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Abstract

We show that VTC 0, the basic theory of bounded arithmetic corresponding to the com-

plexity class TC0, proves the IMUL axiom expressing the totality of iterated multiplication

satisfying its recursive definition, by formalizing a suitable version of the TC0 iterated mul-

tiplication algorithm by Hesse, Allender, and Barrington [11]. As a consequence, VTC 0

can also prove the integer division axiom, and (by results of [13]) the RSUV -translation of

induction and minimization for sharply bounded formulas. Similar consequences hold for

the related theories ∆b
1-CR and C0

2 .

As a side result, we also prove that there is a well-behaved ∆0 definition of modular

powering in I∆0 + WPHP(∆0).

1 Introduction

The underlying theme of this paper is feasible reasoning about the elementary integer arithmetic

operations +, ·, ≤: what properties of these operations can be proven using only concepts whose

complexity does not exceed that of +, ·, ≤ themselves? There is a common construction in

proof complexity that allows to make such questions formal: given a (sufficiently well-behaved)

complexity class C, we can define a theory of arithmetic T that “corresponds” to C. While the

notion of correspondence is somewhat vague, what this typically means is that on the one hand,

the provably total computable (in a suitable sense) functions of T are exactly the C-functions,

and on the other hand, T can reason with C-concepts: it proves induction, comprehension,

minimization, or similar schemata for formulas that express predicates computable in C.

In our case, the right complexity class1 is TC0: the elementary arithmetic operations are

all computable in TC0, and while + and ≤ are already in AC0 ( TC0, multiplication is TC0-

complete under AC0 Turing-reductions. The arithmetical theory corresponding to TC0 that we

∗Supported by grant 19-05497S of GA ČR. The Institute of Mathematics of the Czech Academy of Sciences

is supported by RVO: 67985840.
1Originally, TC0 was introduced as a nonuniform circuit class by Hajnal et al. [10], but in this paper we always

mean the DLOGTIME-uniform version of the class, which gives a robust notion of “fully uniform” TC0 with

several equivalent definitions across various computation models (cf. [2]). Likewise for AC0.
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will work with in this paper is VTC 0, defined by Nguyen and Cook [21] as a two-sorted theory of

bounded arithmetic in the style of Zambella [26]. Earlier, Johannsen and Pollett [15, 16] intro-

duced two theories corresponding to TC0 in the framework of single-sorted theories of Buss [5]:

∆b
1-CR, which is equivalent to VTC 0 under the RSUV translation, and its extension C0

2 . (Since

C0
2 is conservative over ∆b

1-CR for a class of formulas that encompasses the statements that we

are interested in in this paper, there is no difference between these theories for our purposes.)

While it is easy to show (and not particularly difficult to formalize in VTC 0) that TC0

includes +, ·, −, and iterated addition
∑

i<nXi, it is considerably harder to prove that it

includes integer division and iterated multiplication
∏
i<nXi. The history of this result starts

with Beame, Cook, and Hoover [3], who proved (in present terminology) that division, iterated

multiplication, and powering Xn (with n given in unary) are TC0 Turing-reducible to each other,

and that they are all computable in P-uniform TC0. (In fact, [3] predates the definition of TC0;

they referred to NC1 in the paper. It is easy to observe though that their algorithms can be

implemented using threshold circuits.) The basic idea of [3] is to compute iterated multiplication

in the Chinese remainder representation (CRR), i.e., modulo a sequence of small primes ~m,

and then reconstruct the result in binary from CRR. The main source of nonuniformity (or

insufficient uniformity) in [3] is the CRR reconstruction procedure: they require the CRR

basis ~m to be fixed in advance (for a given input length), and supplied to the algorithm along

with the product
∏
imi.

The next breakthrough was achieved by Chiu, Davida, and Litow [6], who devised a more

efficient CRR reconstruction procedure based on computation of the rank of CRR that did not

rely on
∏
imi, and as a consequence, proved that division and integer multiplication are in

L-uniform TC0, and in particular, in L itself. (Their paper still refers to NC1 rather than TC0.)

Subsequently, Hesse, Allender, and Barrington [11] proved the optimal result that division and

iterated multiplication are in (fully uniform) TC0 by first reducing the remaining nonuniformity

in CRR reconstruction to the modular powering function pow(a, r,m) = ar mod m (with all

inputs in unary, and m prime), and then showing that pow is in fact computable in AC0 ⊆ TC0.

We mention that once we know that TC0 includes iterated multiplication, it follows easily

that it can do many other arithmetic functions: in particular, the basic operations +, ·, . . .

(including iterated
∑

and
∏

) are TC0-computable not just in the integers, but also in Q
and more general number fields, and in rings of polynomials; and we can compute rational

approximations of analytic functions given by sufficiently nice power series, such as trigonometric

and inverse trigonometric functions, log and exp (for inputs of small magnitude). On the

arithmetical side, it was shown in Jeřábek [13] that the theory VTC 0 augmented with an iterated

multiplication axiom is fairly powerful: by formalizing TC0 root approximation algorithms for

constant-degree univariate polynomials, it proves binary-number induction for quantifier-free

formulas in the language of ordered rings (IOpen), and even binary-number induction and

minimization for RSUV translations of Σb
0 formulas in Buss’s language.

In view of these developments, it is natural to ask whether TC0 integer division and iterated

multiplication algorithms can be formalized in the corresponding theory VTC 0. This problem

was posed in the concluding section of Nguyen and Cook [21], where it was attributed to

A. Atserias; it was then restated in Cook and Nguyen [7, IX.7.6] and Jeřábek [13, Q. 8.2]. Earlier,
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Johannsen [14] (predating [6, 11]) devised a theory C0
2 [div ] extending C0

2 that corresponds to

the TC0-closure of division; the problem of formalizing division and iterated multiplication

in VTC 0 is equivalent to the question if C0
2 ≡ C0

2 [div ] (more precisely, if C0
2 [div ] is an extension

of C0
2 by a definition), but this was not explicitly posed as a problem in [14].

To clarify, since all TC0 functions are provably total in VTC 0, it trivially follows that the

theory can define provably total functions that express the division and iterated multiplica-

tion algorithms of [11]. However, the theory does not necessarily prove anything about such

functions, besides the fact that they compute the correct specific outputs for inputs given by

standard constants. When we ask for formalization of division in VTC 0, what we actually mean

is whether the theory can prove an axiom DIV postulating the existence of bY/Xc that satisfies

the defining property

X 6= 0→ bY/XcX ≤ Y <
(
bY/Xc+ 1

)
X,

and likewise, formalization of iterated multiplication refers to an axiom IMUL stating the exis-

tence of iterated products
∏
i<nXi satisfying the defining recurrence∏

i<0

Xi = 1,∏
i<n+1

Xi = Xn

∏
i<n

Xi.

(The exact definitions of IMUL and DIV are given in Section 2.) This requires much more than

just totality of the two functions. Note that whether we ask about the provability of IMUL

or DIV is just a matter of convenience: it follows from the results of [14, 13] (formalizing the

reductions from [3]) that IMUL implies DIV over VTC 0, and that VTC 0 proves DIV if and

only if it proves IMUL. For the purposes of this paper, it will be more natural to work with

IMUL.

The reader may wonder what makes the formalization of the iterated multiplication algo-

rithm from [11] so challenging. After all, the algorithm and its analysis are rather elementary,

they do not rely on any sophisticated number theory. It is true that the argument in [11] does not

really just consist of a single algorithm—it has a complex structure with several interdependent

parts:

(i) Show that iterated multiplication is in TC0(pow), using CRR reconstruction.

