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Abstract

In this work, we obtain the hydrostatic approximation by taking the small aspect
ratio limit to the Navier-Stokes equations. The aspect ratio (the ratio of the depth
to horizontal width) is a geometrical constraint in general large scale geophysical
motions that the vertical scale is significantly smaller than horizontal. We use the
versatile relative entropy inequality to prove rigorously the limit from the compress-
ible Navier-Stokes equations to the compressible Primitive Equations. This is the
first work to use relative entropy inequality for proving hydrostatic approximation
and derive the compressible Primitive Equations.

Key words: anisotropic Naiver-Stokes equations, aspect ratio limit, hydrostatic
approximation.
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1 Introduction

The atmosphere and ocean have attracted considerable attention in the scientific
research community, especially for the geophysics, as it has so many fluid dynamic prop-
erties and mysterious phenomena. One of the most interesting and physically important

features of large-scale meteorology and oceanography is that vertical dimension of the
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domain is much smaller than the horizontal dimension of domain. Therefore, many sci-
entists suggest the viscosity coefficients must be anisotropic, such as [11, 49, 54]. The
anisotropic Navier-Stokes equations are widely used in geophysical fluid dynamics. In

this paper, we consider the following compressible anisotropic Navier-Stokes equations

Op + div(pu) = 0, (1.1)
(pu): +div(pu ® u) + Vp(p) = pzAzu + p20;.1, ‘

in the thin domain (0,7) x Q.. Here Q. = {(x,2)|z € T? —e < z < €}, = denotes
the horizontal direction and z denotes the vertical direction, while, u, and u, are given
constant horizontal viscous coefficient and vertical viscous coefficient. The velocity u =
(v,w), where v(t,z,2) € R? and w(t,x,2) € R represent the horizonal velocity and
vertical velocity respectively. Through out this paper, we use divu = divyv+90,w and V =
(Vz, 0;) to denote the three-dimensional spatial divergence and gradient respectively, and
A, stands for horizontal Laplacian. As atmosphere and ocean are the thin layers, where
the fluid layer depth is small compared to radius of sphere, Pedlosky [49] pointed out
that ”the pressure difference between any two points on the same vertical line depends
only on the weight of the fluid between these points...”. Here we neglect the gravity and
suppose the pressure p(p) satisfies the barotropic pressure law where the pressure and
the density are related by the formula: p(p) = p” (v > 1). Therefore we assume
the density p is independent of z that is p = p(t,z). This plausible assumption
agrees well with experiment and is frequently taken as a hypothesis in geophysical fluid
dynamics.

Similar to the assumption by [1, 38], we suppose p; = 1 and p, = €2. As stressed
by Azérad and Guillén [1], it is necessary to consider the above anisotropic viscosities
scaling, which is fundamental for the derivation of Primitive Equations (PE). Under this

assumption, the system is rewritten as the following

Op + divg(pv) + 0. (pw) = 0,
pOyv + p(u-V)v — Ayv — €20..v + Vap(p) = 0, (1.2)
poyw + pu - Vw — Ayw — €20,,w + 0.p(p) = 0.

Inspired by [38], we introduce the following new unknowns,
1
Ue = (V67w6)7 VE(CU,Z,t) = V(x7ezat)7 We = 7w($7627t)7 Pe = p(l’,t),
€
for any (z,z) € Q := T? x (—1,1). Then the system (1.2) becomes the following com-
pressible scaled Navier-Stokes equations (CNS):

Ope + divy(peve) + 02 (pewe) = 0,
peatve + pe(ue . V)Ve - Axve - azzve + VxP(Pe) = 07 (13)
62 (peatwe + Pele * V’LUE - Axwe - 8zzwe) + 8zp(pe) =0.



We supplement the CNS with the following boundary and initial conditions:

Pe, U are periodic inz,y, z,

(pesue)|t=0 = (po, up). (1.4)

The goal of this work is to investigate the limit process ¢ — 0 in the system of (1.3)

converge in a certain sense to the following compressible Primitive Equations(CPE):

Op + divg(pv) + 0, (pw) = 0,
O(pv) + divy(pv @ v) + 0, (pvw) + Vap(p) = Azv + 0.V, (1.5)
9:p(p) = 0.

