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ABSTRACT. A simulation based method for the numerical solution of PDEs with random
coeflicients is presented. By the Feynman-Kac formula, the solution can be represented as
conditional expectation of a functional of a corresponding stochastic differential equation
driven by independent noise. A time discretization of the SDE for a set of points in the
domain and a subsequent Monte Carlo regression lead to an approximation of the global
solution of the random PDE. We provide an initial error and complexity analysis of the
proposed method along with numerical examples illustrating its behavior.

1. INTRODUCTION

Many applications in the applied sciences, e.g. in engineering and computational bi-
ology, involve uncertainties of model parameters. These can for instance be related to
coeflicients of media, i.e. material properties, the domains and boundary data. The uncer-
tainties may result from heterogeneities of media and incomplete knowledge or inherent
stochasticity of parameters. With steadily increasing computing power, the research field
of uncertainty quantification has become a rapidly growing and vividly active area which
covers many aspects of dealing with such uncertainties for problems of practical interest.

In this work, we are concerned with the description of a novel numerical approach
for the solution of PDEs with stochastic data. More specifically, we consider the Darcy
equation related to the modeling of groundwater flow given by

(1.1a) -V &(x)Vu(x)) = f(x), xeD,
(1.1b) u(x) = g(x), xeadD.

Here, the solution u is the hydraulic head, x denotes the conductivity coefficient describing
the porosity of the medium, f is a source term and the Dirichlet boundary data is defined
by g. The computational domain in d dimensions is D c R?. In what follows, we suppose
that D is a convex polygon and all data is sufficiently smooth such that the problem always
exhibits a unique solution which itself is smooth. A detailed regularity analysis is beyond
the scope of this paper. In principle, although we restrict our investigations to a stochastic
coefficient «, any data of the PDE can be modeled as being stochastic. This model is quite
popular for analytical and numerical examinations since it is one of the simplest models
which reveals some major difficulties that also arise in more complex stochastic models.
Moreover, it is of practical relevance, e.g. in the context of groundwater contamination,
and the deterministic second order elliptic PDE is a well-studied model problem.
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When stochastic data is assumed, an adequate description of the stochastic fields has
to be chosen. This can for instance be based on actual measurements, expert-knowledge
or simplifying assumptions regarding the statistics. For actual computations, a suitable
representation amenable for the employed numerical method is required. It is a com-
mon assumption that the considered fields are transformed Gaussian fields and are thus
completely specified by the first two moments. Another usual simplification is the finite
dimensional noise assumption which states that a field only depends on a finite number of
random variables.

In fact, any stochastic field x : Q X D — R with finite variance can be represented in
terms of

(1.2) k@, %) = E[K] + ) an(0)én(w)
m=1

where the product of the sum separates the dependence on w € Q and x € D. A typical
method to obtain such a representation is the Karhunen-Loeve expansion (KL) which will
be used in the numerical examples with a finite number of terms (truncated KL). In this
case, the basis a,, consists of eigenfunctions of the covariance integral operator weighted
by the eigenvalues of this operator. The smoothness of the a,, is directly related to the
covariance function used to model the respective stochastic field, see e.g. [9, 38, 26]. A
common choice is the Whittle-Mateérn covariance which includes the smooth Gaussian
covariance and the rather rough exponential covariance.

A variety of numerical methods is available to obtain approximate solutions of the
model problem (1.1) with random data and we only refer to [26, 35, 22] for an overview in
the context of uncertainty quantification (UQ). These methods often rely on the separation
of the deterministic and the stochastic space and introduce separate discretizations [34].
Common methods are based on sampling of the stochastic space, the projection onto an
appropriate stochastic basis or a perturbation analysis. The most well-known sampling ap-
proach is the Monte Carlo (MC) method which is very robust and easy to implement. Re-
cent developments include the quite successful application of multilevel ideas for variance
reduction and advances with structured point sequences (Quasi-MC), cf. [8, 11, 19, 21, 5].
(Pseudo-)Spectral methods represent a popular class of projection techniques which can
e.g. be based on interpolation (Stochastic Collocation) [2, 31, 32] or orthogonal projec-
tions with respect to the energy norm induced by the differential operator of the random
PDE (Stochastic Galerkin FEM) [16, 27, 4, 3, 15, 13]. These methods are more involved to
analyze and implement but offer the benefit of possibly drastically improved convergence
rates when compared to standard Monte Carlo sampling. The deterministic discretization
often relies on the finite element method (FEM) which also holds for MC.

The aim of this paper is the description of a novel numerical approach which is based
on the observation that the random PDE (1.1) is directly related to a stochastic differential
equation driven by a stochastic process, namely

(1.3) dX; = b(Xp)dt + o(X,)dW;

with appropriate coefficients b and o, Brownian motion W and additional boundary con-
ditions. For deterministic data «, f, g, for any x € D, the Feynman-Kac formula leads to a
collection of random variables ¢* = ¢*(k, f, g) such that u(x) = E[¢"], i.e. the determin-
istic solution at x is equivalent to the expectation of the random variable. When the data
is stochastic, the solution u(w, x) of the random PDE at x € D can be expressed as the
conditional expectation u(w, x) = E[¢* |k, f, g] and the variance of u(x) can be bounded
by the variance of ¢*. To determine ¢* at points x € D, a classical Euler method can be
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employed. Given a finite set of sampling points in D, the approximate expectation of the
solution u(-) = E[u(w,-)] is determined by solving a regression problem with respect to
a basis of orthogonal global polynomials. By this, we obtain a representation of the (ex-
pectation of the) solution field which is globally defined and smooth. One can regard the
proposed method as a combination of sampling and reconstruction techniques, making use
of classical stochastic solution techniques point-wise and a global polynomial projection in
a least squares sense. When compared to MC which samples a stochastic space (€2, 7, P)
by (typically) determining a FEM solution at every point and subsequently averaging the
solutions, our method determines realizations of stochastic solutions at points in the phys-
ical domain D and determines the expectation by a global minimization subject to a basis
in the physical space. Thus, the method does not require any type of deterministic solver.
Moreover, it can be parallelized extremely well.

The structure of the paper is as follows: In Section 2, we elaborate on the represen-
tation of deterministic and stochastic PDEs in terms of stochastic differential equations.
Moreover, we recall the Euler method as a way to determine point-wise stochastic so-
lutions numerically. Based on a set of stochastic solutions in the physical domain, the
reconstruction of a global approximation by means of a regression approach is described
in Section 3. In addition to the presentation of the method, we also provide a global con-
vergence analysis. In Section 4, we comment on the expected overall convergence and
complexity properties of the method. This should be considered as initial and not in-depth
analysis which provides pointers to further required research. The paper is concluded with
numerical examples in Section 5 where the performance of our method is demonstrated
with a very smooth and a less smooth field.

2. STOCHASTIC REPRESENTATIONS

In this section, we construct proper stochastic representations of solutions of stochastic
PDEs in terms of solutions of stochastic differential equations. That is, our goal is to
construct an SDE such that the solution u(w, x) of the SPDE at some point x € D can be
expressed as conditional expectation of some functional of the solution to the SDE.

We first give an extensive reminder of stochastic representations of certain deterministic
PDEs. The material presented here is standard and we refer, for instance, to the compre-
hensive presentation by Milstein and Tretyakov [29].

2.1. Stochastic representations for deterministic PDEs. We consider the following sto-
chastic differential equation (SDE):

2.1a) dX, = b(X,)dt + o(X,)dW,,
(2.1b) Xo = x,

where x € RY is a deterministic point, W is a d-dimensional standard Brownian motion
defined on a probability space (Q,7,P) and b : RY — R o : RY — R™ are (say)
uniformly Lipschitz continuous functions. We could just as easily consider a Brownian
motion with a different dimension. Sometimes we shall additionally consider the derived
processes

(2.1¢) Y, ==exp (f c(XS)ds),
0

(2.1d) Z :=ff(XS)YSds,
0
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for some functions ¢, f : R — R. In particular, for every T > 0, (2.1) has a unique (strong)
solution on [0, T'], i.e., there is a unique process X — adapted to the filtration generated by
the Brownian motion W — which satisfies

T
f E[IX,*1dt < o0
0
and
13 !
X, =x+ f b(X,)ds + f o (X,)dWs,
0 0

where the integral w.r.t. W is considered in the It6-sense. If we want to stress the depen-
dence on the initial value we write X;' := X,. Of course, Y and Z depend on x as well, and
we shall write ¥} and Z if we want to stress this dependence. (As usual, all equalities
between random variables are supposed to hold a.s. unless otherwise noted.)