(ii) Show that iterated multiplication with polylogarithmically small input is in AC0, by scal-

ing down part (i).

(iii) Show that pow is in AC0 using (ii), and plug it into (i).

However, this is not by itself a fundamental obstacle. What truly makes the formalization

difficult is that the analysis of the algorithms suffers from several problems of a “chicken or

egg” type: which came first, the chicken or the egg? Specifically:

• The analysis (proof of soundness) of the CRR reconstruction procedure in part (i) heavily

relies on iterated products and divisions: e.g., it refers to the product
∏
imi of primes
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from the CRR basis. However, when working in VTC 0, we need the soundness of the

CRR reconstruction procedure to define such iterated products in the first place.

• Similarly, the analysis of the modular exponentiation algorithm in part (iii) refers to

results of modular exponentiation such as abn/dic, and in particular, it relies on Fermat’s

little theorem an = 1. However, the latter cannot be stated, let alone proved, without

having a means to define modular exponentiation in the first place.

• A more subtle, but all the more important, issue is that in part (i), the reduction of

iterated modular multiplication imul(~a,m) =
∏
i ai mod m (m prime) to pow relies on

cyclicity of the multiplicative groups (Z/mZ)×, which is notoriously difficult to prove

in bounded arithmetic (cf. [12, Q. 4.8]). While this may look more like an instance of

“sophisticated number theory” at first sight, what makes it a chicken-or-egg problem as

well is that the cyclicity of (Z/mZ)× is in fact provable in VTC 0 + IMUL.

The main result of this paper is that IMUL is, after all, provable in VTC 0, and specifically,

VTC 0 can formalize the soundness of a version of the Hesse, Allender, and Barrington [11]

algorithm. Our formalization follows the basic outline of the original argument, adjusted to

overcome the above-mentioned difficulties:

• Since we do not know how to prove directly the cyclicity of (Z/mZ)× in VTC 0, we

formalize part (i) using imul as a primitive instead of pow: that is, we prove IMUL in

VTC 0(imul). We get around the chicken-or-egg problems by developing many low-level

properties of CRR in VTC 0(imul), in particular the effects of simple CRR operations such

as those used in the definition of the CRR reconstruction procedure. This is the most

technical part of the paper.

• Part (ii) is easy to formalize in the basic theory V 0 (corresponding to AC0) by observing

that polylogarithmic cuts of models of V 0 are models of VNL, which improves a result of

Müller [17].

• We avoid the chicken-or-egg problems in part (iii) by modifying the modular powering

algorithm so that it does not need the auxiliary values abn/dic at all, using more directly

the underlying idea from [11] of applying CRR to exponents. Since we need the weak

pigeonhole principle to ensure there are enough “good” primes for the CRR, the formal-

ization proceeds in V 0 + WPHP rather than plain V 0. By exploiting the conservativity of

V 0 over I∆0, we obtain the stand-alone result that there is a ∆0 definition of pow (even

for nonprime moduli) whose defining recurrence is provable in I∆0 + WPHP(∆0), which

may be of independent interest.

• The results so far suffice to establish that over VTC 0, IMUL is equivalent to the totality

of imul, and to the cyclicity of (Z/mZ)× for prime m, which reduces to the statement

that for any prime p, all elements of order p modulo m are powers of each other. Paying

attention to how large products are needed to prove the last statement for a given m

and p, and vice versa, we show how to make progress on each turn around this circle
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of implications, using a partial formalization of the structure theorem for finite abelian

groups. This allows us to set up a proof by induction to finish the derivation of IMUL in

VTC 0.

As a consequence of our main theorem, the above-mentioned results of [13] on VTC 0+IMUL

apply to VTC 0: that is, VTC 0 proves the binary-number induction and minimization for RSUV

translations of Σb
0 formulas. In terms of Johannsen and Pollett’s theories, iterated multiplication

and Σb
0-minimization (in Buss’s language) is provable in ∆b

1-CR and in C0
2 , and the theory

C0
2 [div ] is an extension of C0

2 by a definition (and therefore a conservative extension).

The paper is organized as follows. Section 2 consists of preliminaries on VTC 0 and related

theories. In Section 3, we prove a suitable lower bound on the number of primes (to be used

for CRR) in VTC 0. Section 4 formalizes a proof of division by small primes in VTC 0(pow).

The core Section 5 formalizes various properties of CRR in VTC 0(imul), leading to a proof

of soundness of the CRR reconstruction procedure, and of IMUL. In Section 6, we discuss

polylogarithmic cuts and the ensuing results about V 0. In Section 7, we construct modular

exponentiation in V 0+WPHP . We finish the proof of IMUL in VTC 0 in Section 8. In Section 9,

we improve some of our auxiliary results to a more useful stand-alone form. Section 10 concludes

the paper.

2 Preliminaries

We will work with two-sorted (second-order) theories of bounded arithmetic in the style of

Zambella [26]. Our main reference for these theories is Cook and Nguyen [7].

The language L2 = 〈0, S,+, ·,≤,∈, |·|〉 of two-sorted bounded arithmetic is a first-order

language with equality with two sorts of variables, one for natural numbers (called small or

unary numbers), and one for finite sets of small numbers, which can also be interpreted as large

or binary numbers so that X represents
∑

u∈X 2u. Usually, variables of the number sort are

written with lowercase letters x, y, z, . . . , and variables of the set sort with uppercase letters

X,Y, Z, . . . . The symbols 0, S,+, ·,≤ of L2 provide the standard language of arithmetic on

the unary sort; x ∈ X is the elementhood predicate, also written as X(x), and the intended

meaning of the |X| function is the least strict upper bound on elements of X. We write x < y

as an abbreviation for x ≤ y ∧ x 6= y, and bit(X, i) for the indicator function of i ∈ X.

Bounded quantifiers are introduced by

∃x ≤ t ϕ⇔ ∃x (x ≤ t ∧ ϕ),

∃X ≤ t ϕ⇔ ∃X
(
|X| ≤ t ∧ ϕ

)
,

where t is a term of unary sort not containing x or X (resp.), and similarly for universal

bounded quantifiers. For any i ≥ 0, the class ΣB
i consists of formulas that can be written as

i alternating (possibly empty) blocks of bounded quantifiers, the first being existential, followed

by a formula with only bounded first-order quantifiers. Purely number-sort ΣB
0 formulas without

set-sort parameters (i.e., bounded formulas in the usual single-sorted language of arithmetic)

are called ∆0. A formula is Σ1
1 if it consists of a block of (unbounded) existential quantifiers

followed by a ΣB
0 formula.
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The theory V 0 can be axiomatized by the basic axioms

x+ 0 = x x+ Sy = S(x+ y)

x · 0 = 0 x · Sy = x · y + x

Sy ≤ x→ y < x |X| 6= 0→ ∃x
(
x ∈ X ∧ |X| = Sx

)
x ∈ X → x < |X| ∀x (x ∈ X ↔ x ∈ Y )→ X = Y

and the bounded comprehension schema

(ϕ-COMP) ∃X ≤ x ∀u < x
(
u ∈ X ↔ ϕ(u)

)
for ΣB

0 formulas ϕ, possibly with parameters not shown (but with no occurrence of X). We

denote the set X whose existence is postulated by ϕ-COMP as {u < x : ϕ(u)}. Using COMP ,

V 0 proves the ΣB
0 -induction schema ΣB

0 -IND and the ΣB
0 -minimization schema ΣB

0 -MIN ; in

particular, V 0 includes the theory I∆0 (the single-sorted theory of arithmetic axiomatized by

induction for ∆0 formulas over a base theory such as Robinson’s arithmetic) on the small number

sort. In fact, V 0 is a conservative extension of I∆0 [7, Thm. V.1.9].