The geophysical fluid dynamics is a fundamental subject to understand the atmosphere
and ocean. Whereas, from the mathematical point of view and numerical perspective,
it is very complicated to use the full hydrodynamical and thermodynamical equations
to analyze and simulate atmospheric flows and oceanic flows. Therefore, scientists in-
troduce the Primitive Equation (PE) model in the geophysical fluid dynamics. It was
Richardson that derived originally PE model in 1920’s for weather prediction. But lack-
ing stability of calculations, this model was not so successful. Then, Bryan [11] improved
PE model by applying the hydrostatic approximation in 1969. Compared with abundant
successful results in simulation and application for PE at early stage, the mathematical
research of PE was started very late. It was until 1990s that Lions, Teman and Wang
[39, 40] were first to study the PE and received fundamental results in this field. Then
PE has historically progressed by concentrated the mathematical arguments developed
by the precise analysis of simpler models. There is a large literatures dedicated to PE
model see [6, 7, 8, 13, 14, 15, 33, 34, 36, 41, 42, 51, 53] and references therein. Let
us give a short retrospect and comment for some results. Guillén-Gonzalez, Masmoudi
and Rodriguez-Bellido [32] proved the local existence of strong solutions in the three
dimension case. The celebrated breakthrough result was made by Cao and Titi [12].
They were first who proved the global well-posedness of PE in the three dimensional
case. Then, by virtue of semigroup method, Hieber and Kashiwabara [35] extended this
result relaxing the smoothness on the initial data. On the other hand, regarding to in-
viscid PE (hydrostatic incompressible Euler equations), the existence and uniqueness is
an outstanding open problem. Brenier [4] proved the existence of smooth solutions in
two-dimensions under the convex horizontal velocity assumptions. And he [5] suggested
that the existence problem may be ill-posed in Sobolev spaces. Later, Masmoudi and
Wong [47] extended Brenier’s result, removing the convex horizontal velocity assump-
tions. Partly for historical reasons, the research of geophysical fluid concerns on PE
model at incompressible case. However, it is well known that atmosphere and ocean have

compressible property. Therefore, it is interesting and natural to consider the PE model



at compressible case, that is CPE. With the constant viscosity coefficients, Gatapov and
Kazhikhov [30], Ersoy and Ngom [20] proved the global existence of weak solutions in
2D case. Recently, Liu and Titi [43, 45] proved the local existence of strong solutions in
3D case and consider the zero Mach number limit of CPE. On the other hand, Ersoy et
al. [19] used the dimensionless number and asymptotic analysis, obtaining the CPE in
the case where the viscosity coefficients are depending on the density. Ersoy et al. [19],
Tang and Gao [50] showed the stability of weak solutions. The stability means that a
subsequence of weak solutions will converge to another weak solutions if it satisfies some
uniform bounds. Recently, Liu and Titi [44] and independently Wang et al. [52] used
the B-D entropy to prove the global existence of weak solutions.

As stressed by [1, 38], the hydrostatic approximation is one of the important feature
of PE model. A rigorous justification of the limit passage from anisotropic Navier-Stokes
equations to its hydrostatic approximation via the small aspect limit seems to be of obvi-
ous practical importance. There are numerous studies of the incompressible convergence.
For example, Azéard and Guillén [1] proved the weak solutions of anisotropic Navier-
Stokes converges to weak solutions of PE. Li and Titi [38] used the method of weak-
strong uniqueness to prove the aspect ratio limit of incompressible anisotropic Navier-
Stokes equations, that is from weak solutions of anisotropic Navier-Stokes equations to
strong solutions of incompressible PE model. Then Giga, Hieber and Kashiwabara et
al. [26, 27] extended the results into maximal regularity spaces. Recently, Donatella and
Nora [17] proved the convergence in downwind-matching coordinates. For the stationary
case, readers can refer to [3, 8]. On the other hand, based on a revised global Cauchy-
Kowalewski theorem, Paicu, Zhang and Zhang [48] proved the incompressible anisotropic
Navier-Stokes equations converge to the Prandtl equation in Besov spaces for 2D case.
However, for the compressible fluids flows, to the best of authors’ knowledge, there are
no results concerning the convergence from compressible Navier-Stokes system (CNS) to
compressible Primitive Equations (CPE).