The infinitesimal generator of the SDE (2.1) is the differential operator L acting on test
functions by

2

(3)6,'an

n a 1 n
2.2) L) = ) b0z —f() + 5 ) i) 5——f(0).
i=1 ¢ i,j=1

where a(x) = o(x)To(x). We employ the following version of Ito’s formula: for any
function F : [0, 7] x R? — R which is C! in time and C? in space it holds

' 6 t N d 6 .
Fit,X)=F —F(s, X, LF(s, X. —F(s,X)o::(X. J
(1,X) = F(0, ) + fo (at (5, X,) + LF(s, 5))ds+ fo ZIJZI T F (5 X (X)W,

Moreover, recall that for any process u(s) (adapted to the filtration generated by W), t —
fot u(s)dW; is a martingale on [0, T'] provided that fOT E [lu(t)|2] dt < oco. In particular, it

holds that
13
E [f u(s)dWS} =0.
0

After these preparations, we consider stochastic representations for solutions of PDEs
posed in terms of L. For simplicity, we first consider the Cauchy problem for (¢, x) €
[0, oo[XR",

(2.3a) gu(t, x) = Lu(t, x) + c(x)u(t, x) + f(x),

(2.3b) u(0, x) = g(x).

Assuming that the solution u € C 12([0, co[ xR™) and that the coefficients of L and ¢, f are
Lipschitz continuous, we can use that

(2.4) ut,x) = E[g(X)Y*+Z], t=0, xeR%

Indeed, fix some 7 > 0 and consider the functional F(¢, x) := u(T — t, x). We assume for
simplicity that ¢ = f = 0 which implies that Y = 1 and Z = 0. Ito’s formula and (2.3a)
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yield
T
X a X X
u(0,X7) —u(T,x) = | —au(T - 6,X7)+ Lu(T —t,X])|dt

19>

=1 j=

T d d 9 '
:jo‘ ZZ a”(T_t’Xf)O'ij(Xf)dle.

i=l j=1 g

d
0 X X j
1 P (T — 1, X))o }(X))dW!

Inserting (2.3b) and taking expectations on both sides, we obtain
u(T, x) = E[g(X7)].

Remark 2.1. Here and in what follows we will generally be rather liberal with conditions
and assumptions, i.e., we will assume enough regularity of all data (o, b, ¢, f, g and,
where relevant, the domain D) such that the objects under consideration are well-defined,
and the numerical approximations converge. A convenient assumption to work with will be
the usual uniform ellipticity assumption, even though most of the facts will be true under
weaker assumptions. Uniform ellipticity will generally also allow us to assume that the
PDEs have classical solutions, which is important for the Ito formula. It is, however, very
easy to generalize to the case of time-dependent coefficients, for instance.

Remark 2.2. Note that we have to compute a new solution of the SDE (2.1) for every
position x € D for which we want to obtain the solution u(z, x) of (2.3).

Remark 2.3. Notice that the numerically challenging part of (2.1) is the simulation of the
paths of the process X. Given such paths, finding Y and Z is a standard one-dimensional
numerical integration problem.

For computations, we need to solve two problems:

(i) Find an approximation Xy of X;, which we can actually compute.
(i) Given such an approximation, E [g (YN)] is computed by a (quasi) Monte Carlo
method.

As the second step is not different from other applications of the Monte Carlo method,
we will mainly focus on the discretization of the SDE (2.1). Clearly the most popular
approximation method for SDE:s is a straight-forward generalization of the Euler method
for ODEs. Indeed, let 0 = fy < --+ < ty = t be a time grid and denote At; = t; — t;_y,
AW; .= W, — W, Atnax = max; At;. Set YO = x and iteratively define

2.5) Yi = Y,;] +b<Y,‘_])Al‘i+O'()_(,‘_|)AVVi, i=1,...,N.
Under very weak assumptions we have strong convergence with rate 1/2, i.e.,

E[|X, - Xy|| < C VAt

for some constant C independent of Az,,,. More relevant in most applications (including
our own application) is the concept of weak approximation. Fortunately, the Euler scheme
typically (for instance, when the diffusion is hypo-elliptic) exhibits first order weak con-
vergence, i.e., for any suitable test function F : R? > R it holds

(2.6) E[F(X)] - E[F (XN)]' < CAly

with a constant C independent of Afyx.
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Remark 2.4. Higher order weak schemes (i.e., schemes leading to higher order weak
convergence) do exist and are often used for the Cauchy problem. For simplicity, and also
because higher order methods are hard to find for boundary value problems, we focus on
the Euler scheme. Higher-order strong schemes are only available in very special cases,
we refer to Kloeden and Platen [20] for more information on high-order (strong or weak)
schemes. Adaptive time-stepping schemes have been constructed by Szepessy et al. [36]
based on the error representations of Talay and Tubaro [37]. Moreover, implicit Euler
schemes may be preferable if the SDE solution exhibits instability.

Next, on a (smooth) domain D we consider the parabolic problem (2.3a) with Dirichlet
boundary conditions

(2.7a) C%u(t, x) = Lu(t, x) + c(x)u(t,x) + f(x), t=>0, xeD,

(2.7b) u(t,x) = g(x), xedD,

(2.7¢) u(0, x) = up(x), x€D.

Of course, we assume suitable compatibility conditions on uy and g. Moreover, let

(2.8) Ti=1,=inf{r>0| X e D"}

denote the (random) first exit time of X from D. This leads to the stochastic representation
(2.9) u(t,x) = E | (uo(X) ez + 8 eyct) Yo + Zivingren |-

In this case, we use the very same Euler discretization (2.5) as before. In particular, 7
is approximated by the first exit time 7 of the discrete time process X;, i = 0,...,N. Note
that there are two sources of errors in the approximation of 7 by 7:

(i) the error in the approximation of X by X;
(ii) the possibility that exit occurs between two grid points #; and f;, .

Unfortunately, the second source of error reduces the weak error rate, i.e., the approxima-
tion error for u(t, x), to the rate 1/2. However, there are adaptive time-step refinements,
which have empirically shown to be very successful for improving the order of conver-
gence to an observed order 1 again, we refer to Dzougoutov et al. [12] for the stopped
diffusion and to Bayer et al. [6] for an adaptive scheme for reflected and stopped diffu-
sions. We also refer to Gobet and Menozzi [18] for an alternative scheme based on shifting

the boundary.
For the elliptic problem
(2.10a) Lu(x) + c(x)u(x) + f(x) =0, xeD,
with the Dirichlet boundary condition
(2.10b) u(x) = g(x), xe€aD,

the stochastic representation is essentially obtained by the fact that the solution of the
elliptic problem is obtained as limit for # — co from the solution of the parabolic problem.
Hence, the stochastic representation of the Dirichlet problem (2.10b) is given by

(2.11) u(x) = E [g(XOYF +Z*], xeD,
for the stopping time 7 given in (2.8).

Remark 2.5. Similar stochastic representations exist for both parabolic and elliptic Neu-
mann problems, based on reflected diffusion processes. Naturally, further extensions in the
case of mixed boundary conditions are possible, too. We again refer to [29].
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Example 2.6. We recognize Darcy’s law as introduced in (1.1) as special case of (2.2),
(2.10) with

b(x) = Vk(x), o(x)= «2k(x)I;, xe€D.
f and g are consistently used in (1.1) and (2.10). As ¢ = 0, the stochastic representation
reads

dXF = VK(X))dt + \2k(XDdW,,  X§ = x,

u(o) = E [g @+ [ f(Xé‘)ds] ,
0
for x € D.

