvalues of a matrix A, respectively.
This approximation ensures Condition (C1) and (C2) to be fulfilled with ψQ∗(S) = I − T SQ∗ , and
V = −EdT S

Q∗ , respectively. However, it is not clear how one should proceed with the validation of
Condition (C3). On the other hand, the direct proof of CLT introduced in the present study is suitable
for the proof of the concentration results.

3 Connection to other problems

In this section we explain a connection of obtained results to some other problems. Section 3.1 in-
vestigates the relation between the Bures–Wasserstein barycenter and the 2-Wasserstein barycenter
of some scale-location family. Section 3.2 illustrates the idea of a barycenter restricted to an affine
subspace A ⊂ H(d).

3.1 Connection to scale-location families of measures

We first present the concept of a scale-location family of absolutely continuous measures supported
on Rd.
Definition 3.1. Let X ∼ µ be a random variable following a law µ ∈ Pac2 (Rd), where Pac2 (Rd) is the
set of absolutely continuous measures with a finite second moment. A set of all affine transformations
of X is written as

SL(µ) def
=
{
L
(
PX + p

)
: P ∈ Sym+(d), p ∈ Rd

}
.

It is referred to as a scale-location family.

Scale-location families play an important role in modern data analysis and appear in many practical
applications due to being user-friendly in terms of theoretical analysis and, at the same time, possess-
ing high modelling power. For example, it is widely used in medical imaging Wassermann et al. [2010],
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modelling of molecular dynamic Gonzalez et al. [2017], clustering procedures Del Barrio et al. [2017],
climate modelling Mallasto and Feragen [2017], embedding of complex objects in low dimensional
spaces Muzellec and Cuturi [2018], and so on.

A possible metric that takes into account non-linearity of the underlying data-set is the 2-Wasserstein
distance, dW2 . Let µX , µY be elements of SL(µ), and let random variables sampled from µX and
µY be X ∼ µX , Y ∼ µY , respectively. We denote their first and second moments as

EX = mX , EY = mY , Var(X) = SX , Var(Y ) = SY . (3.1)

It is a well-known fact that dW2 between measures coming from the same scale-location family de-
pends only on the first and second moments of the measures:

d2W2
(µX , µY ) = ‖mX −mY ‖2 + d2BW (SX , SY ).

For more details on a general class of optimal transportation distances we recommend excellent books
Ambrosio and Gigli [2013], Villani [2009].

Distribution over a scale-location family In many cases we are interested in data sets coming
from some scale-location family. Let P be a probability measure supported on some SL(µ). And let

(Ω,F,P) be a generic probability space, s.t. for any ω ∈ Ω there exists an image µω
def
= L

(
PωX +

pω
)
, where Pω ∈ Sym+(d) is a scaling parameter and pω ∈ Rd is a shift parameter. A randomly

sampled measure µω belongs to SL(µ) by construction, and its first and second moments (mω, Sω)
are written as

mω
def
= Pωr + pω, Sω

def
= PωQP

>
ω ,

where the pair (r,Q) denote the first and the second moments of the template measure µ. The
Fréchet variance of P at any arbitrary point µ′ is written as

V(µ′) def
=

∫
supp(P)

d2W2
(µ′, νω)P(dω).

Given an i.i.d. sample ν1, . . . , νn from P, we define the empirical counterpart of V(µ′):

Vn(µ′)
def
=

1

n

n∑
i=1

d2W2
(µ′, νi).

Then the population and the empirical barycenters µ∗ and µn are

µ∗ = argmin
µ∈P2(Rd)

V(µ), µn = argmin
µ∈P2(Rd)

Vn(µ).

Note that µ∗ and µn belong to SL(µ) and are uniquely characterised by their first and second mo-
ments, (r∗, Q∗) and (rn, Qn), respectively, see Theorem 3.10 in Álvarez-Esteban et al. [2015]:

r∗ =

∫
supp(P)

mω P(dω), Q∗ =

∫
supp(P)

(
Q1/2
∗ SωQ

1/2
∗
)1/2 P(dω), (3.2)

rn =
1

n

n∑
i=1

mi, Qn =
1

n

n∑
i=1

(
Q1/2
n SiQ

1/2
n

)1/2
. (3.3)
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It is worth noting that the concept of Wasserstein barycenter presented originally in a seminal work by
Agueh and Carlier [2011] becomes a topic of extensive scientific interest in the last few years. One of
the main reasons is an introduction of computationally feasible procedures, see, e.g., Cuturi [2013],
Peyré et al. [2019], Dvurechensky et al. [2018], Kroshnin et al. [2019]. There are also many works
dedicated to investigation of theoretical properties of barycenters. A work of Bigot and Klein [2012]
focuses on the convergence of a parametric class of barycenters, while Bigot et al. [2016] investi-
gate the asymptotic properties of the regularised barycenters. The paper Le Gouic and Loubes [2017]
ensures the convergence of the Wasserstein barycenters. To the best of our knowledge, the most
state-of-the-art result concerning the rates of convergence of an empirical 2-Wasserstein barycenter
is obtained as a particular illustration of a more general result by Le Gouic et al. [2019]. Namely, this
work establishes fast rates of convergence for empirical barycenters over a large class of geodesic
spaces with curvature bounds in the sense of Alexandrov. This work extends and completes the re-
sults by Ahidar-Coutrix et al. [2018]. The latter paper provides the rates of convergence for empirical
barycenters of the Borel probability measure on a metric space either under assumptions on weak
curvature constraint of the underlying space or for a case of a non-negatively curved space on which
geodesics, emanating from a barycenter, can be extended. Corollary 2.1 extends the above results
for dW2(µn, µ∗) for the case of barycenters constrained to an affine sub-space for measures coming
from some scale-location family. The rate is of order n−1/2.

The paper Kroshnin [2018] obtains an analogue of the law of large numbers for the case of an arbitrary
cost function on some affine sub-space A.

The paper Agueh and Carlier [2017] introduces the CLT for an empirical barycenter for P supported
on a finite set of Gaussian measures. It is worth noting that the idea of the proof also relies on the
differentiability of optimal transportation maps.

At this point, it is worth mentioning that there are some other works dealing with the central limit
theorem for the Wasserstein distance, e.g., Rippl et al. [2016], Del Barrio and Loubes [2019]. How-
ever, the setting in these works differs significantly from what is done in the present study. The paper
Rippl et al. [2016] derives the central limit theorems for the p-Wasserstein distance, p ≥ 1, between
empirical distributions sampled from Gaussians supported on Rd. The work Del Barrio and Loubes
[2019] establishes the central limit theorem and the variance bounds for the 2-Wasserstein distance
between an empirical measure and its true underlying counterpart on Rd. A result, similar in spirit to
Theorem 2.5 is obtained in Del Barrio et al. [2016]. However, the authors consider only the space of
probability measures supported on the real line, d = 1, endowed with 2-Wasserstein distance. To the
best of our knowledge, there are no results similar to the concentration Theorem 2.4 and Corollary 2.2
in the case of 2-Wasserstein distance.

3.2 Connection to quantum mechanics

The original Bures metric appears in quantum mechanics in relation to the fidelity measure between
two quantum states and is used for the measurement of quantum entanglement Marian and Marian
[2008], Dajka et al. [2011]. Let ρ and σ be two density operators. In essence a density matrix ρ is a
Hermitian positive semi-definite operator with the unit trace, ρ ∈ H+(d), tr ρ = 1. It is used as a
possible way of description of statistical state of a quantum system. For an introduction to the density
operators theory one may look Fano [1957]. Let ρ and σ be two quantum states:

ρ, σ ∈ H+(d), tr ρ = 1, trσ = 1. (3.4)
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Fidelity of these states is defined as F(ρ, σ) =
(
tr
√
ρ1/2σρ1/2

)2
. It quantifies “closeness” of ρ

and σ, see Jozsa [1994]. It is obvious, that in case of (3.4) the Bures–Wasserstein distance turns into
Bures distance:

d2B(ρ, σ) = 2
(
1−F1/2(ρ, σ)

)
. (3.5)

The rest of this section illustrates the idea of the barycenter restricted to some affine sub-space A.
Given a random ensemble of density matrices, one is able to recovery its mean using averaging in
the Euclidean sense. However, the Bures–Wasserstein barycenter suggests an alternative way to
define the barycenter in terms of fidelity measure (3.5). We consider a following statistical setting. Let
(Ω,F,P) be some mechanism which generates quantum states ρω. Given an i.i.d. sample ρ1, . . . , ρn
we write a population and an empirical variance of P as

V(σ) =
∫
supp(P)

d2BW (σ, ρω)P(dω), Vn(σ) =
1

n

n∑
i=1

d2BW (σ, ρi).