Our goal is to rigorously justify the limit in the framework of weak solutions of
CNS. Recently, Bella, Feireisl and Novotny [2], Maltese and Novotny [46] proved the
limit passage from 3D compressible Navier-Stokes equations to 1D and 2D compress-
ible Navier-Stokes equations in thin domain. See also result by Ducomet et al. [18].
Heuristically, inspired by their works, we develop and adapt the corresponding idea
of relative entropy inequality for compressible Navier-Stokes equations. There are huge
differences at mathematical structure between Navier-Stokes equations and CPE model.
Due to the hydrostatic approximation, there is no information for the vertical velocity
in the momentum equation of CPE model, and the vertical velocity is determined by
the horizontal velocity via the continuity equation, so it is very difficult to analyze the

CPE model. Therefore, the classical method used in Navier-Stokes system can not be



applied straightforwardly to CPE. Luckily, based on our previous work [29] of weak-
strong uniqueness to CPE, we prove the aspect ratio limit of compressible anisotropic
Navier-Stokes equations. Compared with the previous results [29], there are some deli-
cate differences in the process of using relative energy inequality. We should emphasize
that we obtain the weak-strong uniqueness that is from weak solutions of CPE to strong
solutions of CPE in [29]. Here, our convergence is between two different systems and is
from 3D to 2.5D. The role of weak solutions is played by the solutions of CNS, and the
strong solutions is played by those of CPE. It means that we should deal with the conver-
gence of the vertical velocity of CNS and the absence of the information on the vertical
velocity in CPE. Moreover, the pressure index (v > 4) in the present work which satisfies
the demand of Bresch and Jabin’s result [9](y > %(% + @) ~ 3.5), it improves our
previous work [29](y > 6). This is the first work to use the relative entropy inequality for
proving the hydrostatic approximation at the compressible case. For the introduction of
the versatile relative entropy inequality, see [28]. Last but not least, let us mention that
the corner-stone analysis of our results is based on the relative energy inequality which
was invented by Dafermos, see [16]. Then Germain [31] introduced it into compressible
Navier-Stokes equations. It is Feireisl and his co-authors [22, 23, 25] that generalized the
relative energy inequality for solving various compressible fluid model problems.

The paper is organized as follows. In Section 2, we recall some useful inequalities.
We introduce the definition of weak solutions, strong solution, relative energy and state

the main theorem in Section 3. Section 4 is devoted to proof of the convergence.

2 Preliminaries

In this section, we first introduce some basic inequalities needed in the later proof.

The first inequality is the so called the generalized Poincaré inequality.

Lemma 2.1. Let 2 < p <6, and p > 0 such that 0 < [ pdx < M and [, p"dx < Ey
for some (y > 1) then

1
[ fllzr) < CIVFll2@) + 102 fllL2 @)
where C' depends on M and Ej.

The details of proof can be seen at Feireisl’s monograph [21]. The following is the

famous Gagliardo-Nirenberg inequality.

Lemma 2.2. For a function u : ) — R defined on a bounded Lipschitz domain 2 C R™,

V1 < g, < 00, and a natural number m. Suppose that a real number 8 and a natural



number j are such that
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then there exists constant C' independent of uw such that

1D7ull o) < CID™ullf 0 lull o(ry-

3 Main result

Before showing our main result, we give the definition of a weak solution for CNS and
a strong solution for CPE. Recently, Bresch and Jabin [9] consider different compactness
method from Lions or Feireisl which can be applied to anisotropical stress tensor. They
obtain the global existence of weak solutions for non-monotone pressure. Let us recall

their definitions here.

3.1 Dissipative weak solutions of CNS

Definition 3.1. We say that [pe,uc] uc = (ve,w.) is a finite energy weak solution to

the system of (1.3), supplemented with initial data (1.4) if pe = pe(x,t) and

uc € L*(0,T; H'()), pluc® € L=(0,T; L'(%)),
pe € L(0,T; L7(Q)) nC([0,T], L' (Q)), (3.1)

e the continuity equation
[/ peqﬁdl'dz]iig = / / PO + peve - Vb + pewed pdrdzde, (3'2)
Q 0 Jo

holds for all 1 € C°([0,T) x Q);

e the momentum equation

[/ p€v€¢dedz / /peveattpdedzdt—/ /peuevE Voenpdxdzdt
—I-/ /Vve-ngJdedzdt—/ /p(pe)divzgodedzdt:O, (3.3)
0 JQ 0 JQ

and

[/ pewegogd:cdz / /peweatgogdxdzdte / /peuswE Vipsdxdzdt

6



—|—62/0 /QVwe-ngdrcdzdt—/o /Qp(pe)achgdxdzdtzo, (3.4)

holds for all vy, @3 € C°([0,T) x ). Combining (3.3) — (3.4), we obtain

[/Q)OEVE(PHdde + 62/Qp€w€g03d:):d2]§§6

—/ /peveﬁtgodedzdt—ez/ /peweatgo;;d;rdzdt
0o Ja 0 JQ

—/ /p€v6®vezvm<pﬁdmdzdt—/ /pevewe-ﬁszdmdzdt
o Ja 0 Jo

—62/ /p€v6w6~vxcp3d:pdzdt—62/ /p6w382<,03d:cdzdt
0 Q 0 Q

+/ /VV6 : VgoHda:dzdt—{—eZ/ /Vwe'Vgc)gdazdzdt—/ /p(pe)divgodmdzdt:O,
0 JQ 0 JQ 0 JQ
(3.5)

where ¢ = (¢m, p3) € CX([0,T) x Q) and divy = divypa + 0.3,
e the energy inequality