Remark 2.7. The stochastic representations considered here are all for linear PDEs, more
precisely for the PDEs (2.3), (2.7), (2.10). It is, however, possible to extend the method
to some classes of non-linear PDEs. On the one hand, we refer to [30] for a layer method
based on stochastic representations for a class of stochastic Navier Stokes equations. On
the other hand, there are representations of more general non-linear PDEs by backward sto-
chastic differential equations, more precisely systems of second order forward-backward
SDEs. We refer to the review [39]. We note that all these representations for determin-
istic PDEs can be extended to the case of random coeflicients in the same manner as the
stochastic representations for linear PDEs covered in this article.

Remark 2.8. Similar representations hold for certain classes of linear non-local equations,
where L is the infinitesimal generator of a Lévy process, such as fractional Laplacians. The
SDE is the driven by the corresponding Lévy process instead of the Brownian motion.

2.2. Stochastic representations for stochastic PDEs. This section is concerned with the
solutions of random PDEs. This means that the differential operator L and possible the
initial and/or boundary values are random. For the sake of concreteness, let us concentrate
on the case of a random elliptic Dirichlet problem in the sense of (2.10a) with (2.10b).

In order for the above constructions to make sense for random data b, o, f, c, g, we
need to choose a Brownian motion W independent of the other sources of randomness.
This means we need to work on a probability space (Q, #, P) large enough such that the
random fields and processes b, o, f, ¢, g and W are all defined on the same probability
space and W is independent of the data. Given constructions of a probability space carrying
the fields b, o, f, ¢, g and another probability space carrying the Brownian motion W, this
simplifies to choosing the product space as the joint probability space.

More precisely, let us suppose that a Brownian motion W is defined on a probability
space (2, F1, P1) where we shall write W,(w;) to stress the interpretation of W as a process
on (Ql,f(‘:l,Pl).

Moreover, we are given a second probability space (Q,, %>, P,) on which the random
fields b = b(ws, x), 0 = o(ws, x), ¢ = c(wy,X), f = f(ws, x), x € D, and g(w,, x), x € D,
wy € , are defined. Additionally, we consider the product probability space

(QF,P)=(Q,F1,P1)® (0, F2, Pr) = (Q1 X Q, F1 ® F2, P ® P).

Obviously, we can extend any random variable Y on (Qi, %1, P;) to a random variable
on (Q,F, P) by setting Y(w;,wz) = Y(wy), for any w = (w1, w;) € Q, and likewise
for random variables Z defined on (€, %3, P>). Note that the construction implies that
any such extended random variables Y and Z are independent. In this way, we obtain a
Brownian motion W and random fields b, o, g, ¢, f on (Q, ¥, P) with W independent of the
data.
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We interpret the random fields as random variables taking values in some function

spaces.1 More precisely, the random variables b(w) = b(w,-), oc(w) = o(w,-) and

gw) = glw,"), c(w) = c(w,-), f(w) = f(w,-) should assume values in the space of
Lipschitz continuous functions in order to avoid complications with regard to the related
SDE:s. .

On the one hand, inserting these into (2.1), for x € D we obtain systems of (random)
SDEs of the form
(2.12a) dX, = b(X)dt + o(X,)dW;,
(2.12b) Xo = x.
It is clear that the solution X; = X;(w) can only be considered on the full probability space
(Q,F,P). Asin (2.1¢) and (2.1d), we further define

(2.12¢) Y; :=exp (f c(XS)ds),
0

(2.12d) Z :=ff(Xs)sts.
0

On the other hand, we consider the random PDE given by the coefficients b, o, g, c,
f. More precisely, define the random matrix field a := o "o and the random differential
operator L by

2

n a 1 n
(2.13) L(w)h(x) = ; bi(wz)(x)a_xih(x) 5 l; aij(wz)(x)mh(x)-

Obviously, L is obtained by inserting the random coefficients into the deterministic formula
for L as given in (2.2). Next, consider u = u(w,)(x) = u(ws, x), the random solution of the
random PDE

(2.14a) Lu+cu+ f=0,
(2.14b) u(wy, x) = g(wy, x), x€aD.

From (2.11), we immediately derive the following stochastic representation for u: define
the stopping time 7 = 7, as in (2.8) (on the full probability space (Q2, ¥, P)), i.e.,

2.15) Ti=1,=inf{t>0]|X, €D},

This leads to the solution
(2.16)

u(w, x) = f [g (wz, X7 (w10m @15 wz)) Y7 (orom (@1 02) + Z7 () (@1, wz)] Py(dwy),
Q

by integrating out the randomness induced by the Brownian motion W. In a more proba-
bilistic notation and using the joint probability space (Q2, ¥, P), we can write

u(x) = E [ g(X:) v +ZF

b, o, f.c, g] = E[g(Xi) Yo+ 27,

assuming that 7, = o (b, 0, f, c, g) and equating the o-algebras ¥, and {Q; XA | A € F,} C
F.

IThis may not be true for the fields themselves, but it is certainly true for a suitable mollification of the random
fields, e.g., by a finite truncation of the Karhunen-Lo¢ve expansion.
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Remark 2.9. By independence between the coefficient fields and the added Brownian mo-
tion W, the analysis of the SDE with random coefficients and the stochastic representations
remain basically unchanged compared to the deterministic coefficient case, mainly replac-
ing unconditional with conditional expectations when required. In particular, the Euler
scheme (2.5) can be extended in the obvious way to the above problem, retaining the usual
rates of convergence as discussed above.

Assuming we are only interested in E [u(x)], we can, of course, directly take the full
expectation in (2.16), namely

(2.17) Eu()] = E|g(X3)y2 + Z |.

Hence, we do not need to use a nested Monte Carlo simulation procedure in the end. In
this context, note that
var u(x) < var [g (Xf) Yy + fo] .

In fact, we have the elementary result that

var|g (X2 ) Y2 + 2| = varE [g (xz)vs + 2z,

"fz] + Evar [g (xx) v + 2

7

(2.18) = var u(x) + E var [ g(X5 )y + 28

Note that the second term in the variance decomposition (2.18) can be interpreted as the

additional variance introduced by the Brownian motion W. Since it is non-negative by
definition, it increases the total variance of the estimator.

Assumption 2.10. The problem data is sufficiently regular. In particular, for Darcy’s law
(see (1.1) and Example 2.6), the results of this paper hold if coefficients «, Vk, f, g are
a.s. Lipschitz continuous on D, a convex polygon in R?, additionally , V, f, g € L*(QxD)
and, k™' € L®(Q x D).

Discussion of the assumptions. We generally assume sufficient regularity such that the sto-
chastic representation g (Xﬁx) Y7 +Z7 issquare integrable and the (adaptive) Euler scheme
converges with weak order one. In the spirit of this exploratory paper, we do not try to
provide a refined error analysis leading to minimal conditions. (In particular, note that
no proof of convergence rate one for the adaptive Euler scheme — even in the case of de-
terministic coefficients — has been given in the literature, to the best of our knowledge,
cf. [12, 6].)

Regarding the step from deterministic to random coeflicients, the representation (2.17)
holds provided that the deterministic counterpart holds for P-almost all (random) coeffi-
cients, and the resulting random variable u — obtained by conditional expectations in (2.16)
— is integrable. Similarly, error expansions for the case of deterministic coefficients (when
available, such as for the non-adaptive Euler scheme) can be extended to the case of sto-
chastic coefficients provided that the terms are integrable (w.r.t. the random coefficients).

However, it seems more tricky to obtain square integrability of g (Xfx) Y; +Z; . Inpar-
ticular, square integrability of the stopping time 7 is not straight-forward since there seems
to be a lack of explicit bounds of moments of hitting times for SDEs with deterministic
coefficients (explicit in terms of said coefficients) in the literature. Hence, one needs to
directly analyze the stochastic problem. To this end, let us specifically consider the Darcy
problem, i.e., the operator L = V - «V for a random field « as in Assumption 2.10.