Then the population and the empirical barycenters belonging the class of all d×d-dimensional density
operators are defined as

ρ∗ = argmin
σ: trσ=1

V(σ), ρn = argmin
σ: trσ=1

Vn(σ).

It can be easily shown, that by “taking the global Fréchet barycenter” or, in other words neglecting
the condition trσ = 1, we end up with the global barycenter, which is the solution of the fixed point

equation which is already mentioned in Section 2: ρ =
∫ (

ρ1/2ρωρ
1/2
)1/2 P(dω). However, this is a

contraction mapping. Thus tr ρ∗ < 1, and ρ∗ is not a density operator. In other words the condition
trσ = 1 ensures, that ρ∗ and ρn also belong to the class of density operators. Taking into account the
results obtained in Section 2, ρn is in some sense a natural consistent estimator of ρ∗ with the known
rate of convergence and known deviation properties.

4 Interpolation using empirical BW barycenters

We suggest to use the empirical Bures–Wasserstein barycenters for filling in gaps in data sets con-
sisting of either measures coming from the same scale-location family, or from a family of Hermitian
matrices. As a motivation we consider a data set related to the climate dynamics collected in Siberia
(Russia) between 1930 and 2009, Bulygina and Razuvaev [2012], Tatusko [1990], where observa-
tions for the years 1934, 1938, 1942, 1948 and 1961 are lost. In this data set a behaviour of some
quantities, such as a min/max daily temperatures during a year etc., is modelled using the Gaussian
processes which parameters are estimated from the real measurements. We propose to replace the
gaps in data with an an empirical barycenter constructed from available observations. To make the
illustration more transparent, we consider a toy example for the case of two-dimensional covariance
matrices. Each observed matrix is represented graphically by a two-dimensional ellipses. The upper
panel at Fig. 1 depicts a family of i.i.d. covariance matrices sampled consecutively over the discrete
time t. The eights observation is supposed to be missing. Three lower panels present a possible re-
placement constructed from two (2-d panel), six (3-d panel), and all available observations (4-th panel).
The observations used for data reconstruction are coloured in the dark green. The red ellipses corre-
spond to the Bures–Wasserstein mean, while the blue ones depict the Euclidean mean. The difference
in obtained results presented by three lower panels raises a question of a proper choice of number
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of observations used for missing data completion. Though being very interesting, this question is be-
yond the scope of the current study. Another question concerns the construction of non-asymptotic
confidence sets for the estimators. For instance the work by Ebert et al. [2017] suggests a suitable
methodology based on multiplier bootstrap. However it considers only the case of commuting covari-
ance matrices. Thus we consider this question as a matter for further research.

t

BW barycenter Euclidean mean

Figure 1: Interpolation of the lost data

The next two section provide some illustrations of the convergence rate of an empirical barycenter to
the true one. To make the presentation complete, we also provide an illustration of the convergence of
an empirical variance Vn to V∗.

4.1 Simulated data

In this section we consider a simulated data set. Ccovariance matrices are generated as follows. A

matrix S̃k = AkA
T
k is a d-dimensional matrix, where Ak = (akij), a

k
ij

iid∼ Unif[0, 1] + 1 for all i,

j. To ensure that S̃k is non-degenerated, we consider the orthogonal decomposition S̃k = Ũ∗k Λ̃kŨk,

and replace Λ̃k by Λk = diag(λk1, . . . , λ
k
d) s.t. λki ∼ Unif[18, 22]. Thus, an observed i.i.d. sample

consists of matrices Sk = Ũ∗kΛkŨk, k = 1, . . . , n. In what follows, Qn is a barycenter of the sample
S1, . . . , Sn.

Fig. 2 illustrates the convergence of L (
√
n‖Qn −Q∗‖F ) to L(‖Z‖F ) with Z ∼ N(0,Ξ) pre-

sented in Theorem 2.2. Fig. 3 depicts the convergence of the distribution L (
√
ndBW (Qn, Q∗)) to

L
(∥∥∥Q1/2

∗ dT
Q∗
Q∗

(Z)
∥∥∥
F

)
obtained in Corollary 2.1. Finally, Fig. 4 illustrates the convergence of den-

sity of L (
√
n(V∗ − Vn)) to the density of the Gaussian distribution N (0,Var (d2BW (Q∗, S))) vali-
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dated by Theorem 2.3. The numerical experiments are performed using R. The population barycen-
ter Q∗ was computed using a sample of 20000 observed covariance matrices. A solid line depicts
the density of a respective limiting distributions, while the dashed lines correspond to the densi-
ties of L (

√
n‖Qn −Q∗‖F ), L (

√
ndBW (Qn, Q∗)), or L (

√
n(V∗ − Vn)), respectively. We con-

sider different sample sizes for calculation of an empirical Bures–Wasserstein barycenter Qn with
n ∈ {3, 10, 100, 1000}. Simulation were carried out for the dimensions d = 5 and d = 10.

Figure 2: Densities of L(
√
n‖Qn −Q∗‖F )

Figure 3: Densities of L (
√
ndBW (Qn, Q∗))
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Figure 4: Densities of L (
√
n(Vn − V∗))

4.2 Data aggregation in climate modelling

In this section we demonstrate the convergence rates for the climate-related data set. At first, we
discuss the set in more detail. Following the original setting, we assume that the daily minimum tem-
peratures within a year is described by a class of Gaussian processes. The temperature is measured
at a set of 30 randomly sampled meteorological stations located in Siberia. Each Gaussian curve is
obtained through the regression, and the maximum likelihood estimation, and is sampled in 50 points
Mallasto and Feragen [2017]. Thus, the observed data set D consists of 71 Gaussian distributions:

D =
{
N(mt, St), mt ∈ R50, St ∈ Sym++(50), t = 1, . . . , 71

}
,

where N(mt, St) is a Gaussian distribution related to a Gaussian process describing a t-th year,
t = 1933, . . . , 2009. The missing years in this data set are 1934, 1938, 1942, 1948, and 1961.
This distribution is specified by a mean mt and a covariance St. A Gaussian distribution N(r∗, Q∗) is
the population Wasserstein barycenter of D. It is characterised by the first and the second moments
written as (r∗, Q∗)

r∗ =
1

71

71∑
t=1

mt, Q∗ =
1

71

71∑
t=1

(
Q1/2
∗ StQ

1/2
∗
)1/2

.

A family of empirical barycenters N(rn, Qn) with parameters (rn, Qn) coming from (3.3) is con-
structed by means of re-sampling with replacement of the original data set.

Fig. 5 and Fig. 6 present the convergence of densities of L (
√
n‖Qn −Q∗‖F ) to L(‖Z‖F ) with

Z ∼ N(0,Ξ), and L (
√
ndBW (Qn, Q∗)) to L

(∥∥∥Q1/2
∗ dT

Q∗
Q∗

(Z)
∥∥∥
F

)
, respectively. The limiting dis-

tributions are depicted by solid lines, while the dashed ones stand for the densities computed for
barycenters of n covariance matrices with n ∈ {3, 10, 70}.
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Figure 5: L (
√
n‖Qn −Q∗‖F ) Figure 6: L (

√
ndBW (Qn, Q∗))
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A Proof of Central Limit Theorem

A.1 List of accepted notations

To make the presentation more transparent, we introduce a list of some used notations.