Following [7], a set X can code a sequence (indexed by small numbers) of sets whose uth

element is X [u] =
{
x : 〈u, x〉 ∈ X

}
, where 〈x, y〉 = (x + y)(x + y + 1)/2 + y. Likewise, we can

code sequences of small numbers using X(u) = |X [u]|. (See below for a more efficient sequence

encoding scheme.) While we stick to the official notation in formal contexts such as when stating

axioms, elsewhere we will generally write ~X = 〈Xi : i < n〉 to indicate that ~X codes a sequence

of length n whose ith element is Xi. We denote the length of the sequence as lh( ~X) = n. (The

official sequence coding system does not directly indicate the length, hence we need to supply

it using a separate first-order variable.)

There is a ∆0-definition of the graph of 2n such that I∆0 proves that it is a partial function

whose domain is an initial segment closed under +, and that it satisfies the defining recurrence

20 = 1, 2n+1 = 2 ·2n (see e.g. Hájek and Pudlák [9, §V.3(c)]). Thus, there is also a well-behaved

∆0-definition of the function bit(x, i) = bx2−ic rem 2, and |x| = min{n : x < 2n}. In particular,

in V 0 there is a ΣB
0 -definable bijection identifying any small number x with the corresponding

large number, represented by the set {i < |x| : bit(x, i) = 1}. Numbers of the form n = |x|, or

equivalently, such that 2n exists as a small number, will be called logarithmically small. The

axiom Ω1 is defined as ∀x ∃y
(
y = 2|x|

2)
, or equivalently, ∀x ∃y

(
y = x|x|

)
.

VTC 0 is extends V 0 by the axiom

∀n,X ∃Y
(
Y (0) = 0 ∧ ∀i < n

(
(i /∈ X → Y (i+1) = Y (i)) ∧ (i ∈ X → Y (i+1) = Y (i) + 1)

))
,

asserting that for every set X, there is a sequence Y supplying the counting function Y (i) =

card(X ∩ {0, . . . , i − 1}). Thus, in VTC 0, there is a well-behaved ΣB
1 definition of cardinality

of sets card(X) that provably satisfies

card(∅) = 0,(1)

card(X ∪ {u}) = card(X) + 1, u /∈ X.(2)
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V 0 can ΣB
0 -define X + Y and X < Y , and prove that they make large numbers into a

non-negative part of a discrete totally ordered abelian group. Moreover, VTC 0 can ΣB
1 -define

iterated addition
∑

i<nX
[i] satisfying the recurrence∑

i<0

X [i] = 0,(3) ∑
i<n+1

X [i] = X [n] +
∑
i<n

X [i],(4)

and as a special case, it can ΣB
1 -define multiplication X ·Y , satisfying the axioms of non-negative

parts of discretely ordered rings. The embedding of small numbers to large numbers respects

the arithmetic operations.

While we normally use set variables X, . . . to represent nonnegative integers, we can also

make them represent arbitrary integers by reserving one bit for sign. We can extend <, +, ·, and∑
i<nXi to signed integers with no difficulty. We can also use fractions to represent rational

numbers, but we have to be careful with their manipulation: in particular, converting a bunch

of fractions to a common denominator (such as when summing them) requires the product of

the denominators, and taking integer parts requires division with remainder (see below); one

case easy to handle is when all denominators are powers of 2. (Note that 2n = {n} is easily

definable in V 0.) Also, reducing fractions to lowest terms is impossible in general, as integer

gcd is not known to be computable in the NC hierarchy. (However, gcd of small integers can

be done already in I∆0.)

When Y = Q · X + R, where 0 ≤ R < X (including the case of negative Y and Q), we

will write2 Q = bY/Xc and R = Y rem X. We will also use the divisibility predicate X | Y ,

meaning Y rem X = 0, and the congruence predicate Y ≡ Y ′ (mod X), meaning X | (Y − Y ′).
(If the modulus X is the same throughout an argument, we may write just Y ≡ Y ′.) Since the

provability of the totality of division in VTC 0 is equivalent to the main result of this paper, we

will need to make sure that the relevant quotients and remainders exist whenever we employ

these notations; in particular, I∆0 proves that we can divide small numbers, V 0 can divide

large numbers by powers of 2, and we will prove in Section 4 that VTC 0(pow) can divide large

numbers by small primes.

Both notations Y rem X and Y ≡ Y ′ (mod X) will establish contexts where everything

inside Y and Y ′ is evaluated modulo X (except for nested mod/rem expressions modulo a

different X ′); in particular, since I∆0 proves that x has an inverse modulo m when gcd(x,m) =

1, we may use x−1 inside contexts evaluated modulo m. We denote by (Z/mZ)× the group

of units modulo m: that is, with domain {x < m : gcd(x,m) = 1} (which is just the interval

[1,m− 1] for m prime) and the operation of multiplication modulo m.

Following [13], we define the iterated multiplication axiom

(IMUL) ∀n,X ∃Y ∀u ≤ v < n
(
Y [u,u] = 1 ∧ Y [u,v+1] = Y [u,v] ·X [v]

)
,

2Conventionally, our Y rem X is written as just Y mod X. Since we will frequently mix this notation with

the Y ≡ Y ′ (mod X) congruence notation, we want to distinguish the two more clearly than by relying on the

typographical difference between Z = Y mod X and Z ≡ Y (mod X), considering also that many authors write

the latter as Z ≡ Y mod X, or even Z = Y mod X.
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the meaning being that for any sequence 〈Xi : i < n〉, we can find a triangular matrix 〈Yu,v :

u ≤ v ≤ n〉 with entries Yu,v =
∏v−1
i=u Xi.

Let us briefly recall the definitions of AC0 and TC0 for context, even though we will not

actually need to work with complexity classes in this paper. A language L belongs to AC0 if

it is computable by a DLOGTIME-uniform family of constant-depth polynomial-size circuits

using ¬ and unbounded-fan-in
∧

and
∨

gates. Equivalently, L ∈ AC0 iff it is computable

on an alternating Turing machine (with random-access input) in time O(log n) using O(1)

alternations, iff L (represented as a class of finite structures) is FO[+, ·]-definable. A function

F (X) is in FAC0 (and is called an AC0 function) if |F (X)| ≤ p
(
|X|
)

for some polynomial p, and

the bit-graph {〈X, i〉 : bit(F (X), i) = 1} is an AC0 language. A language L is in TC0 iff it is

computable by a DLOGTIME-uniform family of constant-depth polynomial-size circuits using

¬ and unbounded-fan-in
∧

,
∨

, and Majority gates (or more generally, threshold gates), iff L is

computable in O(log n) time on a threshold Turing machine (see [22]) using O(1) thresholds, iff

it is definable in FOM (first-order logic with majority quantifiers).

A predicate is ΣB
0 -definable in the standard model of L2 iff it is in AC0. The provably total

Σ1
1-definable (= “computable”) functions of V 0 are exactly the AC0 functions, and the provably

total Σ1
1-definable functions of VTC 0 (or of VTC 0 + IMUL) are exactly the TC0 functions.

Here, objects of the set sort are represented as bit-strings in the usual way, and objects from

the number sort are represented in unary; see [7, §IV,§A] for details.