Lemma 2.11. Under Assumption 2.10, we have
var [g (Xfx) + Zj.‘x] < o
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for almost every x € D.
Proof. We only need to prove that £ [72] < co. To this end, note that w(z, x) := P (1, > | k),
t > 0, satisfies the (random) PDE

%w(t, x) = Lw(t, x),

w(t,x) =0, xe€dD,
w0,x)=1, xe€D,
see, for instance, [29]. Moments of T can now directly be related to moments of the solution
of the above random PDE by
Elr,] = f E[w(z, x)]dt,
0

E[r%] = f N tE[w(t, x)]dt.
0

Note that from standard PDE theory [14, 17] the operator L is uniformly elliptic in the
sense that for any v € H(l) (D) we have

A, v) = f k(x) Vvl dx > Cy VI,
D

for some (random) constant C; > 0 only depending on inf,cp k(x). Multiplying both sides
of the PDE by w(t, x) and integrating in x, we obtain

f ow(t, x)w(t, x)dx = — f k(x) |Vw(t, )c)l2 dx.
D D
By the energy estimate, we arrive at the bound
A (e )l < =Crllw(e, )iz < =Culw(t, )z, -
By a simple Gronwall argument, we obtain exponential decay
Iw(e, I3, < vol(D)e ™,

implying that
1
E[r3]ldx < vol(D) E | — | <
| Ereid < voro) LCZ} co

1
by Assumption 2.10, as « is uniformly bounded away from 0 in x and w. Hence, E[72] < oo
for almost every x € D. O

3. REGRESSION BASED METHODS AND THEIR ERROR ANALYSIS

The construction of global approximate solutions based on probabilistic representations
for different random PDEs may generically be carried out via solving a regression problem
connected with a probabilistic representation

(3.1 v(x) = E[®*], xeDcR"

In (3.1), x € D is a generic point in space and @ is a real valued random variable on a
probability space (Q, ¥, P) such that the map

(x,w) € DX Q — O* (w)
is B(D) ® ¥ measurable.
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In the context of this paper, we consider v(x) = E[u(x)], u being the solution of the
random PDE (2.14). By (2.17), the above relation holds for

O =g (X5 )Y +ZE.

For each fixed x € D, we consider the sequence of i.i.d. copies (@}, m = 1,2,...). Let
further u be some probability measure on (D, B (D)), U be a random variable on D with
distribution yu, and (U,,n = 1,2,...) a sequence of i.i.d. copies of U that are independent
of any @, m = 1,2,..., x € D. One now may estimate v(x) via regression procedures

based on a Monte Carlo simulation of
U U
o7, 0,/,

U, U,
DCpfyysee s oy

Uy Uy
(D(N—I)MH”"’(DNM’

i.e. in condensed notation

U,
(3.2) (CDWUMH, .

L®%), n=1,...,N.

Notice once more that all these random variables are, by construction, independent.
Generally one distinguishes between regression estimators of local and global nature.

Below we give a concise recap, where we introduce for ease of notation the (point-wise)

averages

M
-—X X l x
(3.3) B, = By = o ; D ppeme X ED.

Remark 3.1. Although the boundary data is typically known, a regression approach as
presented here does not enforce or impose boundary conditions explicitly. In the numerical
experiments, we manually place a set of “exact solution points” on the entire boundary.
There are several ways to get a more accurate matching of boundary conditions. However,
this does not affect the presented error analysis.

3.1. Recap of regression estimators. In this section we recall some common regression
estimators starting with some local ones.

Local regression. Let K(x) > 0 be some kernel function on R? satisfying f K(x)dx =1
and fx’?((x)dx =0,i=1,...,d. For aband-width § > 0 with § | O in relation to N — oo,
in a suitable way, one defines the kernel estimator

N X (xf U, ) 6:"}”

n=1 o
N x—U,
o K ()

Another related type of local regression is the so called local polynomial regression,
where one solves the following weighted least squares problem for some polynomial de-
gree p at a fixed point xp :

Wx) =

2

u x—-U
argminZ‘K( 0 n)-
{By:nl<p} =1 0

—U,
©, 5 = > ByUn = x0)"

Inl<p

withn € Ng being a generic multi-index, which gives the approximations

Tx0) = Bo,  Oi(x0) = n'By-
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It should be noted that local polynomial regression is particularly favorable if one needs
to estimate derivatives at a fixed point. As some further local estimators we mention the
Nadaraya-Watson estimator, and the k-nearest neighbor estimators (e.g. see [23] for more
details).

An application of local regression methods to the random PDE problem at hand is post-
poned to a future paper. Here, we focus on global regression.

Fully stochastic global regression. Global Monte Carlo regression estimators are extremely
popular in finance where they are used for the pricing of American options ([25] and [40]).
The general procedure is as follows. One takes a system of (continuous basis) functions
Yr : D - R,k =1,2,..., and considers for a Monte Carlo sample (3.2) and a fixed
number K, the solution of the regression problem

— 1
(3.4) y = arg mmﬁ Z

The solution of (3.4) is straightforward and given by
(35) 7=(MM) MY,
where M € RV*K with entries given by
Moy =y(Uy), n=1,...,N, k=1,...,K
and
Y= [51“,;4,...,6;34]7

One thus obtains the approximation

K
(3.6) T = ) i),

k=1
which, of course, depends on N, M, K and the choice of basis functions i1, ..., k.

Semi stochastic global regression. In several applications, in particular in finance, the ran-
dom variable U can be simulated (e.g. via an SDE) but its distribution is not explicitly
known otherwise. Therefore the construction of ¥ via (3.5) requires the inversion of a
random matrix MT M. In some situations this inversion may be ill-conditioned and may
be the source of suboptimal convergence properties unless some kind of regularization is
included. In the present context of random PDEs we, however, have full control of the
choice of the distribution of U. Note that

1 1 & .
61 MM, = N;wk<Un>m<Un)N—> fD YW (dx) = G,

For favorable choices of u and/or i, the matrix G may be pre-computed by some quadra-
ture method or even be known in closed form. In particular, if the basis functions ¢ are
chosen orthonormal w.r.t. i, then G is the identity matrix. So it is natural to replace (3.5)
with the estimate

N (P
(3.8) y= G MY
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Ficure 1. Subset of the regression points d)ly" and the solution of the
regression procedure.

leading to the approximate solution

K
(3.9) V() = ) V().
k=1

The (semi-)stochastic global regression method is visualized in Figure 1. The dots in
the three-dimensional plot correspond to the samples (Ui, ch,U") (or a subset thereof), and
the surface is the outcome of the regression procedure, i.e., the graph of v on the domain
D. Notice that Figure 1 is based on the actual calculations in Section 5.

Deterministic global regression. As an alternative to the semi stochastic procedure (3.8),
(3.9), we may alternatively carry out spatial regression with respect to some deterministic

set of, e.g. uniform, grid points x,, n = 1,..., N. This leads to the regression problem
I Dy, & ’
(3.10) Y = arginf > [cpnj'M -3 7kwk(xn)) .
yeRF V00 k=1

By the deterministic design matrix by N € R¥*K with entries given by
Nok =¥i(x,), n=1,...,N, k=1,...,K,

the solution is given by

G.11) 7= (NTN)_l NY, V= [Ef,‘M,...@]X\ZM]T,
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yielding the approximation
K
(3.12) V) = ) V().
k=1

3.2. Convergence analysis of global regression estimators. The convergence analysis
of the full stochastic regression is highly nontrivial and relies on the theory of empirical
processes. For instance, in the case of American options see [10], and in the case of Mar-
kovian control problems [7]. The convergence analysis for the semi stochastic regression
and the deterministic regression approach is significantly easier. Since the latter procedures
are more suitable for our purposes, we will restrict our analysis to them.

Remark 3.2. In what follows, we assume that the probability space (Q, F, P) is large
enough to carry a sequence of independent samples of ®V. Given an F -measurable random
field @ = a(x), x € D, which may depend on a sequence of random variables U,,, we denote

0 pn = fD Ela(u(d).

Hence, u is used in a double role here: it denotes the distribution of the random variables
U, (defined on Q) as well as a measure on (D, B(D)).

Semi stochastic regression statistics. For the scalar product f, g € LZ(D) defined by

(foag = (£9) = [ Fgtoua,

and the corresponding norm ||-|| 2 let

2

K
(3.13) y° = argmin ||v — Z Vik
yeRK k=1
and define
K
(3.14) vi(x) = DY), xeD.
k=1
vk 1s the (exact) Lﬁ-projection of vto span{yy,..., ¥ }. Hence, we have that
V-vk, ¥y =0, k=1,....K,
ie.,
K
W0 = ) Guy; = 0.
=1
By defining

Wl =)y, k=1,...,K,
we thus have
Y =G 'w.
Note that the semi-stochastic regression estimator v is a standard Monte Carlo estimator
of the projection vk, as (for simplicity for G = Ix)

_ 1 < —U,
V=N Zl YU, by ~ (Wi, v).
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Hence, the standard Monte Carlo error formula shows that
—U,
var (Y (U,)®,
N .