A,B Matrices or vectors
A,B Operators
λmax(�), λmin(�) Largest and smallest eigenvalue of an operator or a matrix
(�)M Restriction of a quadratic form to a subspaceM
‖�‖ Operator norm
‖�‖F Frobenius norm
‖�‖1 Schatten norm
‖�‖ψ1 ψ1 Orlicz norm
‖�‖ψ2 ψ2 Orlicz norm
κ(�) = ‖�‖ · ‖�−1‖ Condition number of an operator or a matrix
〈�,�〉 Inner product associated to Frobenius norm
⊗ Tensor product
L(X) Distribution of a r.v. X
w−→ Weak convergence
a.s.−−→ A.s. convergence
dw(�,�) Metric inducing weak convergence
oP (�) O-small in probability
OP (�) O-big in probability
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A.2 Properties of T S
Q

Proof of Proposition 2.1. First, we prove that optimal T is self-adjoint. Indeed, assume the opposite,
then

Q1/2TQT ∗Q1/2 =
(
Q1/2TQ1/2

) (
Q1/2TQ1/2

)∗
= Q1/2SQ1/2

and thus trQ1/2TQ1/2 < tr
(
Q1/2SQ1/2

)1/2
. Therefore

tr(T − I)Q(T ∗ − I) = trS + trQ− 2 trTQ = trS + trQ− 2 trQ1/2TQ1/2

> trS + trQ− 2 tr
(
Q1/2SQ1/2

)1/2
= d2BW (Q,S).

If T is Hermitian but not positive semi-definite, then Q1/2TQ1/2 4
(
Q1/2SQ1/2

)1/2
, Q1/2TQ1/2 6=(

Q1/2SQ1/2
)1/2

, hence again trQ1/2TQ1/2 < tr
(
Q1/2SQ1/2

)1/2
.

Finally, if T ∈ H+(d), then it is straightforward to check that T = T SQ given by (2.1) and

tr(T − I)Q(T ∗ − I) = trS + trQ− 2 tr
(
Q1/2SQ1/2

)1/2
= d2BW (Q,S).

The proof of the Central Limit Theorem mainly relies on the differentiability of the map (2.1). Lemma A.2
shows that T SQ can be linearised in the vicinity of Q:

T SQ+X = T SQ + dT S
Q(X) + o

(
‖X‖

)
,

where dT S
Q : H(d) → H(d) is a self-adjoint negative-definite operator and ‖X‖ stands for an oper-

ator norm of X . Properties of dT S
Q are investigated in Lemma A.3. Let us introduce some notation: if

G(A) is a functional of a matrix A, then we denote its differential as odAG.

Lemma A.1. Map Q 7→ g(Q) = Q1/2 is differentiable on H++(d), and its differential is given by

dQg(X) = U∗
(
(UXU∗)ij√
qi +
√
qj

)d
i,j=1

U, X ∈ H(d),

where Q = U∗ diag(q)U is the eigenvalue decomposition.

Proof. First, let us consider the map P 7→ f(P ) = P 2. It is smooth and its differential

dP f(X) = PX +XP, X ∈ H(d)

is non-degenerated:
〈dP f(X), X〉 = 2 trXPX > 0, X 6= 0,

whenever P ∈ H++(d). From now on 〈·, ·〉 denotes a scalar product associated to Frobenius norm.

Now applying the inverse function theorem we obtain that the inverse map g(·) is also smooth and its
differential enjoys the following equation

X =
(
dP f |P=Q1/2

)
(dQg(X)) = Q1/2dQg(X) + dQg(X)Q1/2,
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thus
UXU∗ = (diag(q))1/2UdQg(X)U∗ + UdQg(X)U∗(diag(q))1/2,

(UXU∗)ij = (
√
qi +
√
qj)(UdQg(X)U∗)ij, 1 ≤ i, j ≤ d,

and

dQg(X) = U∗
(
(UXU∗)ij√
qi +
√
qj

)d
i,j=1

U.

Lemma A.2 (Fréchet-differentiability of the map T SQ ). For any S ∈ H+(d) the map T SQ can be lin-
earised in the vicinity of Q ∈ H++(d) as

T S
Q̃
= T SQ + dT S

Q

(
Q̃−Q

)
+ o

(∥∥∥Q̃−Q∥∥∥) , as Q̃→ Q,

where
dT S

Q(X)
def
= −S1/2U∗Λ−1/2δΛ−1/2US1/2, X ∈ H(d), (A.1)

U∗ΛU is an eigenvalue decomposition of S1/2QS1/2

U∗ΛU = S1/2QS1/2, U∗U = UU∗ = I, Λ = diag
(
λ1, . . . , λrank(S), 0, . . . , 0

)
,

Λ−1/2 =
(
Λ1/2

)+
= diag(λ

−1/2
1 , . . . , λ

−1/2
rank(S), 0, . . . , 0),

δ = (δij)
d
i,j=1, δij =

{ ∆ij√
λi+
√
λj
, i, j ≤ rank(S)

0, otherwise
, ∆ = US1/2XS1/2U∗.

Proof. The proof mainly relies on the differentiation of the pseudo-inverse term
(
S1/2QS1/2

)−1/2
, as

long as

dT S
Q(X) = S1/2dQ

(
S1/2QS1/2

)−1/2
(X)S1/2.

Obviously we can consider only restriction to range(S) and therefore assume w.l.o.g. S � 0. As(
S1/2(Q+X)S1/2

)−1/2
= U∗ (Λ+∆)−1/2 U , by Lemma A.1 and von Neumann series expansion

we obtain for infinitesimal X ∈ H(d) and corresponding ∆ that

(Λ+∆)−1/2 =
(
Λ1/2 + δ + o(‖∆‖)

)−1
=
(
Λ1/4

(
I + Λ−1/4δΛ−1/4 + o(‖∆‖)

)
Λ1/4

)−1
= Λ−1/4

(
I − Λ−1/4δΛ−1/4 + o(‖∆‖)

)
Λ−1/4

= Λ−1/2 − Λ−1/2δΛ−1/2 + o(‖∆‖).

Then the differential dQ

(
S1/2QS1/2

)−1/2
(X) is written as

dQ

(
S1/2QS1/2

)−1/2
(X) = −U∗Λ−1/2δΛ−1/2U.

Therefore,
T SQ+X = T SQ + dT S

Q(X) + o(‖X‖),

where dT S
Q(X) is defined by (A.1).
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Lemmas A.3 and A.4 are technical and explore properties of dT S
Q .

Lemma A.3. For any S ∈ H+(d), Q ∈ H++(d), the properties of operator dT S
Q defined in (A.1) are

following:

(I) it is self-adjoint;

(II) it is negative semi-definite;

(III) it enjoys the following bounds:

−
〈
dT S

Q(X), X
〉
≤
λ
1/2
max

(
S1/2QS1/2

)
2

∥∥Q−1/2XQ−1/2∥∥2
F
,

−
〈
dT S

Q(X), X
〉
≥
λ
1/2
min

(
S1/2QS1/2

)
2

∥∥Q−1/2XQ−1/2∥∥2
F
;

(IV) it is homogeneous w.r.t. Q with degree −3
2

and w.r.t. S with degree 1
2
, i.e. dT S

aQ = a−3/2dT S
Q

and dT aS
Q = a1/2dT S

Q for any a > 0;

(V) it is monotone w.r.t. S1/2QS1/2 (once range S is fixed): dT S0
Q0
4 dT S1

Q1
in the sense of self-

adjoint operators onH(d)wheneverS1/2
0 Q0S

1/2
0 4 S

1/2
1 Q1S

1/2
1 and range(S0) = range(S1);

in particular, dT S
Q is monotone w.r.t. Q ∈ H++(d) for fixed S.

Proof. Slightly changing notations, we rewrite (A.1) as

dT S
Q(X) = −S1/2U∗Λ−1/2δXΛ−1/2US1/2,

where matrices U and Λ come from Lemma A.2 and

δX = (δXij )
d
i,j=1, δXij =

∆X
ij√

λi +
√
λj
, ∆X = US1/2XS1/2U∗.

(I) Self-adjointness

Consider a scalar product

〈dT S
Q(X), Y 〉 = tr

(
dT S

Q(X)Y
)
= − tr

(
S1/2U∗Λ−1/2δXΛ−1/2US1/2Y

)
= − tr

(
Λ−1/2δXΛ−1/2US1/2Y S1/2U∗

)
.

We now introduce a following notation

∆Y def
= US1/2Y S1/2U∗.