1 2 _ T
[ v+ Godud + Poo)indsli+ [ [ (9w + &|VudP)dndzde < o
Q 0 Q
(3.6)

holds for a.a T € (0,T), where P(p) = pflp p<§) dz.

3.2 Strong solution of CPE

We say that (r,U), U = (V,W) is a strong solution to the CPE system (1.5) in
(0,7) x Q, if

rz e L0, T; H2(Q)), 8yr2 € L®(0,T; H'(Q)), r > 0 for all (¢, z),
Ve L=(0,T; H*(Q)) N L*(0,T; HY(Q)), 8,V € L*(0,T; H*(2)),

1
with initial data 7 € H2(Q), ro > 0 and Vo € H3(Q). Liu and Titi [43] has proved the

local existence of strong solution to CPE system (1.5).

Remark 3.1. As the density is independent of z, we can obtain the following informa-

tion of vertical velocity for the weak solution of CNS :
pw(z, z,t) = —divy(p¥) + zdivy(p¥), in the sense of H™1(Q), (3.7)

where
z 1
V(w,z,t):/ v(z, s, t)ds, v(:c,t):/ v(z, z,t)dz.
0 0

7



Similarly, we can obtain the same equation for the strong solution of CPE in the classical
sense. There is no information about w, so we need to derive its information. We should
emphasize that (3.7) is the key step to obtain the existence of weak solution for CPE in
[44, 52], which is inspired by incompressible case.

3.3 Relative entropy inequality

Motivated by [22, 23], for any finite energy weak solution (p, u), where u = (v, w), to
the CNS system, we introduce the relative energy functional

62
E(pulr, U) = /Q 5oV - V|2 + S plw W2+ P(p) = P'(r)(p — ) — P(r)]dud>

1
:/( plv* + |w\2+P( ))d:vdz—/(pv-V—i—e%wW)d:vdz
Q Q

V|? 62 2 /
+ [ [p 5 T §p|W] — P'(r)ldzdz + | p(r)dzdz
Q

Q
4
=31, (3-8)
=1

where > 0, U = (V, W) are smooth “test” functions, r, U compactly supported in €.

Lemma 3.1. Let (p,v,w) be a dissipative weak solution introduced in Definition 3.1.

Then (p, v, w) satisfy the relative entropy inequality

E(p,ulr, U)[{=5 +/ / (Vv (Vv = VV) + &|Vw|?)dedzdt
0 Q
< / /Qp(f)tV +vV,V +wo, V)(V — v)dzdt
0
- 62/ / p(OW + VvV W +wd,W)(W — w)dadzdt + 62/ / Vw - VW dxdzdt

/ / P (r — 7)oy + pvVr)dadzdt —/ / r)div, Vdrdzdt. (3.9)

Proof: From the weak formulation and energy inequality (3.3)-(3.6), we deduce
LIED + /OT /Q(\Vv]2 + €2|Vw|?)dzdzdt <0, (3.10)
Ig|§6 = — /OT /Q pvoV + pv @V : Vv + pvw - 9, Vdadzdt

+ /OT /Q EpwdoW + Epw(v - V)W + €2 pw?d. W + p(p)div, Vdrdzdt

+/ / Vv :VV + &Vw - VIWdadzdt, (3.11)
0 JQ

8



——dzxdzdt
2 2

™ 2 2 2
+62/ / p8t|W| +pv-Vx|W| +pw82|W| dxdzdt
o Ja 2 2 2

B T V2 V2 V2

_ /0 ’ /Q pOP' (1) + pv - Vo P'(r) + pwd, P'(r)dwdz=dt
_ /0 ’ /Q PVON + pv(V - Vo)V + pw Vo, Vdedzdt
+ €2 /0 ’ /Q (pWOW + pWv - V., W + pwW 9, W )dxdzdt
_ /0 " /Q pP" (1) 0y + P (r)pv - Vyrdzdzdt, (3.12)

MESzAlé&MMMMﬁ. (3.13)

Summing (3.10)-(3.13) together, we obtain Lemma 3.1.