We will need to work with various theories postulating totality of certain functions. Cook

and Nguyen [7, §IX.2] developed a general framework for such theories under the slogan of

theories V C associated with complexity classes C. We refrain from this terminology as most of

our theories will correspond to the same complexity class (TC0, sometimes AC0), but we will

adopt the machinery as such, using the notation of [13].

For notational simplicity, we will formulate the setup for a single function of one variable

F (X) whose input and output are binary numbers, but it applies just the same when we

have several functions in several variables whose inputs and outputs are a mix of binary and

unary numbers. Thus, let F (X) be a function with a ΣB
0 -definable graph δF (X;Y ) which is

polynomially bounded, i.e., |F (X)| ≤ t(X) for some term t. We assume that V 0 proves

δF (X;Y ) ∧ δF (X;Y ′)→ Y = Y ′,(5)

δF (X;Y )→ |Y | ≤ t(X).(6)

The totality of F is expressed by the sentence

(TotF ) ∀X ∃Y δF (X;Y ).

The aggregate function of F is the function F ∗ that maps (the code of) a sequence 〈Xi : i < n〉
to 〈F (Xi) : i < n〉. The graph of F ∗ is defined by

δ∗F (n,X;Y )⇔ ∀i < n δF
(
X [i];Y [i]

)
,

and its totality is expressed by

(Tot∗F ) ∀n ∀X ∃Y δ∗F (n,X;Y ).

8



(Strictly speaking, δ∗F does not define the graph of a function, as sequence codes are not com-

pletely unique. This is why we write δ∗F and Tot∗F rather than δF ∗ and TotF ∗ .) The Cook–

Nguyen (CN ) theory associated with δF is V 0(F ) = V 0 + Tot∗F .

The choice schema (also called replacement or bounded collection) ΣB
0 -AC consists of the

axioms

∀P
[
∀x < n ∃Y ≤ mϕ(x, Y, P )→ ∃W ∀x < nϕ

(
x,W [x], P

)]
for ϕ ∈ ΣB

0 ; a theory T is closed under the choice rule ΣB
0 -ACR if

T ` ∀X ∃Y ϕ(X,Y ) =⇒ T ` ∀n ∀X ∃Y ∀i < n ϕ
(
X [i], Y [i]

)
for all ϕ ∈ ΣB

0 .

The main properties of CN theories were summarized in [13, Thm. 3.2] (mostly based on [7,

§IX.2]), which we repeat here:

Theorem 2.1 Let V 0(F ) be a CN theory.

(i) The provably total Σ1
1-definable (or ΣB

1 -definable) functions of V 0(F ) are exactly the func-

tions in the AC0-closure (see [7, §IX.1]) of F .

(ii) V 0(F ) has a universal extension V 0(F ) by definitions (and therefore conservative) in a

language L
V 0(F )

consisting of ΣB
1 -definable functions of V 0(F ). The theory V 0(F ) has

quantifier elimination for ΣB
0 (F )-formulas, and it proves ΣB

0 (F )-COMP, ΣB
0 (F )-IND,

and ΣB
0 (F )-MIN , where ΣB

0 (F ) denotes the class of bounded formulas without second-

order quantifiers in L
V 0(F )

.

(iii) V 0(F ) is closed under ΣB
0 -ACR, and V 0(F ) + ΣB

0 -AC is ∀Σ1
1-conservative over V 0(F ).

2

A consequence of (iii) is that whenever a CN theory proves TotG for some ΣB
0 -defined

function G, it also proves Tot∗G.

As a special case of Theorem 2.1 for a trivial function F , V 0 has a universal extension V 0 by

definitions in a language L
V 0 (called LFAC 0 in [7]) consisting of ΣB

1 -definable functions of V 0.

Unlike general CN theories, it has the property that ΣB
0 (L

V 0) = ΣB
0 (more precisely, every

ΣB
0 (L

V 0) formula is equivalent to a ΣB
0 formula over V 0) by [7, L. V.6.7]. In particular, we will

use the consequence that if V 0 ` TotF , then ΣB
0 (F ) = ΣB

0 .

Note that any finite ∀ΣB
0 -axiomatized extension of V 0 is trivially a CN theory: an axiom of

the form ∀X ϕ(X) with ϕ ∈ ΣB
0 is equivalent over V 0 to TotFϕ and to Tot∗Fϕ

where δFϕ(X;Y )

is ϕ(X)∧Y = 0. We still have that if T = V 0 +∀X ϕ(X) ` TotF , then ΣB
0 (F ) = ΣB

0 over T (by

quantifier elimination for V 0, ∀X ϕ(X) is equivalent to a universal formula in V 0, thus using

Herbrand’s theorem, F is defined by an L
V 0 function symbol in V 0 + T ).

It is easy to show that VTC 0 ` Tot∗card (see [7, L. IX.3.3]), hence VTC 0 = V 0(card) is a CN

theory. The ΣB
0 (card)-definable predicates in the standard model are exactly the TC0 predicates.

As we already mentioned above, the whole setup may be formulated for several functions

F0, . . . , Fk in place of F , thus we may define V 0(F0, . . . , Fk); formally, we may easily combine

9



F0, . . . , Fk to a single function, hence V 0(F0, . . . , Fk) is a CN theory. In particular, we will

consider various theories of the form VTC 0(F ) = V 0(card, F ). More generally, we could iterate

the construction to define CN theories over a fixed CN theory (such as VTC 0) as a base theory

in place of V 0; that is, we can introduce VTC 0(F ) when F is given by a ΣB
0 (card) formula δF

such that (5) and (6) are provable in VTC 0. One can show that the resulting theories are CN

theories according to the original definition. In particular, as explained in [13], VTC 0 + IMUL

is a CN theory.

Apart from V 0, VTC 0, and VTC 0+IMUL, we will consider the following CN theories (often

in conjunction with VTC 0).

• VTC 0(Div): given Y and X > 0, there are bY/Xc and Y rem X; i.e, δDiv(X,Y ;Q,R) is

X = Q = R = 0 ∨ (R < X ∧ Y = QX +R).

The TotDiv axiom is also denoted DIV . As shown in [13] (using results of Johannsen[14]),

VTC 0(Div) = VTC 0 + IMUL.

• V 0(pow): given a, r, and prime m, we can compute ar rem m, or rather, the witnessing

sequence Y = 〈ai rem r : i ≤ r〉. Formally, δpow(a, r,m;Y ) is(
¬Prime(m) ∧ Y = 0

)
∨
(
Prime(m) ∧ Y (0) = 1 rem m ∧ ∀i < r Y (i+1) = aY (i) rem m

)
,

where Prime(m) stands for m > 1∧∀x, y (xy = m→ x = 1∨ y = 1), and here and below,

we ignore issues with non-uniqueness of sequence codes.

• V 0(imul): given a sequence 〈ai : i < n〉 and a prime m, we can find (a witnessing sequence

for)
∏
i<n ai rem m. Formally, δimul(A,n,m;Y ) is(

¬Prime(m) ∧ Y = 0
)
∨
(
Prime(m) ∧ Y (0) = 1 rem m ∧ ∀i < n Y (i+1) = Y (i)A(i) rem m

)
.

• V 0 + WPHP : WPHP is the ∀ΣB
0 axiom ∀n ∀X PHP2n

n (X), where PHPm
n (X) is

∀x < m ∃y < n X(x, y)→ ∃x < x′ < m ∃y < n
(
X(x, y) ∧X(x′, y)

)
.

By results of Paris, Wilkie, and Woods [24], V 0 + WPHP ⊆ V0 + Ω1. We mention that

VTC 0 even proves ∀n ∀X PHPn+1
n (X) by [7, Thm. IX.3.23].