Then the above equality can be continued as follows:

− tr
(
Λ−1/2δXΛ−1/2US1/2Y S1/2U∗

)
= − tr

(
Λ−1/2δXΛ−1/2∆Y

)
= −

r∑
i,j=1

δXij√
λiλj

∆Y
ij = −

r∑
i,j=1

∆X
ij∆

Y
ij√

λiλj(
√
λi +

√
λj)

= tr
(
dT S

Q(Y )X
)
= tr

(
XdT S

Q(Y )
)
= 〈X,dT S

Q(Y )〉,

where r = rank(S). Thus the operator is self-adjoint.
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(II) Boundedness and (III) eigenvalues

Denoting ∆X by ∆ (i.e. now ∆ = US1/2XS1/2U∗) and taking into account the above expansion of
an inner product, one obtains

−〈dT S
Q(X), X〉 =

r∑
i,j=1

∆2
ij√

λiλj(
√
λi +

√
λj)

=
r∑

i,j=1

(
∆ij√
λiλj

)2 √
λiλj√

λi +
√
λj
. (A.2)

Note, that the function f(λi, λj)
def
=

√
λiλj

√
λi+
√
λj

is monotonously increasing in both arguments λi and

λj , thus

max
i,j

f(λi, λj) =
λ
1/2
max(Λ)

2
, min

i,j
f(λi, λj) =

λ
1/2
min(Λ)

2
. (A.3)

For the sake of simplicity we introduce a new variable

ζ
def
= Q−1/2XQ−1/2,

its Frobenius norm is written as
‖ζ‖2F = tr

(
XQ−1XQ−1

)
.

Moreover, the following inequality for trace holds:

tr
(
XQ−1XQ−1

)
≥ tr

(
ΠSXΠSQ

−1ΠSXΠSQ
−1ΠS

)
= tr

(
∆Λ+∆Λ+

)
=
∥∥Λ−1/2∆Λ−1/2∥∥2

F
=

r∑
i,j=1

∆2
ij

λiλj
.

Here ΠS is the orthogonal projector onto the range of S.

Then combining (A.2) with (A.3), the upper and lower bounds can be obtained as follows:

−〈dT S
Q(X), X〉 ≤ max

i,j
f(λi, λj)

r∑
i,j=1

(
∆ij√
λiλj

)2

≤ λ
1/2
max(Λ)

2
‖ζ‖2F ,

−〈dT S
Q(X), X〉 ≥ min

i,j
f(λi, λj)

r∑
i,j=1

(
∆ij√
λiλj

)2

=
λ
1/2
min(Λ)

2
‖ζ‖2F .

Note, that if S is degenerated, the lower bound becomes trivial.

(IV) Homogeneity and (V) monotonicity

Homogeneity follows directly from definition (A.1). Now we prove monotonicity. As range of S1/2QS1/2

is fixed, we may assume S � 0. Consider

〈dT S
Q(X), X〉 = tr

(
S1/2U∗Λ−1/2δΛ−1/2US1/2, X

)
=
〈
U∗Λ−1/2δΛ−1/2U, S1/2XS1/2

〉
=
〈
dQ

(
S1/2QS1/2

)−1/2
(X), S1/2XS1/2

〉
=
〈
dMM−1/2 (S1/2XS1/2

)
, S1/2XS1/2

〉
,
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with replacement M = S1/2QS1/2 to be change of variables. As long as X is supposed to be
fixed, it is enough to show that the differential dMM−1/2 is monotone in M . Notice that the operator(
dMM−1/2)−1 at point M is equal to the differential of the inverse map P 7→ P−2 at point P =

M−1/2:
dMM−1/2 =

(
dPP

−2∣∣
P=M−1/2

)−1
.

In turn, dPP
−2 can be expressed as

dPP
−2(X) = −P−1

(
P−1X +XP−1

)
P−1,

the right part of the above equation is self-adjoint, negative-definite and〈
−P−1

(
P−1X +XP−1

)
P−1, X

〉
= −2 trP−2XP−1X.

Choose M1 < M0 � 0 (thus M1/2
1 < M

1/2
0 ) and let Pi = M

−1/2
i for i = 0, 1. Then for any fixed

X ∈ H(d)

− trP−21 XP−11 X = − trM1XM
1/2
1 X ≤ − trM0XM

1/2
0 X = − trP−20 XP−10 X,

i.e. dPP
−2|P1

4 dPP
−2|P0

and hence for the differential of M 7→ M−1/2 the inverse inequality

holds: dMM−1/2
∣∣
M0
4 dMM−1/2

∣∣
M1

. This entails monotonicity of dT S
Q .

Corollary A.1. Under conditions of Lemma A.3, it holds

λmax(−dT S
Q) ≤

λ
1/2
max(S1/2QS1/2)

2λ2min(Q)
, λmin(−dT S

Q) ≥
λ
1/2
min(S

1/2QS1/2)

2λ2max(Q)
.

Proof. Item (III) from the above lemma ensures that

−
〈
dT S

Q(X), X
〉
≤
λ
1/2
max

(
S1/2QS1/2

)
2

∥∥Q−1/2XQ−1/2∥∥2
F
≤ λ

1/2
max(S1/2QS1/2)

2λ2min(Q)
‖X‖2F .

The second bound is proved in a similar way.

Corollary A.2. We define a following rescaled operator

dtSQ(ζ)
def
= Q1/2dT S

Q

(
Q1/2ζQ1/2

)
Q1/2, ζ ∈ H(d). (A.4)

Then a following bound on its eigenvalues hold:

λmin

(
−dtSQ

)
=

1

2
λ
1/2
min

(
S1/2QS1/2

)
,

λmax

(
−dtSQ

)
=

1

2
λ1/2max

(
S1/2QS1/2

)
.

Proof. Notice that inequalities

λmin

(
−dtSQ

)
≥ 1

2
λ
1/2
min

(
S1/2QS1/2

)
,

λmax

(
−dtSQ

)
≤ 1

2
λ1/2max

(
S1/2QS1/2

)
,
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are a trivial consequence of Lemma A.3 (III). Now defining for any 1 ≤ k ≤ rank(S)

∆k
ij =

{
1, i = j = k,

0, otherwise,
, Xk = S−1/2U∆kU∗S−1/2, ζk = Q−1/2XkQ−1/2

we obtain from (A.2) that

−
〈
dtSQ(ζ

k), ζk
〉
= −

〈
dT S

Q(X
k), Xk

〉
=
λ
1/2
k

2

∥∥ζk∥∥2
F
.

Therefore, the above inequalities are sharp.

Lemma A.4. For any Q0, Q1 ∈ H++(d), S ∈ H+(d) consider

Qt
def
= (1− t)Q0 + tQ1, Q′

def
= Q

−1/2
0 Q1Q

−1/2
0 . (A.5)

Then

2

λmin(Q′) + λ
1/2
min(Q

′)
dT S

Q0
4
∫ 1

0

dT S
Qt
dt (I)

4
2

λmax(Q′) + λ
1/2
max(Q′)

dT S
Q0

4
1

1 + 3‖Q′ − I‖/4
dT S

Q0
.

Moreover, if ‖Q′ − I‖ < 1, then∫ 1

0

dT S
Qt
dt <

1

1− ‖Q′ − I‖
dT S

Q0
. (II)

Remark 2. The above inequality might seem confusing due to the fact that λmin(·) ≤ λmax(·),
however this is explained by the fact that dT S

Q is negative definite.

Proof. Notice that

((1− t) + tλmin(Q
′))Q0 4 Qt = Q

1/2
0

(
(1− t)I + tQ′

)
Q

1/2
0 4 ((1− t) + tλmax(Q

′))Q0.

Monotonicity and homogeneity with degree −3
2

of dT S
Q (see Lemma A.3) yield

dT S
Qt
4 dT S

((1−t)+tλmax(Q′))Q0

=
(
(1− t) + tλmax(Q

′)
)−3/2

dT S
Q0

and

dT S
Qt
< dT S

((1−t)+tλmin(Q′))Q0

=
(
(1− t) + tλmin(Q

′)
)−3/2

dT S
Q0
.

Therefore, ∫ 1

0

dT S
Qt
dt 4 dT S

Q0

∫ 1

0

(
(1− t) + tλmax(Q

′)
)−3/2

dt

=
2

λmax(Q′) + λ
1/2
max(Q′)

dT S
Q0

DOI 10.20347/WIAS.PREPRINT.2788 Berlin 2020



A. Kroshnin, V. Spokoiny, A. Suvorikova 26

and respectively, ∫ 1

0

dT S
Qt
dt <

2

λmin(Q′) + λ
1/2
min(Q

′)
dT S

Q0
.