Based on the relative entropy inequality, we can obtain the following lemma from [22]

Lemma 3.2. Let 0 < a < b < co. Then there exists ¢ = c(a,b) > 0 such that for all
p € [0,00) and r € [a,b] there holds

Clp—r|?, when <p<r,
C(1+ pY), otherwise,

Plp) - Pr)p =) = Plr) = {
where C' = C(a,b).
Moreover, from [22], we learn that

E(p,u|r,U)(t) € L=(0,T), / Xpzrpldrdz < CE(p,ulr, U)(t),
Q

/prggldccdz < CE&(p,ulr,U)(t), /ng<p<r(p —r)2dzdz < CE(p,ulr,U)(t). (3.14)
For a rigorous proof of Lemma 3.2 and (3.14), the reader is referred to [22].
3.4 Main result

Now, we are ready to state our main result.

Theorem 3.1. Let v > 4, Tyhae > 0 be the life time of strong solution to CPE system
(1.5) corresponding to initial data [ro, Vo|. Let (pe,uc), ue = (ve,we) be a sequence
of dissipative weak solutions to the CNS system (1.3) from the initial data (poe, Uo,c)-
Suppose that

8(:00,67 uO,&‘T(]: UO) - 07



where Uy = (V, W), then

ess  sup  E(pe,uclr,U) — 0,
t6(07T7naw)

where U = (V,W) and the couple (r,U) satisfy the CPE system (1.5) on the time

interval [0, Tz )-

Remark 3.2. Recently, Bresch and Burtea [10] proved existence of weak solutions for

the anisotropic compressible Stokes system.

Remark 3.3. It is important to point out that our convergence holds on a fixed
time interval due to the local existence of CPE. Some results [26, 38, 48] concerning
the incompressible PE model were shown the global convergence based on the global

existence in time under assumptions on the smallness of initial data.

Section 4 is devoted to the proof of the above theorem.

4 Convergence

In this section, we will prove the Theorem 3.1. First, we will explain our idea of the

proof in the following.

4.1 Main idea of Proof

The proof of Theorem 3.1 depends on the relative energy inequality by considering
the strong solution (r,U), where U = (V, W), as test function in the relative energy
inequality (3.8). Firstly, let us recall the relative energy inequality

E(pe,uclr, U)[IZ7 + /O ’ /Q (Vve (Vve = VV) + €V (Vwe — VW) dzdzdt
< /0 ’ /Q POV + v VoV + w0, V)(V = vo)dadt
+ € /OT/ng(atW + VvV W + w D, W) (W — we)dzdzdt + € /OT/QVwE - VW dzdzdt
- /OT /Q P"(r)((pe — r)0sr + peveVer)dadzdt — /OT /Qp(r)divadxdzdt. (4.1)

The goal now is to find the an estimate of the left hand side of (4.1) in the following form

t t
S(pe,uelr,U)(t)—i—C/ HVVE—VVH%gdt—i-ez/ Vwe||?2dt
0 0

10



and of the right hand side in the form
¢ t
0(5)/ hOE (pe, uelr, Udt + 5/ IVve = VV|2adt + o),
0 0

with any & > 0, where C is independent of § and €, h € L'(0,T) and o(e?) — 0 when
e — 0.

If we establish the above bounds, we can deduce
Elperudr U)(r) < C [ h(O2(perulr U)@)dt + ofe),
0

that implies our result by using the Gronwall inequality. In the rest of this section, we

will perform this programme.
4.2 Step 1
We write
/Qpevg(V —v,) -V, Vdxdz =
/Qpe(vE —V)(V —=v,) -V, Vdzdz + /QpﬁV(V —v¢) -V, Vdzdz.
As [r, V, W] is a strong solution, it is obvious to obtain that
/Q,oe(v€ —V)(V —=v,) -V, Vdadz < CE(pe, uer, U). (4.2)
Moreover, the momentum equation reads as
(rV) +divy(rV @ V) + 0,(rVW) + Vup(r) = AV = A,V +9,.V,
which implies that
Vi+ V-V, V4+ W,V = —%vxp(r) + %AmV + %azzv.
So we rewrite the preceding two items on the right side of (4.1) as
/Q POV + VYLV + WOV + (Ve — VIV, V + (we — WA VI(V — v)dadz