E|(i = e, )| =

On the other hand, we are really interested in E [IW - vK||2]. An immediate application
of the standard formula gives an error estimate of the order K?/N, as the K estimates

Y1, ..., Yk are not independent. However, we shall see that a more careful analysis will
give us an estimate of order K/N, see Proposition 3.3 below.
Let us write

N
S[Miy) = Z W(UNY, = Z UDD,

(3.15) =: —ZW)(

n=1

il
with i.i.d. random variables
U, 1 &
— " — U,
= M (B, = v(U) = T Z OU vy = W(U)
satisfying E [17;|U;] = 0. For the variances we have
var [m| Uq] = var[CDU| U]
var [n;] = var [CDU - v(U)] =F [((DU - v(U))Z]
= f H(dX)E [(@" = v(x))*| = f u(dx) var [@*] .

From (3.15) we then define

Uiyl &, h
N[M J/]k = <V,l//k>+ \/N-'— \/W

with

N
& = Z W(UDVU) = (v, 41)),

1 N M
b= 5 LU = D WU (P = VUD),

n=1 m=

AR
M- 1

3

where the &, and ¢ have zero mean for each k = 1,. .., K, and variances

var [£] = var [yn(U(U)] = E [y (U ()] = E [y UmO)]*
2
(3.16) = f p(dxX) (x)v*(x) — ( f y(dx)mx)v(x)) ,

B17)  var[9] = var [y (Unm] = f p(dx)W(x) var [@7],
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respectively. From (3.8) we then have

_ _ & 9
y=6" (w + ==+ —
VN VMN
Q? G
R
with & := [&1,...,&]" and & := [9,...,9]" . We so obtain a point-wise approximation
error,
V() = v(x) = ¢ T (x) 7 = ¥°) + vg(x) = v(x)
Q% G'o
= l!/T(X)( + Vg (x) — v(x).
W VMmN
with ¢ == [1,...,¥k]" . Since £ and ¥ have zero mean, the point-wise bias—i.e., the error
from projecting v to the span of the basis function i1, ..., Y x—is equal to

8(x) = vg(x) — v(x)
and the Lﬁ(D)-norm of the bias equals,
(3.18) 8[| = v = viclzz -

The bias depends on properties of v and the basis functions ¢ and shall not be analyzed in
this section. B
On the other hand, let £(x) denote the regression error on top of the bias ¢, i.e.,

£(x) = v(x) — vg(x).

Clearly, e(x) is related with the “statistical error” of a standard Monte Carlo procedure. Let
us denote

— =
vary, = [[&ll 12 qup: pey) -

which can be seen as the average (w.r.t. u) over the point-wise variance of v. We have

—1 _lﬁ 1 lﬂ
v_ary=fDu(dx>E[(ﬁ+ G ) WU ( )(ﬂ+ G )]

VN VMN VN - VMN
o el ) (il
- Nl e e s loe)

by using (3.7) and the symmetry of G.
Let /l > 0 be the smallest eigenvalue of G = GX. We then have by (3.16), (3.17), and

min
Cauchy-Schwartz, the estimate
(3.20)
K K | K
var, < Z Z y/var [&] vvar [9] + Z var [%] .
N = N \/_ =1 ﬂminMN k=1

The following proposition is now obvious.
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Proposition 3.3. Suppose that the set of basis functions is mch that the variances (3.16)

and (3.17) are bounded by V for all k if K — oo, and that /l Amin > 0 if K — oo. We
then have the estimate

min —
v 2 1 K
||‘9||L°(QxD Pep) = = : \/— M
Remark 3.4. In view of the above proposition, it is inefficient to take M larger than one or
two in the semi stochastic regression. For example, M = 2 doubles the computation time
but reduces the variance bound approximately by a factor 0.73 only. Moreover, assuming

a choice of u-orthonormal basis functions ¥, ..., ¥, the matrix G is the identity matrix
and, consequently, the parameter Ay, = 1.

Deterministic regression statistics. Similar to (3.7) we introduce the matrix F and the vec-
tor z defined by

1 N
(3.21) [Flu = 5 Zl W oW1 (),
1 N
[ = 5 Z Vo), ki=1,... K.

‘We thus have that
1

N
CINA = 21 i) = [Flig,

and
N

NTy Z wk(xn)yn

N —X
Z Y0, y
n=1

ZN; Yi(xn) ( ;/ﬁ;_/l)

with independent random variables

—_ — —Xn

M = n(xy) = W<(Dn,M v(-xn) Z f,'; DM+m — v(xn)) >
satisfying E [77,] = 0 and

var [7,] = var [0*] = E[(@" - v(x,))’].

So we can write
ghM

k
VNM’

1 Y
N[N y]k =t
where fork=1,...,K,
1 &
E— ()C,,)~(x,1)
\/NZW n

n=1
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has zero mean and variance,

N
(3.22) var || = % Z W2 (x,) var [@%].

n=1

Next we proceed with

= 1 or - 1y -1 -1g
== — =F F~0.
v (NN N) NNy z+ —
We obtain the random (point-wise) error
&(x) =y (x)y = v(x)
1 —
(3.23) =y T(O)F 'z —v(x) + YT (X)F19.
NM
Since ¥ = [51, - ,Ek] has zero mean, the point-wise bias is thus equal to
(3.24) 5(x) 1= VK (x) := T (x) (F’Vv")f1 MK ().

Obviously, with

ﬂl) = fdx
D
it holds that

1 1
K ook . N.K 0K . ’ /
Ky kT ﬂ_fl//k()’)lﬂl()’)dv and [ N—’ 4 = A fv(}) O)dy,

hence we may define
) = T (FK) T K — v
(3.25) = g7y - (),

where we introduce |

K. 00, K\ _oo,K
yhK = (F ) z .
In fact, y"y"K is the projection of the true solution v on the span of the basis functions,
with respect to the scalar product

(s = fD S0y,
Thus, the (global) projection error with respect to the corresponding norm satisfies
TeoK||2 ._ K 2 _ +.K 2
541, = oy ol = [ (@om™ =)
It is natural to measure the global bias (3.24) with respect to this norm also, that is,
2 2 -1 2
B, = BTG, = [, (570 ()" 2 )
'D D D
By writing
VK (x) = 5K (x) + T (x) ((FDO,K)*I (ZN,K B Zoo,K) + ((FN,K)’I B (FW,K)—I)ZN,K)
=: 6™K (@) + Rk (),

we obtain the global estimate
] = 6™ + Rucallp < 10l + [Rwx

2
LD
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where the residual term can be bounded from above by

(3.26) ||Rwx B < ||¢||L%('(Foo,l<) I(ZN,K_ZOO,K>”K+ H((FNK) '_(F""’K) I)ZN,K K)’
and where
A Lt const% and [(FN’K)7l - (F°°'K)71 Y = constw,
i.e.,
(3.27) B, ~ [F],. +const=2—.
D D Nl/d

So, unlike in the semi stochastic case where the bias was only depending on K, the bias
(3.24) depends on N and K.

Remark 3.5. Similarly to the semi-stochastic regression analyzed above, we could now
also switch to a “semi-deterministic” regression by replacing F; with ﬂl‘)' fD Ui (y)dy.
This would help avoid any stability issues in the above linear system when N < K. Apart
from this, the second term in (3.26) would disappear, but the subsequent complexity anal-
ysis would remain unchanged.