The inequality (II) follows from the fact that

λmin(Q
′) ≥ 1− ‖Q′ − I‖, λmax(Q

′) ≤ 1 + ‖Q′ − I‖,

and inequalities

√
1 + x ≤ 1 +

x

2
for x ≥ 0,

√
1− x ≥ 1− x for 0 ≤ x ≤ 1.

A.3 Properties of dBW (Q,S)

The next lemma ensures strict convexity of dBW (Q,S). In essence, the proof mainly relies on Theo-
rem 7 in Bhatia et al. [2018].

Lemma A.5. For any S ∈ H+(d) a function Q 7→ d2BW (Q,S) is convex on H+(d). Moreover, if
S � 0, then it is strictly convex.

Proof. According to [Bhatia et al., 2018, Theorem 7] a function h(X) = trX1/2 is strictly concave
on H+(d), hence the function

Q 7→ d2BW (Q,S) = trS + trQ− 2 tr
(
S1/2QS1/2

)1/2
is convex onH+(d) for any positive semi-definite S. Moreover, if S � 0, then Q 7→ S1/2QS1/2 is an
injective linear map, and therefore d2BW (Q,S) is strictly convex.

Further we introduce differentiability of d2BW (Q,S) and provides its quadratic approximation.

Lemma A.6. For any Q ∈ H++(d), S ∈ H+(d) the function d2BW (Q,S) is twice differentiable in Q
with

dQd
2
BW (Q,S)(X) = 〈I − T SQ , X〉, X ∈ H(d),

d2
Qd

2
BW (Q,S)(X, Y ) = −〈X,dT S

Q(Y )〉, X, Y ∈ H(d).

Moreover, the following quadratic approximation holds: for any Q0, Q1 ∈ H++(d)

− 2(
1+λ

1/2
max(Q′)

)2 〈dT S
Q0
(Q1 −Q0), Q1 −Q0

〉
≤ d2BW (Q1, S)− d2BW (Q0, S) + 〈T SQ0

− I,Q1 −Q0〉
≤ − 2(

1+λ
1/2
min(Q

′)
)2 〈dT S

Q0
(Q1 −Q0), Q1 −Q0

〉
.

with Q′ defined in (A.5).
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Proof. Note that
dQ

(
S1/2QS1/2

)1/2
(X) = U∗δU,

where δ comes from Lemma A.2. Furthermore, Lemma A.1 implies that

dQ tr
(
S1/2QS1/2

)1/2
(X) = trdQ

(
S1/2QS1/2

)1/2
(X) = tr δ

=

rank(S)∑
i=1

∆ii

2
√
λi

=
1

2
tr∆Λ−1/2

=
1

2
trS1/2XS1/2

(
S1/2QS1/2

)−1/2
=

1

2

〈
T SQ , X

〉
.

Consequently, d2BW (Q,S) is differentiable, and

dQd
2
BW (Q,S)(X) = trX − 2dQ tr

(
S1/2QS1/2

)1/2
(X) =

〈
I − T SQ , X

〉
.

Applying Lemma A.2 one obtains

d2
Qd

2
BW (Q,S)(X, Y ) = dQ

〈
I − T SQ , X

〉
= −

〈
dT S

Q(Y ), X
〉
(Y ).

Quadratic approximation Let Q0, Q1 ∈ H++(d), Qt
def
= (1− t)Q0 + tQ1, t ∈ [0, 1]. The Taylor

expansion in the integral form applied to d2BW (Qt, S) implies

d2BW (Q1, S) = d2BW (Q0, S) +
〈
I − T SQ0

, Q1 −Q0

〉
+

∫ 1

0

(1− t)
〈
−dT S

Qt
(Q1 −Q0), Q1 −Q0

〉
dt

= d2BW (Q0, S)−
〈
T SQ0
− I,Q1 −Q0

〉
−
〈[∫ 1

0

(1− t)dT S
Qt
dt

]
(Q1 −Q0), Q1 −Q0

〉
.

Following the same ideas as in the proof of Lemma A.4 one obtains that∫ 1

0

(1− t)dT S
Qt
dt 4

∫ 1

0

(1− t)
(
(1− t) + tλmax(Q

′)
)−3/2

dT S
Q0
dt

= 2(
1+λ

1/2
max(Q′)

)2dT S
Q0

and ∫ 1

0

(1− t)dT S
Qt
dt < 2(

1+λ
1/2
min(Q

′)
)2dT S

Q0
.

Thus

− 2(
1+λ

1/2
max(Q′)

)2 〈dT S
Q0
(Q1 −Q0), Q1 −Q0

〉
≤ d2BW (Q1, S)− d2BW (Q0, S) + 〈T SQ0

− I,Q1 −Q0〉
≤ − 2(

1+λ
1/2
min(Q

′)
)2 〈dT S

Q0
(Q1 −Q0), Q1 −Q0

〉
.
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A.4 Central limit theorem for Qn and Vn

First let us prove uniqueness and positive-definiteness of Bures–Wasserstein barycenter.

Proof of Theorem 2.1. By Assumption 2 V(0) is bounded:

V(0) = E d2BW (0, S) = E trS <∞.

Moreover, dBW (Q,S) → ∞ as ‖Q‖ → ∞. This implies V(Q) → ∞ as ‖Q‖ → ∞. Thus, any
minimizing sequence for V(·) is bounded. This observation allows us to use the compactness argu-
ment. As V(·) is continuous, this implies existence of a barycenter Q∗ by the compactness argument.

In case P(H++(d)) > 0 applying Lemma A.5 we obtain strict convexity of the integral

Q 7→ E d2BW (Q,S) = V(Q), Q ∈ H+(d),

and therefore, uniqueness of the minimizer Q∗.

To prove that Q∗ � 0 consider arbitrary degenerated Q0 ∈ H+(d) ∩ A, Q1 ∈ H++(d) ∩ A (which
exists by Assumption 1) and S ∈ H++(d). Let us define Qt = (1− t)Q0 + tQ1 ∈ A. We are going
to show, that

d

dt
d2BW (Qt, S) = 〈I − T SQt

, Q1 −Q0〉 → −∞ as t→ 0.

To prove this convergence, we consider the following eigen-decomposition
S1/2Q0S

1/2 = U∗ΛU , Λ = diag(λ1, . . . , λr, 0, . . . , 0), where r = rank(Q0). We denote as
C = US1/2Q1S

1/2U∗, and write it in a block form:

C =

(
C11 C12

C21 C22

)
, C11 ∈ H++(r), C12 = C∗21 ∈ Cr×(d−r), C22 ∈ H++(d− r).

Thus, for all Qt the following representation holds (see Section A.5.5, paragraph Inverse of block
matrix in Boyd and Vandenberghe [2004]):

U
(
S1/2QtS

1/2
)−1

U∗ =
(
(1− t)Λ+ tC

)−1
=

(
E−1t + t2E−1t C12S

−1
t C21E

−1
t −tE−1t C12S

−1
t

−tS−1t C21E
−1
t S−1t

)
,

where Et = (1 − t)Λ11 + tC11, St = tC22 − t2C21E
−1
t C12, with Λ11 = diag(λ1, . . . , λr). When

t→ 0, Et → Λ11 � 0, St

t
→ C22 � 0. This yields

tU
(
S1/2QtS

1/2
)−1

U∗ →
(
0 0
0 C−122

)
,

and
√
tU
(
S1/2QtS

1/2
)−1/2

U∗ →
(
0 0

0 C
−1/2
22

)
.

Therefore,
√
t
〈
T SQt

, Q0

〉
=
√
t
〈(
S1/2QtS

1/2
)−1/2

, S1/2Q0S
1/2
〉

=
〈√

tU
(
S1/2QtS

1/2
)−1/2

U∗, US1/2Q0S
1/2U∗

〉
→
〈(

0 0

0 C
−1/2
22

)
,

(
Λ11 0
0 0

)〉
= 0.
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In the same way one can obtain

√
t
〈
T SQt

, Q1

〉
→
〈(

0 0

0 C
−1/2
22

)
,

(
C11 C12

C21 C22

)〉
= trC

1/2
22 > 0 as t→ 0.

Consequently,

d

dt
d2BW (Qt, S) = 〈I − T SQt

, Q1 −Q0〉 = trQ1 − trQ0 −
trC

1/2
22 + o(1)√

t
→ −∞.