_ /Q %(V — V)ALV + 8.V — Vop(r))dedz

+ / ps(we - W)(V - Ve) -0, Vdrdz — / pe(V - V6)2vxv7
Q Q
and

€ / / pe(OW + v VW + w0, W) (W — w)dxdzdt
o Ja

11



< E(pe,uc|r,U) + 64/ / pe(OW + v VoW + w0, W)2dadzdt
0 Q
= E(pe,ue|r, U) + 64/ / pe(OW + VV, W + Wa,W)2dxdzdt

+ € / / pe((Ve = VIV W + (we — W), W)%dxdzdt. (4.3)
Noticing Lemma 3.2, we have

/ p(OW + VV, W + WO, W)2dxdzdt
/ Xpe<3 rpe(OW + VV, W + W, W)2d1:dz

+ / X%Spngpe(atW +VV,. W+ WazW)2d1}dZ

fe}

+ / XpesrPe(OW + VYV, W + WO, W)2dxdzdt

o)

< Xpo<zr(OW + VW + WOW)?dudz
Q

+ / XpesrPe(OW + VV, W + WO, W) drdzdt
+ C/ Xzr <p€<r( —r) (O W + VV, W+ Wa, W)dedz

< CE(pe,uc|r,U) +C/ Xr <p6<r( —) dxdz+0/ Xpesrpldrdz + C
< C&(pe, uclr,U) + C. (4.4)
Putting (4.4) into (4.3) yields

€2 / / Pe(OW + v VoW + wd, W) (W — we)drdzdt < CE(pe, uc|r, U) + o(e?).
0 JQ

Moreover, a simple application of Cauchy inequality leads to the following

T 2 T
€2 / / V. VWdzdzdt < < / / |Vwe|2dxdzdt + o(€?).
0o Jo 2 Jo Ja

Thus, we obtain that

E(pe,ue|r, U)[I= 64—/ / Vve: (Vve—=VV) + \Vwel *)dxdzdt

< C/ E(pe, uclr, U)dt — / / P"(r)((pe = )Our + peveVyr)dudzdt

/ / — v )(ALV + 0., V)dxdz —/ / — ve)Vep(r)dzdz
Q Q

+ / / pe(we = W)(V = v,) - 0, Vdzdzdt — / / p(pe)div, Vdzdzdt + o(€?).
0 Q 0 Q

12



4.3 Step 2

The major challenges of the analysis is to estimate the complicated nonlinear term
Jo pe(we = W)(V —v) - 0. Vdxdz, we rewrite it as

/ pe(we — W)(V —v¢) - 0,Vdxdz
Q
= / pewe(V —ve) - 0,Vdrdz — / pW(V —v,) -0, Vdzdz. (4.5)
Q Q

A similar heuristic argument from [22, 37] shows that the second term on the right

side of (4.5) will be split into three parts
/QpeW(V —v.) - 0,Udzxdz
= /preggpel/V(V —v,) -0, Vdzdz + /QX§<,;6<TP6W(V —v,) -0, Vdzdz
+ /QXPeZTPEW(V — V) - 0. Vdzdz

ol
< IXpe<zUlrz@llrll Lo (WO VI 3|V = Vel o) + /prezrpez WO,V - (V —v)dzdz
+ ClIxz<pe<r(pe = M)l L2 WV | L3V = Vel Lo ()

SC’/pregglda:dz—I—C’/ng<pe<r(pe—T)dedz

+ C/ Xpe2rpldedz + 8|V = ve|[Fo
0

< CE(pesulr U) + 6V, V = Vavel 3oy + 610.V = 0:vel e (16)

where in the last inequality, we have used Lemma 2.1.
We now turn to analyze the first term on the right hand of (4.5), which is the crucial
and difficult part in our proof. Taking (3.7) into it, we have

/Qpewe(V — V)0, Vdzdz
= /Q[—divx(pﬁe) + 2div,(peve)]0,V - (V — v )dzdz
= /Q(pﬁe — 2peVe)0, ViV - (V — v )dxdz
+ /Q(pﬁ6 — 2pVe)0.V - (V,V = Vv )dxdz. (4.7)

In the following, we will estimate the terms on the right hand side of (4.7). We need

only consider the most complicated terms, the remaining terms can be completed by the
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similar method. Firstly, we deal with [, peVe0.V,V - (V — v¢)dazdz in the following,
/QpeVeﬁszV (V= v)dzdz
= /Qpeﬁ6 — \N/')@ZV;L«U (V = ve)drdz + /Q pe\N/'@ZVwV (V= v)dzdz
=J1+ Jo,

where V = Jo V(z, s, t)ds.