• VL = V 0(Iter) (see [7, §IX.6.3]): given a function F from [0, a] to itself, we can compute

its iterates F i(0). Formally, δIter(a, F, n;Y ) is(
¬Func(F, a) ∧ Y = 0

)
∨
(
Func(F, a) ∧ Y (0) = 0 ∧ ∀i < n F

(
Y (i), Y (i+1)

))
,

where Func(F, a) is ∀x ≤ a∃!y ≤ aF (x, y).

• VNL = V 0(Reach) (see [7, §IX.6.1]): given a relation E ⊆ [0, a] × [0, a] and d, we can

define E-reachability (from 0) in ≤ n steps. Formally, δReach(a,E, n;Y ) is

Y ⊆ [0, d]× [0, a] ∧ ∀x ≤ a
[(
Y (0, x)↔ x = 0

)
∧ ∀d < n

(
Y (d+ 1, x)↔ ∃y ≤ a

(
Y (d, y) ∧ (x = y ∨ E(y, x))

))]
We will use the fact that VNL = V 0 + TotReach (see [7, L. IX.6.7]).
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For some of our axioms, we will also need formulas expressing that they hold restricted to

some bound:

• IMUL[w] states the totality of the aggregate function of iterated multiplication
∏
i<nXi

restricted so that
∑

i<n|Xi| ≤ w. Using the formulation of IMUL as above, this can be

expressed as

∀n,X ∃Y
(
∀u ≤ n Y [u,u] = 1 ∧ ∀u ≤ v < n

( v∑
i=u

|Xi| ≤ w → Y [u,v+1] = Y [u,v] ·X [v]
))
.

• Tot∗Div[w] states the totality of the aggregate function of division restricted to arguments

of length w:

∀n,X, Y ∃Q,R ∀i < n
(
0 < |X [i]| ≤ w ∧ |Y [i]| ≤ w → Y [i] = Q[i]X [i] +R[i] ∧R[i] < X [i]

)
.

• Tot∗imul[w,−] states the totality of imul∗ restricted to
∏
i<n ai rem m where n ≤ w:

∀t,N,A,M ∃Y ∀u < t
(
N (u) ≤ w → δimul

(
A[u], N (u),M (u), Y [u]

))
.

• Tot∗imul[−, w] states the totality of imul∗ restricted to
∏
i<n ai rem m where m ≤ w:

∀t,N,A,M ∃Y ∀u < t
(
M (u) ≤ w → δimul

(
A[u], N (u),M (u), Y [u]

))
.

Berarducci and D’Aquino [4] proved that for any ∆0-definable function f(i), there exist

a ∆0 definition of the graph of the iterated product
∏
i<x f(i) = y such that I∆0 proves

the recurrence
∏
i<0 f(i) = 1 and (if either side exists)

∏
i<x+1 f(i) = f(x)

∏
i<x f(i). The

argument relativizes, hence it applies in V 0 to functions defined by second-order objects: that

is, we can construct a well-behaved product
∏
i<n xi of a sequence X = 〈xi : i < n〉 as long

as
∑

i<n|xi| ≤ |w| for some w (which guarantees that the resulting product, if any, is a small

number, and then by induction on n, that it exists). In our notation, this becomes:

Theorem 2.2 (Berarducci, D’Aquino [4]) V 0 proves ∀w IMUL
[
|w|
]
. 2

We will improve this result in Corollary 6.5.

Paris and Wilkie [23] showed how to count polylogarithmic-size sets in I∆0, and Paris,

Wilkie and Woods [24] extended this to polylogarithmic sums. We can reformulate their results

in the two-sorted setup as follows.

Theorem 2.3 For any constant c, V 0 proves:

(i) For every X and w, either there exists a (unique) s < |w|c and a bijection F : X → [0, s),

or there exists an injection F :
[
0, |w|c

)
→ X.

(ii) For every X and w, there exists a sequence
〈∑

i<nX
[i] : n ≤ |w|c

〉
that satisfies (3) and

(4) for n < |w|c.
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Proof: In [23, Thm. 5′], (i) is proved for ∆0-definable sets in models of I∆0; the argument

is uniform in X, hence it also applies to arbitrary sets X in models of V 0. Likewise, (ii) is

proved for ∆0-definable sequences of small numbers in [24, Thm. 10], and the argument applies

to arbitrary sequences of small numbers in V 0.

In order to generalize it to sums of sequences of large numbers, we split each X [i] into |w|-bit

blocks: X [i] =
∑

j<2m xi,j2
j|w|, where xi,j < 2|w| ≤ 2w, and m ≤ maxi|X [i]|/|w|. Notice that

for each j < 2m, we have
∑

i<|w|c xi,j < |w|c2|w| ≤ 22|w| if w is sufficiently large, hence we may

construct Yeven and Yodd such that

Y
[n]
even =

∑
j<m

22j|w|
∑
i<n

xi,2j ,

Y
[n]
odd =

∑
j<m

2(2j+1)|w|
∑
i<n

xi,2j+1

for each n ≤ |w|c by just concatenating suitably shifted copies of the small-number sums∑
i<n xi,j . If we then define Y such that Y [n] = Y

[n]
even +Y

[n]
odd, it satisfies the required recurrence

Y [0] = 0, Y [n+1] = Y [n] +X [n] for n < |w|c. 2

Some of our arguments will require rather tight bounds on the sizes of the objects involved,

and in particular, on sequence codes. Clearly, we need at least ≈
∑

i<n|Xi| bits to encode

a sequence 〈Xi : i < n〉, but the encoding scheme from [7] as defined above does not meet

this lower bound: it uses ≈
(
n + maxi|Xi|

)2
bits, which may be quadratically larger than the

ideal size in unfavourable conditions. We will now introduce a more efficient encoding scheme

in VTC 0; it is based on the idea of Nelson [18, §10], but we repurpose it to directly encode

sequences rather than just sets.

The encoding works as follows: the code of 〈Xi : i < n〉 is a set X representing a pair of

sets R,B by X = {2x : x ∈ R} ∪ {2x + 1 : x ∈ B}, where B consists of the concatenation of

bits of all the Xi’s (in order), and R is a “ruler” indicating where each Xi starts in B; that is,

R = {ri : i < n} with 0 = r0 < r1 < · · · < rn−1, and Xi is given by the bits ri, . . . , ri+1− 1 of B

(taking max
{
|B|, rn−1 + 1

}
for rn).

Formally, the sequence coded by X has length lh(X) = card{x : X(2x)}, and for i < lh(X),

the ith element of X, denoted Xi, is{
x : ∃r

(
X(2r) ∧ card{u < r : X(2u)} = i ∧X(2(x+ r) + 1) ∧ ∀i < x ¬X(2(r + i+ 1))

)}
.

Here, all the quantifiers and comprehension variables can be bounded by |X|, hence lh(X)

and Xi are ΣB
0 (card)-definable in VTC 0, and VTC 0 proves that we can convert X to a set

Y =
{
〈i, x〉 : i < lh(X), x ∈ Xi

}
that represents the same sequence using the sequence encoding

from [7] (that is, Y [i] = Xi for all i < lh(X)). Conversely, if Y represents a sequence of

length n using the encoding from [7], we can ΣB
0 (card)-define ri =

∑
j<i max

{
1, |Y [i]|

}
and

X = {2ri : i < n} ∪
{

2(ri + x) + 1 : i < n, Y (i, x)
}

in VTC 0. Then X represents under our

new scheme the same sequence as Y and n (i.e., lh(X) = n and Xi = Y [i] for all i < n), and

moreover,

(7) |X| ≤ 2
∑
i<n

max
{

1, |Xi|
}
,
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thus the new encoding scheme realizes the optimal size bound up to a multiplicative constant.