We now proceed with the estimation of the variance in (3.23). Similar to (3.19) we
obtain for the L2 -norm of the point-wise Variance,ﬁwT(x)F -1y
VarLzD =

1 T —
— E[ F19 T F‘lﬂ]d
i fG (F'9) v o) y
_ b e peok e

= it [T F Pk F1g)
by using the symmetry of F. Let /lr’flm be the smallest eigenvalue of F*X. Since for fixed
K»
—1 oo,k -1 NKY ! ook (NE)T! Y
FHUFKp = (FNE) 7 poK (FYE) 7 5 PR if N - o,
we may assume that N is large enough, such that the smallest eigenvalue of F~! F>XF-1,
N K. /2. Then, analogue to (3.20), we obtain the variance bound,

/lx in11( say, satisfies Agin >4
_ 2 K _
VaI'L%) < m Z Var [ﬁk] .
k=1

i min
min

We so have the following proposition.

Proposition 3.6. Suppose that the set of basis functions is such that the variances (3.22)
are bounded by V for all N and k if N, K — oo. Suppose that /lﬁin > Amin for each K. Let
us take N > K such that Azl’n( > Iﬁin /2 > Imin /2. We then have the estimate

Let us have a look at the bias of the deterministic regression procedure again. It is
clear that, even if K is such that || 5K || 2 is small, a too small N causes extra bias due
D

to the deterministic integration error, cf. (3.27). This in contrast to the semi stochastic
method where the bias (3.18) is independent of the number N of Monte Carlo samples
of the random variable U. Therefore, for larger dimensions d the semi stochastic method
outperforms the deterministic one.
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For a closer look at the bias of the deterministic regression, observe that
““N.K N
15 — [1e™* 1l -

It is clear that, even if K is such that ”500»1( H P is small, a too small N causes extra bias
due to the deterministic integration error. This is in contrast to the semi stochastic method
where the bias (3.18) is independent of the number N of Monte Carlo samples of the
random variable U.

The size of the deterministic integration error as a function of the number N of grid

points depends on the nature of the point set xy,...,xy. For instance, in the case of a
uniform tensor grid xj,...,xy in dimension d, the integration error is, in principle, of
order #, and, hence, the bias gives
(3.282) I3V, ~ |5, +const .

153 153 NUd

where the second term amounts to the deterministic integration error of the present integra-
tion method based on py. On the other hand, if we choose xi, ..., xy as the first N points
of a d-dimensional low-discrepancy sequence, then the integration error can be reduced to

1 d N .
%, leading to

= = log’(N)
NK|| o || FeoK
(3.28b) ||(5 “Lg ~ ||(5 ”Lg + const .
We refer to [28] for a detailed exposition of the low-discrepancy case and to [41] for an
analysis based on collocation grids.

4. CONVERGENCE AND COMPLEXITY ANALYSIS

This section is concerned with a first analysis of the convergence and complexity of
the proposed numerical method. We point out that these are only first results and a more
thorough analysis should be carried out in subsequent work.

In order to clarify the proposed algorithm, we sketch a possible implementation in
pseudo code. First, the Euler scheme for the simulation of Brownian motion is depicted in
Algorithm 4.1. For the sake of simplicity, only uniform timestepping is included. Second,

In : Field realization «, initial value x € D, time-increment Af.
Out: Trajectory (X freees X;) of the approximate path and
approximate hitting time 7.

X, =xi=0
while X, € D do

Simulate the increment of the Brownian motion
AW; ~ N(0, Ar)

X, =X, + Vk(X,)At + [2k(X,)AW;
i=i+1
return (Y,U, - ,)_(;)

Algorithm 4.1: Trajectory simulation of Brownian motion by Euler scheme.

a sketch of the semi-stochastic regression algorithm is shown in Algorithm 4.2 based on
the Euler scheme. The deterministic regression algorithm has a very similar structure.
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In : Number N of samples to be computed, number K of basis
functions and basis functions ¥q,...,¥x : D > R, a
probability measure ¢ on D, the matrix G defined
in (3.7), time increment At for use by the Euler
method.

Out: Solution approximation ¥(x) := 35| ¥x(x) for any x € D.

Allocate an N-dimensional array Y and N X K dimensional
array M

for i=1,...,Ndo

Sample x; ~ y, sample realizations «;, f;, g; from the
distribution of the conductivity field, the source field
and the boundary field, respectively.

Call Euler(k;, x;, At) Algorithm 4.1, returning a pair of
(f,o, - ,Y;) and 7.

;= g; ()_(;) + fo? f; ()_(5) ds (with suitable quadrature)

Yi=0, My =vyu(x), k=1,....K
i=i+1

y=1G' MY

return v(-) == Y&, Y0
Algorithm 4.2: Global regression algorithm to determine solution approximation
based on point-wise samples.

Coming back to the analysis of the error, let us first consider the case of a fixed point
x € D c R? ie., we want to approximate the solution u(x) or E[u(x)] for this particular
single point x. Recall the elliptic model problem (1.1) with stochastic coefficient «, w € Q.
Then we can naturally decompose the error into four parts:

(i) The error from approximating the stochastic fields «, g and f;
(i1) the error from the discretization of the SDE (2.1a) and the functional (2.1d);
(iii) the truncation error in the regression, i.e., the error introduced by choosing a finite,
non-dense set of basis functions;
(iv) the integration error in the regression, i.e., the error introduced by computing an
approximate projection of the true solution to the basis functions only.

In this paper, we are mainly concerned with the second and fourth sources of errors of
the method. We believe this can be justified for pragmatic reasons: while a quite general
and convincing error and convergence analysis can be given for all mentioned sources of
errors, the influence of the first and third error component is more difficult to describe
without imposing very specific assumptions on both the coefficients and the solution of the
random PDE. We just make the following remarks:

e We only consider stochastic fields with finite variance which can be represented by
a Karhunen-Loe¢ve expansion. These fields are described by a covariance function
the regularity of which directly determines the smoothness of the realizations of
the stochastic field. Note that for the considered application, there always is some
correlation between sufficiently close points in the domain (i.e. coloured noise).
The number of expansion terms required for an adequate approximation again di-
rectly depends on the regularity of the covariance. If we assume an expansion (1.2)
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of the form
(6, @) = E[K+ ) \Vnn(0én(@)
m=1

which is exact for ¢ = oo, then the truncation error for M terms is determined by

00

oo = k0tllrey oy < D Vi
m=M+1
The v,, are the eigenvalues of the covariance integral operator and their decay
behavior thus determines the truncation error with respect to the number of KL
terms M. In some cases, the decay behavior is known a priori for which we refer
to [9, 38, 26]. Note that alternate techniques to generate field realizations can be
employed equally well with our method. For instance, turning band methods and
circulant embedding are frequently used approaches, see [26].
e For a given set of basis functions ¥, ..., ¥, the truncation error of the regression
method, denoted as bias in Section 3, is given by

v(x) = vg(x),

where vk denotes the projection of v to span {y1,...,¥ }, cf. (3.13) and (3.14).
Clearly, if v € L2(D;,u), then the error will converge to 0 as K — oo, for any
reasonable sequence ¢ of basis functions, for instance an orthonormal basis of
L*(D;u). The speed of convergence, however, depends on the regularity of the
solution as well as the choice of the basis functions. For instance, if the solution
is actually analytic, then the error decays exponentially, for good choices of basis
functions. Algebraic convergence (with rate depending on the dimension) can be
obtained when the solution is differentiable with square integrable derivatives up
to a certain order. For more information we refer to Pinsker [33].

In this paper, we assume that the true solution v can be approximated by vg € span {1, ...

with an error
v —villz < e(K).

We remark that a similar analysis can be done for other norms, say ||'/|51(p). This would
require a similar error analysis of the regression method as shown for the L? norm. We
only assume that limg_,., e(K) = 0 and that e is invertible with inverse e~'.

We first discuss the time-discretization error (ii). By the empirically well-established
first order weak convergence of the adaptive Euler scheme, see [12, 6], an error tolerance
edise Will yield approximate solutions X, Y, Z and a corresponding stopping time 7 such that
the corresponding expected value vgis.(x) == E [g (Y;) Y-+ Z;] satisfies ||V — vaiscll 2 < Edisc
at a computational cost of order e;ilc on average for computing one realization. Notice that
the computational cost is a random variable as the hitting time at the boundary is random.
However, uniform ellipticity and boundedness of the domain D (cf. Assumption 2.10 and
Lemma 2.11) guarantee that the hitting time is square integrable, both for the approximate
process X and the true solution X.