Similar to the above analysis, we decompose the term .Jo into three parts
Jo = / pe\N/'@ZVzV (V= ve)dzdz
Q
= / Xpeg%pjfazvzv (V= ve)dzdz + / X§<p€<rpe\~783VwV (V= v)dzdz
Q Q

+ / Xpezrpe\N/'anzV (V= v)dzdz
Q
< HXpeéngB(Q) [Pl [[VO: VeV 3|V — Ve”LG(Q)

i ~
+ IXpe>rPé lL2@) [VO:Va Vs IV — Vel Lo (o)
+ Clixg<pe<r(pe = )2 VOV VL) IV = vel Lo ()
< C&(pe,ue|r,U)(t) + 6| VLV — vaé”%%m +40:V — aneH%?(Q)'

On the other hand, by virtue of Cauchy inequality, it follows that

Jp = / pe(Ve = V).V, V - (V = vo)dadz
Q

< 0.V, V] 1 /

pelve — V2 dzdz + / pe|V — ve|2dadz
Q Q

§C’/p6|/ (ug(s)—U(s))ds|2dmdz+5(p€,uE|T,U)
Q 0
1
§C’/p€(/ |V — v |2ds)dzdz + E(pe, uc|r, U)
Q 0

1
gC’/ /pE]V—v6|2dxdzds+5(p€,u€\r,U)
0 JQ

< C’/ pe|V = ve|?dxdz + E(pe, uc|r, U)
Q
< CE(pe,uclr,U). (4.8)

Secondly, we will investigate another complicated nonlinear term fQ PeVed, V- (V,V—
Vve)dzdz. Tt is straightforward to show that

/ peVe0, V- (V,V = Vv )drdz
Q

14



= / Xpe<rPeVe0:V - (V,V = Vyve)dedz + / Xpe>rPeVe0.V - (V,V = Vyve)dadz,
Q Q
(4.9)

where the first term on the right side of (4.9) is split into two parts as
/preqpeﬁ@zV (VoV = Vv )dzdz
= [ Xocerp T~ VIOV - (V.Y = Vv dads
+ /Q Xpecrp VOV - (Vo V — Vv, )dads
_ /Q XpoerPe(Ve = V)V - (VaV — Vv, )didz
+ /Q Xz <pearpP VOV - (Vo V = Vovo)dadz
4 /Q Xp<zp VOV - (Vo V = Vv )dadz

< HXpe<rp§ 0 v/Pe (Ve = V) 2@ 10: Vil e () | Ve V = Vavel r2(a)
+ HX%<pe<rpeHL2(Q)HvanHLOO(Q) V2V = Vave|l 2o
+Ixpe<z 2@ 17 Lo @) VOV [ 1o ()| V2 V = Vavellz2(q)

< CE(pe, uelr, U)(t) + 8[| VaV = Vavel 72

The decomposition of remainder of (4.9) is identical to the above as:
/Xpsszﬁe@ZV (Vo V = V,ve)dadz
Q

= / Xpsrpe(Ve = V)V - (V,V — Vv )dadz + / Xp>rp VOV - (Vo V = Vv, )dadz
Q Q

= K1 + Ko, (410)
where
J ~
KQ < / Xp€27"p62 Vazv . (VxV - vag)dxdz
Q

ol ~
< |IXpezrPé 2@ IVO: V|| Lo () [ V2V = Vave| 1210
X
< Cllxpezrpé H%Q(Q) +0[|VaV — vaEH%Q(Q)
< CE(pe,uclr,U)(t) + 9|V, V — vagﬂiz(m. (4.11)

It remains to estimate K. Due to Holder inequality, it follows that
K1 < xpezrpell @y xpezr (Ve = V) llLa@)|0: VLo @) IVaV = Vavel L2 (q)
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< CHX,OEZTIOEH%A(Q)HXple(ve - V)||L4 +0[[VeV =V Ve||L2(Q)
< Cllpezrpdl By Iz (e — Dlisnlocon (V5 ~ T s + 61 VoV
< Clixpezrpellpay IXpezr (Ve \7)H%3(Q) +0[[Vave — vva%Q(Q)
+00:Ve = 0:V |2 + 6 Vave = Va V2
< HXPeZTpeH%‘l(Q) IXpe=r(Ve — v)HB(Q) IXpezr(Ve — v)HHl(Q) +6[[Vave — V:EVH%Q(Q)
£ 805, = 0.V |22 g + 81 Vave — VaV[aiq)
< XperpelltsIxezr(Ve = V)l Z2(q) + 5||ng>r(Ve = V)llF2(0) + 0l VaVe = VaVizq)
+0[|0:Ve = 0. V[7210) + 6] Vave — szHLQ(Q)

where we have used the Lemma 2.2
1 1 1 1
[ flla < IV AN f11 75 and ([ fllzs < (£ 1117
Recalling (3.14) and (4.8), we have