We can also encode sequences of small numbers 〈xi : i < n〉 by sequences of the corresponding

sets, i.e., 〈Xi : i < n〉 where Xi = {j < |xi| : bit(xi, j) = 1}.
For general sequences, the efficient coding scheme requires3 VTC 0. However, for sequences of

polylogarithmic length (i.e., 〈Xi : i < n〉 where n ≤ |w|c for some w and a standard constant c),

it works already in V 0: using Theorem 2.3, lh(X) and Xi are well-defined in V 0 (in fact,

ΣB
0 -definable), and V 0 proves that a given sequence has a code obeying (7).

In the special case c = 1, a sequence of small numbers 〈xi : i < n〉 such that n and
∑

i|xi|
are bounded by |w| has a code of length O(|w|), and as such, it can be represented by a small

number. Then the encoding scheme does not involve any second-order objects at all, and it

is ∆0-definable in I∆0. When passing to I∆0, the statement that a given sequence can be

encoded to satisfy (7) becomes the theorem that for any ∆0-definable function f(i) (possibly

with parameters), if n ≤ |w| and
∑

i<n|f(i)| ≤ |w|, there exists x ≤ wO(1) that encodes the

sequence 〈f(i) : i < n〉.

3 Prime supply

Since we will work extensively with the Chinese remainder representation, we will need lots of

primes. To begin with, if we want to represent a number X in CRR modulo a sequence of

primes 〈mi : i < k〉, we must have
∏
imi > X, thus we need to get hold of sequences of primes

such that
∑

i|mi| exceeds any given small number.

Already in mid 19th century, Chebyshev proved using elementary methods that the number

of primes below x is Θ(x/ log x), or equivalently,

(8)
∑
p≤x

log p = Θ(x).

(Here and below in this section, sums indexed by p are supposed to run over primes.) See e.g.

Apostol [1, Thm. 4.6] for a nowadays-standard simple result of this type, based on considering

the contribution of various primes to the prime factorization of binomial coefficients (this form of

the proof is due to Erdős and Kalmár). As we will see, it is fairly straightforward to formalize

a version of Chebyshev’s theorem in VTC 0. Similar to [1], we will compute with sums of

logarithms rather than with products of primes, factorials, and binomial coefficients. For our

purposes, the simple approximation of log n by |n| is sufficient.

We mention that Woods [25] proved Sylvester’s theorem in I∆0+WPHP(∆0) by formalizing

similar elementary arguments; our job is much easier as we can directly use bounded sums

in VTC 0, which Woods avoided by applying WPHP to ingeniously constructed functions (he

also needed much more elaborate approximations of logarithms).

3We could make lh(X) and Xi ΣB
0 -definable using a more elaborate definition of R: e.g., indicate the start

of Xi in R not just by a single 1-bit, but by 1 + v2(i) 1-bits (followed by at least one 0-bit). We leave it to

the reader’s amusement to verify that this encoding is ΣB
0 -decodable, and that it can encode 〈Xi : i < n〉 using

O
(
n+

∑
i|Xi|

)
bits. But crucially, proving the latter still requires VTC 0, or at least some form of approximate

counting that allows close enough estimation of
∑

j<i|Xj |. Thus, we do not really accomplish much with this

more complicated scheme.
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In fact, Nguyen [20] already proved a version of (8) with fairly good bounds in VTC 0, also

using elaborate approximate logarithms. We keep our argument below (which gives much worse

bounds) as it is simpler and more elementary than the proof in [20], while making this paper

more self-contained.

First, note that using

(9) |x|+ |y| − 1 ≤ |xy| ≤ |x|+ |y|,

I∆0 proves

(10) y =
∏
i<k

xi → |y| ≤
∑
i<k

|xi| ∧ |y| − 1 ≥
∑
i<k

(
|xi| − 1

)
.

Considering a sequence of maximal length whose product is x (where we use the efficient se-

quence encoding), it is easy to prove that every positive number is a product of a sequence of

primes:

I∆0 ` ∀x > 0 ∃s = 〈pi : i < k〉
(
x =

∏
i<k

pi ∧ ∀i < k Prime(pi)
)
.

Moreover, the sequence code s is bounded by a polynomial in x.

By double counting, VTC 0 proves∑
n≤x

n=
∏

j pj

∑
j

|pj | =
∑
p≤x
|p|

∑
i : pi≤x

⌊
x

pi

⌋
,(11)

∑
n≤x

n=
∏

j pj

∑
j

(
|pj | − 1

)
=
∑
p≤x

(
|p| − 1

) ∑
i : pi≤x

⌊
x

pi

⌋
.(12)

Here and below in this section, sum indices such as n and i are supposed to start at 1.

Our goal is to prove a lower bound on the number of primes (Theorem 3.2), but we first

need the following upper bound, which is a formalization of a weak form of Mertens’s theorem:∑
p≤x p

−1 = O(log log x). The reason is that when proving our lower bound, the crude approx-

imation to log p provided by the |p| function will introduce a copious amount of error into the

calculations, and the lemma below is needed to bound the error.

Lemma 3.1 VTC 0 proves ∑
p≤x

∑
i : pi≤x

⌊
x

pi

⌋
≤ 16x||x||.
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Proof: Let k = |x|. For any l < |k|, we have

dk2−(l+1)e
2dk2

−le−1∑
p=2dk2

−(l+1)e

⌈
2k

p

⌉
≤

2dk2
−le−1∑

p=2dk2
−(l+1)e

(
|p| − 1

)⌈2k

p

⌉

≤ 2k−dk2
−le

2dk2
−le−1∑

p=2dk2
−(l+1)e

(
|p| − 1

)⌈2dk2
−le

p

⌉

≤ 2k+1−dk2−le
2dk2

−le−1∑
p=2dk2

−(l+1)e

(
|p| − 1

)⌊2dk2
−le

p

⌋
≤ 2k+1−dk2−le

∑
n<2dk2

−le

n=
∏

j<t pj

∑
j<t

(
|pj | − 1

)

≤ 2k+1−dk2−le
∑

n<2dk2−le

(
|n| − 1

)
≤ 2k+1

(
dk2−le − 1

)
using (10) and (12), thus

2dk2
−le−1∑

p=2dk2
−(l+1)e

⌈
2k

p

⌉
≤ dk2−le − 1

dk2−(l+1)e
2k+1 ≤ 2k+2.