By Assumption 1 it holds P(H++(d)) > 0. Further, since d2BW (Q,S) is convex, its directional deriva-
tives are bounded by difference quotients, thus one can apply Leibniz integral rule for a Lebesgue-
integrable function. This yields the following equality:

d

dt
V(Qt) = E

d

dt
d2BW (Qt, S)→ −∞ as t→ 0,

thus Q0 cannot be a barycenter of P. This yields Q∗ � 0.

Since V(·) is convex and barycenter of P is positive-definite and unique, it is characterized as a
stationary point of Fréchet variation on subspace A, i.e. as a solution to equation

ΠM∇V(Q) =ΠM(I − ET SQ) = 0, Q ∈ A ∩H++(d),

as required. The first equality follows from Lemma A.6.

The proof of CLT relies on covariance operators on the space of optimal transportation maps and on
the space of covariance matrices.

Covariance operator on the space of optimal maps Consider Ti
def
= T Si

Q∗
with ETi = I , and

T ni
def
= T Si

Qn
. We define a covariance Σ of Ti, its empirical counterpart Σn, and its data-driven

estimator Σ̂n as follows:

Σ
def
= E (Ti − I)⊗ (Ti − I) , Σn

def
=

1

n

n∑
i=1

(Ti − I)⊗ (Ti − I) ,

Σ̂n
def
=

1

n

n∑
i=1

(T ni − I)⊗ (T ni − I) . (A.6)

Covariance operators on the space of covariance matrices Let Qn be an empirical barycenter.
The covariance of Qn and its empirical counterpart are defined as

Ξ
def
= F−1(Σ)MF

−1, Ξ : M→M, (A.7)

Ξ̂n
def
= F̂−1n (Σ̂n)MF̂

−1
n , Ξ̂n : M→M, (A.8)

where

F
def
= −E

(
dT S

Q∗

)
M Fn

def
= − 1

n

n∑
i=1

(
dT Si

Q∗

)
M , (A.9)

F̂n
def
= − 1

n

n∑
i=1

(
dT Si

Qn

)
M . (A.10)
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Now we are almost ready to prove the central limit theorem for the empirical barycenter Qn (Theo-
rem 2.2). Another key object which appears in the proofs quite often is a rescaled empirical barycenter:

Q′n
def
= Q−1/2∗ QnQ

−1/2
∗ . (A.11)

For the sake of transparency we provide below a complete statement.

Theorem (Central limit theorem for the covariance of empirical barycenter). The approximation error
rate of the Fréchet mean Q∗ by its empirical counterpart Qn is

√
n (Qn −Q∗)

w−→ N (0,Ξ) , (A)

Moreover, if (Σ)M is non-degenerated, then
√
nΞ̂−1/2n (Qn −Q∗)

w−→ N (0, (I)M) . (B)

Proof of Theorem 2.2. The proof consists of two parts: proofs of (A) and (B).

Proof of (A)

As Vn(·) are convex functions, they a.s. uniformly converge to a strictly convex function V(·) on any
compact set by the uniform law of large numbers. Therefore, their minimizers also converge Qn

a.s.−−→
Q∗, see, e.g., Van De Geer [2006], Lemma 5.2.2. In particular, P (Qn � 0) → 1, with n → ∞. The
expansion from Lemma A.2 at Q∗ implies

T ni = Ti +

∫ 1

0

dT Si
Qt
(Qn −Q∗) dt, (A.12)

whereQt = (1−t)Q∗+tQn. Note, that the condition forQn being a barycenter isΠM
(
1
n

∑
i T

n
i − I

)
=

0. This fact together with averaging of (A.12) over i give:

ΠMI =ΠMT n −αn
(
Qn −Q∗

)
, (A.13)

where

T n
def
=

1

n

n∑
i=1

Ti, αn
def
= − 1

n

∑
i

∫ 1

0

(
dT Si

Qt

)
M dt. (A.14)

According to Lemma A.4

2

λmax(Q′n) + λ
1/2
max(Q′n)

Fn 4 αn 4
2

λmin(Q′n) + λ
1/2
min(Q

′
n)
Fn

where Fn is defined in (A.9), and Q′n comes from (A.11). Recall that F introduced in (A.9) is a
population counterpart of Fn. This operator is correctly defined since by Lemma A.3 one can show
that it is self-adjoint, positive definite and bounded:

‖F ‖ ≤ E
∥∥dT S

Q∗

∥∥ ≤ E ∥∥S1/2Q∗S
1/2
∥∥

2λ2min(Q∗)
<∞.

This bound follows directly from Corollary A.1.

Since by the law of large numbers Fn
a.s.−−→ F and Q′n

a.s.−−→ I , it holds that λmin(Q
′
n)

a.s.−−→ 1 and
λmax(Q

′
n)

a.s.−−→ 1, thus αn
a.s.−−→ F . Therefore we obtain from (A.13)

Qn = Q∗ +α
−1
n ΠM

(
T n − I

)
(A.15)

= Q∗ + F
−1ΠM

(
T n − I

)
+ oP

(∥∥ΠM
(
T n − I

)∥∥) , (A.16)

where F−1 is a bounded linear operator, because dT S
Q∗ is negative definite for any S � 0 by

Lemma A.3. The result (A) follows immediately from the CLT forΠMT n.
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Proof of (B)

Note that result (A) is equivalent to the fact, that

√
nΞ−1/2 (Qn −Q∗)

w−→ N (0, (I)M) .

To ensure convergence of Ξ̂n
a.s.−−→ Ξ we need to show that

a) Σ̂n
a.s.−−→ Σ (follows from Lemma B.2, a.s. consistency of Q′n, and the LLN);

b) F̂n
a.s.−−→ F .

Consider

dT S
Qn
4 dT S

λmax(Q′n)Q∗
=
(
λmax(Q

′
n)
)−3/2

dT S
Q∗ ,

dT S
Qn
< dT S

λmin(Q′n)Q∗
=
(
λmin(Q

′
n)
)−3/2

dT S
Q∗ ,

where the inequalities come from monotonicity of dT S
Q (see (V) in Lemma A.3), and the fact that and

bounds λmin(Q
′
n)Q∗ 4 Qn 4 λmax(Q

′
n)Q∗. The equalities hold due to homogeneity of dT S

Q with
degree −3

2
(see (IV) in Lemma A.3). This naturally leads to the following bounds:

1

λ
3/2
max(Q′n)

Fn 4 F̂n 4
1

λ
3/2
min(Q

′
n)
Fn.

Since Q′n
a.s.−−→ I and Fn

a.s.−−→ F , this implies F̂n
a.s.−−→ F due to the following continuity property:

λmax(Q
′
n) ≤ 1 + ‖Q′n − I‖ and λmin(Q

′
n) ≥ 1− ‖Q′n − I‖.

The above results ensure the validity of substitution Ξ by Ξ̂n. This yields (B).

The asymptotic convergence results for dBW (Qn, Q∗) is a straightforward corollary of the above the-
orem. Here is the proof.

Proof of Corollary 2.1. Since Qn
a.s.−−→ Q∗, Lemma A.6 implies

d2BW (Qn, Q∗) = −
1 + oP (1)

2

〈
dTQ∗

Q∗
(Qn −Q∗), Qn −Q∗

〉
.

Without loss of generality we can consider case Q∗ = diag(q1, . . . , qd), thus Lemma A.3 implies

(notice that Λ = Q2
∗ and ∆ = Q

1/2
∗ XQ

1/2
∗ )

−
〈
dTQ∗

Q∗
(X), X

〉
=

d∑
i,j=1

Xij

qi + qj
Xij =

d∑
i,j=1

(qi + qj)

(
Xij

qi + qj

)2

= 2
d∑

i,j=1

(
√
qi

Xij

qi + qj

)2

= 2
∥∥∥Q1/2
∗ dT

Q∗
Q∗

(X)
∥∥∥2
F
.

By Theorem 2.2
√
n(Qn −Q∗) is asymptotically normal and centred, therefore

L
(√

ndBW (Qn, Q∗)
) w−→ L

(∥∥∥Q1/2
∗ dT

Q∗
Q∗

(Z)
∥∥∥
F

)
.
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where Z ∈M ⊂ H(d) and Z ∼ N (0,Ξ).