8 8
ool = (| plded=)? < O [ prded)? < Epeudn 0 0),
PeZT

and

€

- ~ 1 - ~
Xpe2r (e = V)220 / Ve — V[2ddz = / L R — V2dad:
pe> pe>T

———&(pe, ue|r, U)(2).

<
- HTHOO

An argument similar to the one used in (4.8) yields
||vx66 - vva%Q(Q) S ||vae - vaH%g(Q), ||azp‘76 - az{/.H%;(Q) S ||azve - an“%ﬂ(Q)
Combining the above estimates, we arrive at the conclusion that
/ Kydt < C/ h(t)E(pe, uc|r, U)(t)dt + 5/ IVave = Vi V(72 + [0:ve = 0.V |72y dt
0 0 0

where h(t) € L1(0,T).
The estimate of remainder in (4.7) can be completed by the analogous method. There-

fore, we can summarize what we have proved as the following
E(pe, uelr, U)[Zh + / / (Vve - (Vve = VV) + €|V, |?) dzdzdt

<c/ hOE(pe, uelr, U dt+6/ IVave = 9V 220 + 032 — 0V

/ / V —v)(A V+8ZZV)dxdzdt/ / V — v )V.p(r)dzdzdt
or
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— / / P"(r)((pe — r)Our + peveVar)dzdzdt — / / p(pe)div, Vdazdzdt + o(e?).
0 Q 0 Q
Then we deduce that
E(pe,ulr, U)[=T + / / (Vave — VoV £ (Vave — VaV) + |0:ve — 0V + &|Vioe[?) dedzdt
0 Ja

< C [ HOE e O+ 6 [ V0= VoV o) + 10:v. = 0.V
0

/ / (2 1) (V = v) (AL V + 8..V)dwdzdt — / / PV = vo)Vup(r)dadzdt
Q 0o Ja T
—/ /P”(r)((p€—r)atr—i—pgvgvgcr)dxdzdt—/ /p(pe)divad:vdzdt+o(e2).
0o Jo 0o Jo
(4.12)
4.4 Step 3

We are now in a position to estimate the remaining terms in the relative energy
inequality (4.12). It is clear to check that

- / / &(V — v )Vep(r) + p(pe)dive V + P (r)((pe — 7)0yr + peveVer)dadzdt
0 Q
= —/ / (pe = )P"(r)0r + P"(1)peve - Var + pe P (r)(V = ve) - Var + p(pe)div, Vdzdzdt
0
/ (pe = T)P"(r)0r + P"(r)peV - Vaur + p(pe)div, Vdadzdt
= P'(r)(Opr +V - Vur) —rP"(r)0r + div, Vdzdzdt
Pe t z t P Pe x

0o Jo
= / / pP"(r)(—=rdiv,V — rd, W) — rP"(r)0yr + p(pe)div, Vdzdzdt

. /0 /Q div,V (p(pe) — P (r) (pe — ) — p(r))dudzdt + / / r)0. W dzdzd,

(4.13)

where we have used the fact that 9;r + div, Vr +U - V,r +r0, W = 0.
Using the analogous argument as in [46] Section 2.2.5, we can easily carry out the

following estimate:

| /0 ' /Q div, V (p(pe) — ' (r)(pe — ) = p(r))dzdzdt| < C /0 Th(t)c‘:(pe,uglr, U)dt. (4.14)

According to the periodic boundary condition, it follows that

/ / —1r)0,Wdzdzdt = / dt /T2 / O.Wdz)p' (r)(pe —r)dx =0.  (4.15)
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Furthermore, an argument similar to the one used in [37] Section 6.3 shows that

/ (%~ 1)V = V(AL +0..V)dadz
Q7T

< CE(pe; uc|r, U) + 6| Vuve — Vi VI[22 +6]|0,ve — 0. V||2,. (4.16)
Therefore, putting (4.12) — (4.16) together, we have
E(pe,uer,U) (1) < C/ h(t)E (pe, ue|r, U)(t)dt + o(€?). (4.17)
0

Then applying the Gronwall’s inequality, we finish the proof of Theorem 3.1.
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