Summing over all l < |k| gives ∑
p<2k

⌈
2k

p

⌉
≤ 2k+2|k|,

thus ∑
p≤x

⌈
x

p

⌉
≤ 2k+2|k| ≤ 8x||x||

as x < 2k ≤ 2x. Then estimating the geometric series∑
i : pi≤x

⌊
x

pi

⌋
≤ 2

⌈
x

p

⌉

gives the result. 2

Theorem 3.2 There is a standard constant c such that VTC 0 proves

x ≥ c→
∑

p≤x|x|17

(
|p| − 1) ≥ x.
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Proof: For any 0 < x < y, we have

x(|y| − |x|+ 1) ≤
∑

y<n≤x+y
|n| −

∑
n≤x

(
|n| − 1

)
≤

∑
y<n≤x+y
n=

∏
j pj

∑
j

|pj | −
∑
n≤x

n=
∏

j pj

∑
j

(
|pj | − 1

)

≤
∑
p≤x+y

|p|
∑

i : pi≤x+y

(⌊
x+ y

pi

⌋
−
⌊
y

pi

⌋)
−
∑
p≤x

(
|p| − 1

) ∑
i : pi≤x

⌊
x

pi

⌋

≤
∑
p≤x+y

|p|
∑

i : pi≤x+y

(⌊
x+ y

pi

⌋
−
⌊
x

pi

⌋
−
⌊
y

pi

⌋)
+
∑
p≤x

∑
i : pi≤x

⌊
x

pi

⌋
≤
∑
p≤x+y

|p|
∑

i : pi≤x+y

1 + 16x||x||

≤
∑
p≤x+y

|p|+
∑

p≤
√
x+y

|p|
⌊
|x+ y| − 1

|p| − 1

⌋
+ 16x||x||

≤
∑
p≤x+y

|p|+ 2|x+ y|b
√
x+ yc+ 16x||x||

using (10)–(12) and Lemma 3.1. Taking y = x|x|17−x, we have |y| ≥ |x+y|−1 ≥ |x|+17||x||−18

and |x+ y| ≤ |x|+ 17||x|| by (10), thus∑
p≤x|x|17

|p| ≥
(
17||x|| − 17− 16||x||

)
x− 2

(
|x|+ 17||x||

)
b
√
x|x|17c ≥

(
||x|| − 18

)
x

and ∑
p≤x|x|17

(
|p| − 1

)
≥ 1

2

∑
p≤x|x|17

|p| ≥ ||x|| − 18

2
x ≥ x

for large enough x. 2

4 Division by small primes

We need a one more simple but important preparatory result: VTC 0(pow), and a fortiori

VTC 0(imul), can perform division with remainder by small primes. This is indispensable when

working with the Chinese remainder representation: it is required to define the CRR in the first

place, but we will also extensively use it when studying its properties.

Notice that pow directly provides 2n rem m, and as it turns out, the bits of b2n/mc can

be explicitly expressed in terms of 2i rem m as well. We then obtain bX/mc and X rem m for

general X by summing over its bits.

Lemma 4.1 VTC 0(pow) proves that we can divide by small primes:

∀X ∀m
(
Prime(m)→ ∃Q∃r < mX = mQ+ r

)
.
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Proof: We may assume m is odd. Let us first consider X = 2n. Using pow, define

Qn =
∑
i<n

2i
(
(2n−i rem m) rem 2

)
.

We will prove

(13) 2n = mQn + (2n rem m)

by induction on n. The statement holds for n = 0. For the induction step, we have

Qn+1 =
∑
i<n+1

2i
(
(2n+1−i rem m) rem 2

)
=
(
(2n+1 rem m) rem 2

)
+
∑
i<n

2i+1
(
(2n−i rem m) rem 2

)
= 2Qn +

(
(2n+1 rem m) rem 2

)
,

thus using the induction hypothesis,

mQn+1 = 2mQn +
(
(2n+1 rem m) rem 2

)
m

= 2n+1 − 2(2n rem m) +
(
(2n+1 rem m) rem 2

)
m.

Now, either 2n rem m < m/2, in which case

2n+1 rem m = 2(2n rem m) and (2n+1 rem m) rem 2 = 0,

or 2n rem m > m/2, in which case

2n+1 rem m = 2(2n rem m)−m and (2n+1 rem m) rem 2 = 1.

Either way,

(2n+1 rem m) +
(
(2n+1 rem m) rem 2

)
m = 2(2n rem m),

hence mQn+1 = 2n+1 − (2n+1 rem m) as required.

Now, for general X, we have

X =
∑
n∈X

2n = m
∑
n∈X

Qn + x,

where

x =
∑
n∈X

(2n rem m) ≤ |X|m

is small, thus already I∆0 can divide x by m, yielding X = m
(
Qn + bx/mc

)
+ (x rem m). 2
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5 Chinese remainder representation

We are coming to the core technical part of the paper. First, the basic definition:

Definition 5.1 (In VTC 0(pow).) If ~m = 〈mi : i < k〉 is a sequence of distinct primes,

the Chinese remainder representation (CRR) of X modulo ~m is the sequence X rem ~m =

〈X rem mi : i < k〉, which is well-defined by Lemma 4.1. The sequence ~m is called the basis of

the CRR.

Our goal in this section is to define in VTC 0(imul) a CRR reconstruction procedure, that

is, a function that recovers X from X rem ~m (under suitable conditions); this will in turn easily

imply that VTC 0(imul) proves IMUL.

The principal problem we face when trying to formalize the CRR reconstruction procedure

from [11] is that the argument involves various numbers constructed by iterated multiplica-

tion (and division), which we do not a priori know to exist when working inside VTC 0(imul).

Besides many references to the product
∏
imi, the reconstruction procedure for instance in-

volves computing a CRR representation of a product of the form X
∏
u<t

1
2

(
1 +

∏
j au,j

)
for a

certain sequence of primes au,j . We sidestep these problems by developing in VTC 0(imul) low-

level operations on CRR. We will systematically exploit the fact that even though we cannot

a priori convert a CRR representation to the number X it represents, we can compute certain

“shadows” of X: approximations to the ratio X/
∏
imi, and X rem a for small primes a; we

will formally define these quantities shortly in Definition 5.3, but let us first introduce a few

notational conventions in order to save repetitive typing.

Definition 5.2 (In VTC 0(imul).) In this section, ~m stands for a sequence of distinct primes,

whose length is denoted k: ~m = 〈mi : i < k〉. When we need another sequence of primes, we use

~a of length l. We write ~x < ~m for ~x being a sequence of residues modulo ~m, i.e., ~x = 〈xi : i < k〉
such that 0 ≤ xi < mi for each i < k.

We put [~m] =
∏
i<kmi (evaluated using imul modulo some prime specified in the context),

and likewise [~m]6=i =
∏
j 6=imj . If ~m and ~a are sequences of primes, ~m ⊥ ~a denotes that each mi

is coprime to (i.e., distinct from) each aj . We interpret mod/ rem notations modulo ~m elemen-

twise, so that, e.g., X rem ~m means 〈X rem mi : i < k〉 (as already indicated in Definition 5.1),

~y = ~x rem ~m means yi = xi rem mi for each i < k, and ~x ≡ ~y (mod ~m) means xi ≡ yi (mod mi)

for each i < k.

We will write y = x ± a for x − a ≤ y ≤ x + a; more generally, y = x ± a
b abbreviates

x− b ≤ y ≤ x+ a.

In the real world, if ~x is the CRR of X modulo a basis ~m, and hi = [~m]−16=i rem mi, there is

an integer r <
∑

imi, called the rank of ~x, such that

(14)
∑
i<k

xihi
mi

= r +
X

[~m]
.

This holds (with the same r) in any field where the ~m are invertible: in particular, evaluat-

ing (14) in Q can provide TC0 approximations to X/[~m], and evaluating it modulo a prime a
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coprime to ~m yields the value of X modulo a, that is, an extension of ~x to CRR modulo the

basis 〈~m, a〉 (“basis extension”).

We need IMUL to make sense of (14) in Q, hence we cannot use it directly in VTC 0(imul).

However, we will consider an approximation of rank and related quantities, and we will prove

their various properties from first principles, which will ultimately allow us to make CRR

reconstruction work.