Note, that Qn
a.s.−−→ Q∗, Ξ̂n

a.s.−−→ Ξ, and dTQn

Qn

a.s.−−→ dTQ∗
Q∗

. The last result follows from Lemma A.3
(IV, V), and can be validated using the same framework as in the proof of (B) in Theorem 2.2. Note,
that λmin(Q

′
n)Q∗ 4 Qn 4 λmax(Q

′
n)Q∗, with Q′n coming from (A.11). Then

dTQn

Qn
4 dT λmax(Q′n)Q∗

λmax(Q′n)Q∗
=

1

λmax(Q′n)
dTQ∗

Q∗
→ dTQ∗

Q∗
,

dTQn

Qn
< dT λmin(Q

′
n)Q∗

λmin(Q′n)Q∗
=

1

λmin(Q′n)
dTQ∗

Q∗
→ dTQ∗

Q∗
,

where the inequalities comes from monotonicity (see (V) in Lemma A.3). The equalities hold due to
homogeneity (see (IV) in Lemma A.3). Furthermore, λmax(Q

′
n) ≤ 1 + ‖Q′n − I‖ and λmin(Q

′
n) ≥

1− ‖Q′n − I‖. This yields

L
(∥∥∥Q1/2

n dTQn

Qn
(Zn)

∥∥∥
F

)
w−→ L

(∥∥∥Q1/2
∗ dT

Q∗
Q∗

(Z)
∥∥∥
F

)
,

where Zn ∼ N
(
0, Ξ̂n

)
. This, in turn, entails

dw

(
L
(√

ndBW (Qn, Q∗)
)
,L
(∥∥∥Q1/2

n dTQn

Qn
(Zn)

∥∥∥
F

))
→ 0,

where dw is some metric inducing the weak convergence of the measures.

Finally, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. By definition empirical Fréchet variance is

Vn(Q) =
1

n

n∑
i=1

d2BW (Q,Si).

Lemma A.6 ensures the following bound on Vn(Q∗)− Vn(Qn):

0 ≤ Vn(Q∗)− Vn(Qn) ≤ 2(
1+λ

1/2
min(Q

′
n)
)2 〈Fn(Qn −Q∗), Qn −Q∗〉

with Q′n
def
= Q

−1/2
∗ QnQ

−1/2
∗ . The above quadratic bound together with Qn → Q∗, Fn → F and√

n(Qn −Q∗)
w−→ N(0,Ξ) yield:

Vn(Qn)− V(Q∗) = Vn(Q∗)− V(Q∗) +OP

(
1

n

)
.

On the other hand, by the classical central limit theorem we obtain:

√
n (Vn(Q∗)− V(Q∗)) =

√
n

(
1

n

∑
i

d2BW (Q∗, Si)− E d2BW (Q∗, S)

)
w−→ N

(
0,Var d2BW (Q∗, S)

)
.
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B Concentrations of Qn and Vn

B.1 Concentration of Qn

The next lemma is a key ingredient in the proof of the concentration result for Qn.

Lemma B.1. Consider

ηn
def
=

1

λmin(F ′
n)

∥∥Q1/2
∗ ΠM

(
T n − I

)
Q1/2
∗
∥∥
F

(B.1)

where
F ′
n(X)

def
= Q1/2

∗ Fn
(
Q1/2
∗ XQ1/2

∗
)
Q1/2
∗ , X ∈

{
Q−1/2∗ Y Q−1/2∗

∣∣Y ∈M} . (B.2)

Then ∥∥Q−1/2∗ QnQ
−1/2
∗ − I

∥∥
F
≤ ηn

1− 3
4
ηn

whenever ηn <
4
3

and Qn � 0.

Proof. Let us define Qt
def
= tQn + (1 − t)Q∗ for t ∈ [0, 1], and Q′n defined in (A.11). Due to

Lemmas A.3 and A.4 we have for any S ∈ H+(d)〈
ΠM

(
T SQ∗ − T

S
Qn

)
, Qn −Q∗

〉
=
〈
T SQ∗ − T

S
Qn
, Qn −Q∗

〉
=

∫ 1

0

〈
−dT S

Qt
(Qn −Q∗), Qn −Q∗

〉
dt

≥ 1

1 + 3
4
‖Q′n − I‖

〈
−dT S

Q∗(Qn −Q∗), Qn −Q∗
〉
.

Therefore, 〈
ΠM

(
T n − I

)
, Qn −Q∗

〉
≥ 1

1 + 3
4
‖Q′n − I‖

〈
Fn(Qn −Q∗), Qn −Q∗

〉
=

1

1 + 3
4
‖Q′n − I‖

〈
F ′
n(Q

′
n − I), Q′n − I

〉
≥ λmin(F

′
n)

1 + 3
4
‖Q′n − I‖

‖Q′n − I‖2F .

At the same time,〈
ΠM

(
T n − I

)
, Qn −Q∗

〉
=
〈
Q1/2
∗ ΠM

(
T n − I

)
Q1/2
∗ , Q′n − I

〉
≤
∥∥Q1/2
∗ ΠM

(
T n − I

)
Q1/2
∗
∥∥
F
‖Q′n − I‖F .

Hence

‖Q′n − I‖F ≤
1 + 3

4
‖Q′n − I‖

λmin(F ′
n)

∥∥Q1/2
∗ ΠM

(
T n − I

)
Q1/2
∗
∥∥
F
=
(
1 + 3

4
‖Q′n − I‖

)
ηn.

Rewriting the inequality above we obtain

‖Q′n − I‖F ≤
ηn

1− 3
4
ηn

provided that ηn <
4
3
.
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Before proving concentration results, we define operator F ′(X) as follows:

F ′(X)
def
= Q1/2

∗ F
(
Q1/2
∗ XQ1/2

∗
)
Q1/2
∗ for X ∈

{
Q−1/2∗ Y Q−1/2∗

∣∣Y ∈M} . (B.3)

Proof of Theorem 2.4. Let tn be s.t. the following upper bound on γn(tn) from Proposition B.1 holds:

γn(tn) ≤
1

2
λmin(F

′). (B.4)

It is easy to see that this condition is fulfilled for tn = ntF − log(m) under a proper choice of generic
constant in definition of tF . Then with probability at least 1− 2me−ntF the following bound holds:

λmin(F
′
n) ≥ λmin(F

′)− ‖F ′
n − F ′‖ ≥ 1

2
λmin(F

′),

with F ′
n to be defined in (B.2). The above facts together with definition of ηn (B.1) yield

ηn
def
=

∥∥∥Q1/2
∗ ΠM

(
T n − I

)
Q

1/2
∗

∥∥∥
F

λmin(F ′
n)

≤ 2‖Q∗‖
λmin(F ′)

∥∥ΠM
(
T n − I

)∥∥
F
=

cQ
2σT

∥∥ΠM
(
T n − I

)∥∥
F
.

Combining the above bounds with Proposition B.2, we obtain:

P
{
ηn ≥

cQ
2
√
n
(
√
m+ t)

}
≤ 2me−ntF + e−t

2/2.

Now it follows from Lemma B.1 that

P
{
‖Q′n − I‖F ≥

cQ√
n
(
√
m+ t)

}
≤ P

{
2ηn ≥

cQ√
n
(
√
m+ t)

}
+ P

{
Qn � 0

}
≤ 2me−ntF + e−t

2/2 + (1− p)n,

whenever cQ
2
√
n
(
√
m + t) ≤ 2

3
. Here we used that Qn � 0 if at least one of matrices S1, . . . , Sn is

non-degenerated. Here Q � 0 means that a matrix Q is not positive definite.