We next consider the integration error in the regression, term (iv), first concentrating on
the semi-stochastic case. Recall that the outcome of the semi-stochastic global regression
V = Vg = Y4, Vil is obtained from y = +G ' MTY, see (3.9) and (3.8). By Proposi-
tion 3.3, for instance assuming that v = vgisc and var ®* are uniformly bounded in x on
D (as guaranteed by Assumption 2.10) and, for simplicity, that (¥);>; are orthonormal

N3
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w.r.t. 4, the error is bounded by

— 2 1\ K
4.1) vk — VK”%Z(QXD;P&O < const(l + Vi + M) 5

Clearly, M = 1 is the optimal choice, so we disregard other possible choices henceforth.

Remark 4.1. For this discussion, we note that the regression actually approximates vgisc,
not the true solution v. Hence, the assumptions needed in Section 3 have to hold for the
discretized solution vg4is. uniformly in €gisc.

In total, we obtain the error decomposition
42 Iv- VKIILz(QX;);P@ﬁ) < W = vaisellzz + lvaise = v&llzz + vk = Villzxnipepn = €

with overall error bound e.

For fixed N and K, the computational cost of the regression part of the algorithm is
proportional to NK, if the cost of computing the N realizations <D,ll] "n=1,...,N, is
neglected. For fixed K, we need to choose N proportional to Ke 2, so the computational
cost of the regression is proportional to K>¢ 2. On the other hand, we need to sample N
realizations of @V at cost proportional to €' each, which amounts to cost proportional to
Ke3. Finally, by assumption, we need to choose K proportional to e~!(¢) to achieve a
truncation error bounded by €. To summarize, we obtain

Proposition 4.2. Given Assumption 2.10 and a discretization error tolerance € in ||| ;2@xp; pey)-
Then the average computational cost C of the semi-stochastic global regression algorithm
with adaptive time-discretization is bounded by

C < Cie ' (e)e3 + Cre(e)e 2.

Remark 4.3. Note that the computational cost is, superficially, independent of the dimen-
sion d. As discussed earlier, e"!(€) could be anything between, say, loge™' and e (or
even worse). Hence, it is not clear which of the two terms is dominant. One might expect
the constant C; to be typically much bigger than C,, as C; essentially just entails a floating
point multiplication, whereas C| is the entire computational cost of one step of the adaptive
Euler scheme.

Remark 4.4. If we are only interested in the point-wise error, i.e., if we only want to
compute v(x) for one specific value x € D, then we can replace the regression analysis by
a simple Monte Carlo analysis. The computational cost of our method for computing v(x)
at tolerance € in RMSE sense is then proportional to €3, independent of the dimension d.

For the deterministic regression procedure analyzed in Proposition 3.6 (variance) and (3.28)
(bias), we need to replace the estimate (4.1) by

— d2
(433) ”VK - VK”iz(QXD;P@)dx) < COHSt(N—M + W) S
for a uniform, tensorized grid xi, ..., xy and by

_ K d?
(4.3b) vk — VK”%Z(QxD;P@dx) < const(W + ﬁ)

(ignoring logarithmic terms) for the low-discrepancy case, where we use the special choice
p = dx|p. The cost-optimal choice for M will now depend on K — treated as fixed at
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this stage —, the error tolerance € and the dimension d. The computational cost C of
performing the algorithm is

C< const(MNe‘l + KN + Kz)

on average, corresponding to the average cost of computing MN samples at accuracy € by
the adaptive Euler-Maruyama algorithm, the cost of multiplying a K X N-matrix with an
N-dimensional vector and the cost of solving a K X K-linear system, cf. (3.11). Hence, one
has to minimize the cost given that the error (4.3) is bounded by €.

Let us first consider the case of a tensorized uniform grid. We may assume that both
error contributions in (4.3a) are of order €2, implying that

N =constd’e? and M = constmax (Kd‘ded‘z, 1).
Hence, for the computational cost it holds
C < const (max (Ke‘3, dde‘(d“)) +d'Ke? + Kz) )

No further calculation is needed for the case of xi, . . ., xy being based on a low-discrepancy
sequence, as this case essentially (up to logarithmic terms) corresponds to the case d = 1
in the uniform case.

Proposition 4.5. Assume the conditions of Proposition 4.2 and an error tolerance € in the
sense of |I'll2@xp;pedz)-

a) If the grid xi,...,xy is a uniform, tensorized grid in dimension d, then the average
computational cost C of the deterministic global regression algorithm with adaptive time-
discretization is bounded by

C < Cymax (6_1(6)6_3, dde_(d+l)) + Codle N (e)e? + C3¢7%(e)

with constants Cy,C,,C5 > 0.
b) Up to logarithmic terms, the above bound holds with d = 1 regardless of the dimension
of the space if the point set xi,. .., xy has low discrepancy.

Remark 4.6. Even in the analytic case (e(K) ~ eX) we already see the curse of dimen-
sionality in the deterministic regression case. It appears because of the inherent numerical
approximation of integrals w.r.t. u based on the grid, i.e., the approximation error u = py,
in the notation of Section 3. Further, note that we have not considered stability restrictions
(N > K) on the choice of N and K induced by the design matrix AT N. Similarly to
Remark 4.3, we note that typically C; > C3, Cs.

e(K) ‘ Semi-stochastic reg. Det. reg. (tensor) Det. reg. (low disc.)

eX e max(e" @D, ¢73) e

K-1/d G+ G+ G+

TaBLE 1. Asymptotic computational costs for deterministic (tensor grid
or low discrepancy sequence) and semi-stochastic regression for error
tolerance e. Logarithmic terms are ignored, C, and Cj3 are set to 0.

We end these theoretical complexity considerations by a sketchy asymptotic comparison
of deterministic and semi-stochastic regression techniques, see Table 1 and Table 2. We
compare the case of a very fast decay of the error in terms of the number of basis functions
K with the case of a slow small decay, i.e., the case of an analytic solution v with a merely
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e(K) ‘ Semi-stochastic reg. Det. reg. (tensor) Det. reg. (low disc.)

e K €3 max(e" @D ¢73) e3
K-1/d - (2+2d) -Gd) | -2 e Gtd) | -2

TaBLE 2. Asymptotic computational costs for deterministic (tensor grid
or low discrepancy sequence) and semi-stochastic regression for error
tolerance e. Logarithmic terms are ignored, C, and Cj3 are kept.

square-integrable solution v. In Table 1, we only consider the cost of generating samples
from the solution of the SDE. This is usually the dominant contribution to the overall
computational costs, as the cost of computing one step in the stochastic Euler scheme is
much larger than the cost of simple floating point multiplications. In Table 2, we treat all
the contributions as equivalent, which is adequate for a true asymptotic analysis. We see
that the semi-stochastic regression is clearly superior in the highly regular case, at least for
d > 2 and it is never worse than deterministic regression based on a uniform, tensorized
grid in the realistic scenario with C, and C; ignored. This is a consequence of the curse
of dimensionality. On the other hand, the deterministic regression algorithm based on a
low discrepancy point set xi,...,xy seems comparable to the semi-stochastic algorithm.
We should note, however, that this very simple analysis does not take the constants into
account. Recall that all the presented algorithms are, overall, stochastic in nature. A pure
QMC version of the algorithm—i.e., an approach where the random coefficients and the
Brownian motion are replaced by their deterministic counterpart—seems difficult due to
the very high dimensionality.

5. EXAMPLES

For the benchmark problem at hand we consider a constant right-hand side f = 1 on the
unit square domain D = [0, 11? c R2. The Dirichlet boundary data g = sin(mrx;) + sin(7rx;)
is enforced on the whole boundary dD of the domain. Here, x; denotes component i of
the coordinate vector x. The permeability tensor « is constructed in a form resembling a
Karhunen-Loeve expansion. It exhibits the characteristics of a separable covariance func-
tion on the unit square and is easily controlled with respect to amplitude and frequency of
the field. More precisely, in (1.2) we set E[«] = 1 and consider the coefficients a,, with
m=1,2,...and

(o

am(X) = @y, cos2rf(m)xy) cosapr(m)xz), @, = Agm 77,

5.1) Bi(m) = m — k(m)(k(m) + 1)/2,  Ba(m) = k(m) - B, (m),
k(m) = [-1/2+ /1/4 +2m].