Proof of Corollary 2.2. To prove this result we use Lemma A.6 and chooseQ0 = S = Q∗,Q1 = Qn.
Thus we obtain

d2BW (Qn, Q∗) ≤ − 2(
1+λ

1/2
min(Q

′
n)
)2
〈
dTQ∗

Q∗
(Qn −Q∗), Qn −Q∗

〉
Def. A.4

= 2(
1+λ

1/2
min(Q

′
n)
)2
〈
−dtQ∗Q∗(Q

′
n − I), Q′n − I

〉
≤ 2λmax

(
−dtQ∗Q∗

)
‖Q′n − I‖2F

C.A.2
= λmax(Q∗)‖Q′n − I‖2F ,

with Q′n coming from (A.11). Hence by Theorem 2.4

dBW (Qn, Q∗) ≤ ‖Q∗‖1/2
cQ√
n
(
√
m+ t)

with probability at least 1− 2me−ntF − e−t2/2 − (1− p)n.
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B.2 Concentration of Vn

Proof of Theorem 2.5. Following the proof of Theorem 2.3 we consider Vn(Q∗)− Vn(Qn):

0 ≤ Vn(Q∗)− Vn(Qn) ≤ 2(
1+λ

1/2
min(Q

′
n)
)2 〈Fn(Qn −Q∗), Qn −Q∗〉

= 2(
1+λ

1/2
min(Q

′
n)
)2 〈F ′

n(Q
′
n − I), Q′n − I〉

≤ 2‖F ′
n‖ · ‖Q′n − I‖2F , (B.5)

with F ′
n to be defined in (B.2), and Q′n in (A.11). Following the proof of Theorem 2.4, we obtain that

with P ≥ 1− 2me−tFn − e−t2/2 − (1− p)n the following upper bounds hold:

‖Q′n − I‖F ≤
cQ√
n
(
√
m+ t), ‖F ′

n − F ′‖ ≤ 1

2
λmin(F

′),

with F ′ coming from (B.3). Thus

‖F ′
n‖ ≤ ‖F ′‖+ ‖F ′

n − F ′‖ ≤ 3

2
‖F ′‖

and consequently

0 ≤ Vn(Q∗)− Vn(Qn) ≤ 3‖F ′‖
c2Q
n
(
√
m+ t)2.

Now we consider a differenceVn(Q∗)−V(Q∗). According to Assumption 3S, and therefore d2BW (Q∗, S),
are sub-exponential r.v. with some parameters (ν, µ). Then Lemma B.4 ensures

|Vn(Q∗)− V(Q∗)| ≤ max

(
2µt′

n
, ν

(
2t′

n

)1/2
)

with probability 1− 2e−t
′
. Combining two above bounds, we obtain:

|Vn(Qn)− V(Q∗)| ≤ max

(
2µt′

n
, ν

√
2t′

n

)
+ 3‖F ′‖

c2Q
n
(
√
m+ t)2

with probability

P ≥ 1− 2e−t
′ − 2me−ntF − e−t2/2 − (1− p)n.

Choosing t′ = t2/2, we get

P
{
|Vn(Qn)− V(Q∗)| ≥ max

(
µt2

n
,
νt√
n

)
+ 3‖F ′‖

c2Q
n
(
√
m+ t)2

}
≤ 2me−ntF + 3e−t

2/2 + (1− p)n.
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B.3 Auxiliary results

Lemma B.2. Let ‖Q′n − I‖ ≤ 1
2
, with Q′n coming from (A.11); then

∥∥∥Σ̂n −Σn

∥∥∥
1
≤ βn

2( 1

n

∑
i

‖Ti − I‖2F

)1/2

+ βn

 ,
where

βn
def
= κ(Q∗)

( 1
n

∑
i‖Si‖
‖Q∗‖

)1/2

‖Q′n − I‖F ,

where κ(Q∗) = ‖Q∗‖·‖Q−1∗ ‖ is the condition number of matrixQ∗ and ‖A‖1 is 1-Schatten (nuclear)
norm of an operatorA.

Proof. Note, that for any (T ni − I)⊗ (T ni − I) the following decomposition holds

(T ni − I)⊗ (T ni − I)
= (Ti − I)⊗ (Ti − I) + (T ni − Ti)⊗ (Ti − I)
+ (Ti − I)⊗ (T ni − Ti) + (T ni − Ti)⊗ (T ni − Ti) .

Summing over i yields

Σ̂n −Σn =
1

n

∑
i

(T ni − Ti)⊗ (Ti − I) (B.6)

+
1

n

∑
i

(Ti − I)⊗ (T ni − Ti) +
1

n

∑
i

(T ni − Ti)⊗ (T ni − Ti) .

Note, that each
‖(T ni − Ti)⊗ (Ti − I)‖1 ≤ ‖T

n
i − Ti‖F‖Ti − I‖F .

Lemmas A.3 (III) and A.4 yield

‖T ni − Ti‖F ≤
1

1− ‖Q′n − I‖
∥∥dT Si

Q∗
(Qn −Q∗)

∥∥
F

≤ 2
∥∥Q−1/2∗ dtSi

Q∗
(Q′n − I)Q−1/2∗

∥∥
F
≤ 2

λmax

(
dtSi

Q∗

)
λmin(Q∗)

‖Q′n − I‖F

≤
λ
1/2
max

(
S
1/2
i Q∗S

1/2
i

)
λmin(Q∗)

‖Q′n − I‖F ≤ κ(Q∗)

(
‖Si‖
‖Q∗‖

)1/2

‖Q′n − I‖F ,

where dtSQ is defined in (A.4). Hence 1
n

∑
i‖T ni − Ti‖

2
F ≤ β2

n. The above expression together

with (B.6) and Cauchy–Schwarz inequality lead to the upper bound on
∥∥∥Σ̂n −Σn

∥∥∥
1
:∥∥∥Σ̂n −Σn

∥∥∥
1
≤ 2

n

∑
i

‖Ti − I‖F‖T ni − Ti‖F +
1

n

∑
i

‖T ni − Ti‖
2
F

≤ 2βn

(
1

n

∑
i

‖Ti − I‖2F

)1/2

+ β2
n.
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Further we present concentration of Fn around F . Denote as ‖X‖ψ2 an Orlicz norm with Young
function ψ2(x) = ex

2 − 1, i.e.

‖X‖ψ2

def
= inf

{
c > 0 : Eψ2 (|X|/c) ≤ 1

}
.

Then sub-Gaussianity of a r.v. X is equivalent to ‖X‖ψ2 <∞ and it ensures

Var(X) ≤
√
2‖X‖ψ2 .

Proposition B.1 (Concentration of F ′
n, Proposition 2 in Koltchinskii [2011]). Let F ′

n, F ′, and dtSQ be
defined as (B.2), (B.3), and (A.4), respectively. There exists a constant C > 0, s.t. for all t > 0 it holds
with probability at least 1− e−t

‖F ′
n − F ′‖ ≤ γn(t), γn(t)

def
= Cmax

(
σF

√
t+log(2m)

n
, U

√
log
(
U
σF

)
t+log(2m)

n

)
,

where σ2
F

def
=
∥∥∥E (dtSQ∗ − F ′)2∥∥∥, U

def
=
∥∥∥∥∥dtSQ∗ − F ′

∥∥∥∥∥
ψ2

.

Lemma B.3. The size of the above constants can be estimated as follows:

σF ≤
‖Q∗‖1/2

2
(E‖S‖)1/2 , U ≤ 3

2
‖Q∗‖1/2

∥∥‖S‖∥∥1/2
ψ1
,

where ψ1(x) = ex − 1 is a Young function.

Proof. By Corollary A.2 we obtain

σ2
F

def
=
∥∥∥E (dtSQ∗ − F ′)2∥∥∥ ≤ E∥∥dtSQ∗∥∥2 ≤ ‖Q∗‖4 E‖S‖

and (due to properties of Orlicz norm)

U
def
=
∥∥∥∥∥dtSQ∗ − F ′∥∥∥∥∥

ψ2

≤ ‖F
′‖√

ln 2
+
∥∥∥∥∥dtSQ∗∥∥∥∥∥

ψ2

≤ ‖Q∗‖
1/2

2

[
2E‖S‖1/2 +

∥∥‖S‖1/2∥∥
ψ2

]
≤ ‖Q∗‖

1/2

2

[
2 (E‖S‖)1/2 +

∥∥‖S‖∥∥1/2
ψ1

]
≤ 3

2
‖Q∗‖1/2

∥∥‖S‖∥∥1/2
ψ1
.

The next proposition ensures the concentration of T n.

Proposition B.2 (Concentration of T n; Hsu et al. [2012], Theorem 1). Under Assumption 3 it holds

P
{∥∥ΠM

(
T n − I

)∥∥
F
≥ σT√

n

(√
m+ t

)}
≤ e−t

2/2 for any t ≥ 0.

Lemma B.4 (Sub-exponential tail bounds). Suppose that X is sub-exponential with parameters ν, b.
Then

P {X ≥ EX + t} ≤

{
exp (− t2

2ν2
), if 0 ≤ t ≤ ν2

b
,

exp (− t
2b
), if t ≥ ν2

b
.
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