The parameters must verify o, > 1 and 0 < A, < 1/{(o,) with the Riemann zeta function
{. For uniformly distributed random variables ¢,, ~ U(—1, 1), the parameters c,,&, > 0
and the truncation length 7, € N determine the (computational) random field k by

@min

la
(5.2) K(x) = — (Z an(X)pm + amm) + &0
m=1
Remark 5.1. We suppose the model (5.2) of the field « in an #,-term expansion to be the
exact representation. This, of course, usually is not the case and one has to consider how
the truncation affects the solution accuracy. Here, the representation merely serves the
purpose of an easy to compute miscellaneous random field which fulfills Assumption 2.10.
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However, an explicit representation of «, based on a countable set of random variables, is
neither necessary nor used in the presented method.

The constant a,;, is set to the absolute value of the minimum for the sum over the a,,,
ie. amin = Z:,u,zl Ay = |mianD Z;;:l am(x)¢m| = Z:::I Ay

The basis functions ¢y for k = 1,..., K in the regression methods from Subsection 3.1
are chosen as the Legendre polynomials. We choose the polynomial degree 4 for each
spatial direction which results in K = 25 basis functions. In case that locations x are drawn
uniformly in D, this choice admits the advantage of G = [ with the identity matrix 7 in (3.7)
such that no inverse of G needs to be computed in (3.8).

A reference solution for this problem is obtained with a simple Monte Carlo approach
utilizing a standard finite element solver. A set of N = 10° samples K fori=1,...,Nis
drawn from the random variable « and the finite element method gives a discrete solution
“;, on some very fine mesh with approximately 3 - 10° degrees of freedom for each sample.
Subsequently, the stochastic estimator for the expected value is given by &, = N~ Zfi 1 u;l
and we assume that E[u] =~ #y, is a sufficiently close approximation.

As described in Section 4, we note that we only consider the error from the time-
discretization and the regression steps of our algorithm. In particular, we work with an
exact stochastic field given by a truncated expansion (‘“finite dimensional noise assump-
tion”) and also fix the number of basis functions. This implies that the error will converge
to a positive value given by the bias, i.e., by the error induced by projection to the fixed set
of basis functions.

In the following subsections, we first demonstrate point-wise convergence of the scheme
at an arbitrary location (the center) in the domain. Then, global convergence of the regres-
sion approximation is examined with two different coefficient fields. First, a “smooth” field
with few expansion terms and thus only low frequencies is considered. Second, a “rough”
field with many expansion terms is employed. This also contains high frequency compo-
nents and thus exhibits large gradients. With both settings, the convergence for a structured
(deterministic) and a random (stochastic) selection of regression points in the domain D is
depicted.

Remark 5.2 (Notes regarding the implementation). We implemented the Euler-Maruyama
Monte-Carlo solver in C++ as a Python module. Using OpenlMP, the solver calculates
the trajectories in parallel on an arbitrary amount of processors. To sample the discrete
Brownian motion we use a 64-bit Mersenne-Twister random number generator (RNG)
from the C++ standard library. To ensure independently sampled random variables, each
thread has his own distinctly seeded RNG. Being a Python module, we can easily compare
our solution with the reference solution computed with the finite element solver FEniCS
[24, 1] and references therein. Moreover, the fully/semi stochastic and deterministic global
regression methods from Subsection 3.1 are also implemented in Python using the NumPy
package.

5.1. Convergence in one point. To visualize the outcome of the simulation algorithm
detailed in the preceding subsection, we set 0, = 2 and A, = 0.6 in (5.1) and 7, = 5,
ca = 1and g, = 5-107*in (5.2). This yields a rather smooth coefficient field. This
first test compares the results of the implemented solver with the reference solution at a
single point x € D. We examine convergence in two ways in Figure 2. On the left, we
observe a convergence rate of 1 in the Euler-Maruyama scheme by decreasing the initial
time step Afy. Note that an adaptive time step calculation is applied which reduces the time
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M = 2e7 Aty =le—4

Errors

e—e absolute error e—e absolute error

10% 0 1 2 3 4 5 6 10? 0 T 2 3 0 5 6 7
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Initial step size At Number of trajectories M

Ficure 2. Convergence of the solution in x = [0.5,0.5].

steps close to the boundary dD. On the right, we can see a convergence rate of 1/2 due to
increasing the number of trajectories M in the Monte Carlo simulation.

5.2. Experiment - smooth benchmark field. We again choose 0, = 2 and A, = 0.6
in(5.)andt, = 5,¢c, = 1 and g, = 5- 107 in (5.2). This time we are interested in
convergence in the whole domain. We thus measure the errors in the L2(D) and H'(D)
norms.

Deterministic global regression. The first part of this experiment applies the deterministic
global regression from (3.10) to solutions with the above example problem data. On a
given uniform triangulation of D, a single trajectory is computed for each vertex. The
convergence of the errors in the L*(D) and H' (D) norms is depicted in Figure 3 with square
markers. Here, N is the total number of grid points and M = 1 is the number of trajectories
starting from each grid point. We also set an initial time step A#y small enough such that
the first term on the right-hand side in (4.2) is smaller than the other error contributions.
Hence, Figure 3 shows the error resulting from the global regression. From Proposition 3.6
we expect to see a RMSE of order #v in terms of the total number of trajectories MN,

i.e., a convergence rate of 1/2. Hence, the numerical results are in line with the theory.

Semi stochastic global regression. The second part of this experiment uses uniformly
distributed points in the domain D together with the semi stochastic global regression
from (3.7). Once again, for each sample point a single trajectory is computed. The re-
sults are depicted in Figure 3 with circular markers. They show the same behavior of the
L? error as in the first experiment with a slightly improved performance in the H' norm.
The convergence rate is the same as in the previous part of the experiment, as predicted by
Proposition 3.3.

5.3. Experiment - rough benchmark field. We now choose o, = 1.1 and A, = 0.0009
in (5.1). Furthermore we drop the first 1000 terms of the sum in (5.2) and take 7, = 1020,
ce = land g, = 5-107*. This results in a coefficient field which only includes higher
frequencies in the expansion (1.2). We thus call this field “rough” when compared to the
“smooth” first field. A sample realization is depicted in Figure 4. With this, the experiment
from Section 5.2 are repeated in the following.
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—u [’ det.
e—e [’ rand.
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Errors
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Number of trajectories

Ficure 3. The L? and H' errors from the experiments with deterministic
global regression (square) and semi stochastic global regression (circle)
on a smooth benchmark field as well as the L? and H' error of the pro-
jection into the polynomial regression space (i.e., the bias, no marker).

Deterministic global regression. As in the former experiment, we launch one trajectory
from each vertex of a uniform grid of the domain D. The errors in the L*(D) and H'(D)
norms are again depicted with square markers in Figure 5. Although the stochastic field
now exhibits high oscillations, we can still observe the anticipated convergence rate of 1/2
in both error norms.

Semi stochastic global regression. To conclude this second experiment, as before, we sam-
ple on uniformly distributed points in D and compute one trajectory from each point. Then
again, the semi stochastic global regression is applied and we observe a convergence rate
of 1/2 (circular markers in Figure 5) and a slight performance improvement compared to
the deterministic global regression.

5.4. Comparison. Comparing the two experiments in Sections 5.2 and 5.3, we can see
that the projection error in the H (D) norm is reached at around 107 and the L*(D) error
around 2 - 1073 sampled points in both cases. However, the L?*(D) error of the projection
is approximately one order of magnitude lower in the case of the rough field. A possible
explanation for this last observation could be that realizations of the rough field exhibit
much smaller global L?>(D) norms than the smooth fields. This directly leads to smaller
absolute values of the solutions (high frequencies of the coefficient are smoothed by the
differential operator) and hence smaller L? errors.
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0.2

0.0 g0

Ficure 4. Example realization of the rough benchmark field

In summary, the experiments of this section illustrate that the described algorithm ex-
hibits the predicted convergence behaviour for stochastic fields of different smoothness.

Certainly, further experiments and a more detailed analysis will have to be carried out
to assess the possibilities and the limitations for the application of this numerical method.
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