Definition 5.3 (In VTC 0(imul).) Given ~x < ~m and n, let hi = [~m]−16=i rem mi for i < k, and

define

Sn(~m; ~x) =
∑
i<k

⌈
2nxihi
mi

⌉
,

rn(~m; ~x) = b2−nSn(~m; ~x)c,
ξn(~m; ~x) = 2−n

(
Sn(~m; ~x) rem 2n

)
,

en(~m; ~x; a) =
(∑
i<k

xihi[~m]6=i − [~m]rn(~m; ~x)
)

rem a

for any prime a, using Lemma 4.1 and imul. That is, rn ≤
∑

imi is an estimate of the rank

of ~x, ξn ∈ [0, 1] is a dyadic rational approximation of X/[~m] per (14), and en < a is an estimate

of X modulo a. In order to make the notation less heavy, we may omit ~m if it is understood

from the context.

Observe that

(15) en(~m; ~x;mi) = xi.

If ~a is a sequence of primes (which may include ~m), we let en(~m; ~x;~a) = 〈en(~m; ~x; aj) : j < l〉.
This should be though of as extension of ~x to CRR modulo ~a.

Note that the rank is a discrete quantity; while 2−nSn is an approximation of
∑

i xihi/mi

that can be expected to converge in a reasonable way to the true value as n gets larger, rn will

make abrupt jumps. If rn happens to be the true rank, then ξn should be a close approximation

of X/[~m], and en has the correct value, but if rn is off by 1, then ξn is very far from the right

value, and en (another discrete quantity) is also off. Thus, one of the annoying problems we

need to deal with in VTC 0(imul) is that it is a priori difficult to guess how large n we need so

that rn is “correct”.

The remainder of this section is organized into two subsections. In Section 5.1, we will

develop computation with CRR in VTC 0(imul), in particular, we will show how various manip-

ulations of CRR affect the related rn, ξn, and en values. In Section 5.2, we define and analyze

the CRR reconstruction procedure and derive IMUL in VTC 0(imul).

5.1 Auxiliary properties of CRR

Results in this section are nominally proved in the theory VTC 0(imul). In fact, the proofs will

only use instances of imul modulo primes listed in the statements (~m, sometimes ~a or ~b), which
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fact will become relevant in Section 8. However, we do not indicate this explicitly in an effort

not to make the notation more cluttered than it already is.

We start with two lemmas on basis extension. The first one is a formalization of the ob-

servation that if ~x < ~m is the CRR of X < [~m], and ~a ⊥ ~m, then the CRR of [~a]X < [~m][~a]

modulo the extended basis 〈~m,~a〉 is 〈[~a]~x,~0〉. Here and below, operations on residue sequences

~x < ~m (such as multiplication by [~a]) are assumed to be evaluated modulo ~m.

Lemma 5.4 VTC 0(imul) proves that for any ~x < ~m and ~a, a ⊥ ~m,

rn(~m, a; a~x, 0) = rn(~m; ~x) +
∑
i<k

xi

⌊
ah̃i
mi

⌋
,(16)

en(~m,~a; [~a]~x,~0;~b) = [~a]en(~m; ~x;~b) rem ~b,(17)

ξn(~m,~a; [~a]~x,~0) = ξn(~m; ~x),(18)

where h̃i = (a[~m]6=i)
−1 rem mi.

Proof: Let hi = [~m]−16=i rem mi. We have ah̃i ≡ hi (mod mi), i.e.,

(19) ah̃i = hi +mi

⌊
ah̃i
mi

⌋
,

thus

Sn(~m, a; a~x, 0) =
∑
i<k

⌈
2nxiah̃i
mi

⌉
=
∑
i<k

⌈
2nxihi
mi

⌉
+ 2n

∑
i<k

xi

⌊
ah̃i
mi

⌋

= Sn(~m; ~x) + 2n
∑
i<k

xi

⌊
ah̃i
mi

⌋
.

This gives (16), and (18) for l = 1; the general case of (18) follows by induction4 on l.

We can again prove (17) by induction on l, hence it is enough to show it for l = 1. Obviously,

we may also assume lh(~b) = 1. Computing modulo b, we have

en(~m, a; a~x, 0; b) ≡
∑
i<k

axih̃ia[~m]6=i − a[~m]rn(~m, a; a~x, 0)

≡ a
(∑
i<k

xiah̃i[~m]6=i − [~m]rn(~m, a; a~x, 0)
)

≡ a

(∑
i<k

xihi[~m]6=i + [~m]
∑
i<k

xi

⌊
ah̃i
mi

⌋
− [~m]rn(~m, a; a~x, 0)

)
≡ a

(∑
i<k

xihi[~m]6=i − [~m]rn(~m; ~x)
)

≡ a en(~m; ~x; b)

using (19) and (16). 2

4More precisely: for fixed ~a = 〈ai : i < l〉, we prove by induction on l′ ≤ l that (18) holds for 〈ai : i < l′〉,
which is a ΣB

0 (imul) property. Most proofs by induction in this section should be interpreted similarly.
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The second lemma formalizes the idea that en(~m; ~x; ~m,~a) = 〈~x, en(~m; ~x;~a)〉 is the extension

of ~x to the basis 〈~m,~a〉 (representing the same number). Since the effect of basis extension

on the ξn approximation is essentially division by [~a], which we cannot do directly, we first

formulate the result for a single prime a, and then we obtain a version for arbitrary ~a using a

crude approximation of [~a].

Lemma 5.5 VTC 0(imul) proves that for any ~x < ~m and a ⊥ ~m, if n ≥ |k|, then

a rn
(
~m, a; en(~m; ~x; ~m, a)

)
= rn(~m; ~x) + en(~m; ~x; a)h̃+

∑
i<k

xi

⌊
ah̃i
mi

⌋
,(20)

en
(
~m, a; en(~m; ~x; ~m, a);~b

)
= en(~m; ~x;~b),(21)

ξn
(
~m, a; en(~m; ~x; ~m, a)

)
= 1

aξn(~m; ~x)± 2−n(k+1)(1−a−1)
0 ,(22)

where h̃ = [~m]−1 rem a, h̃i = (a[~m]6=i)
−1 rem mi.

Proof: Put hi = [~m]−16=i rem mi and y = en(~m; ~x; a) so that en(~m; ~x; ~m, a) = 〈~x, y〉, and let %

denote the right-hand side of (20). First, using (19), we have

[~m]% ≡ [~m]rn(~x) + y +
∑
i<k

ximi

⌊
ah̃i
mi

⌋
[~m]6=i

≡
∑
i<k

xihi[~m]6=i +
∑
i<k

ximi

⌊
ah̃i
mi

⌋
[~m]6=i ≡

∑
i<k

xiah̃i[~m]6=i ≡ 0 (mod a),

that is, %/a is an integer. Observe that for any rational ω, adωe < a(ω+1) = aω+a ≤ daωe+a,

hence

daωe ≤ adωe ≤ daωe+ (a− 1).

Using this, we obtain

2n
(
%+ ξn(~m; ~x)

)
= Sn(~m; ~x) + 2n

(
yh̃+

∑
i<k

xi

⌊
ah̃i
mi

⌋)

=
∑
i<k

⌈
2nxihi
mi

⌉
+
∑
i<k

2nximibah̃i/mic
mi

+ 2nyh̃

=
∑
i<k

⌈
2naxih̃i
mi

⌉
+ 2nyh̃

= a
∑
i<k

⌈
2nxih̃i
mi

⌉
+ a

⌈
2nyh̃

a

⌉
± 0

(k+1)(a−1)

= aSn(~m, a; ~x, y)± 0
(k+1)(a−1).

On the one hand, this gives %/a ≤ 2−nSn(~m, a; ~x, y) <
(
rn(~m, a; ~x, y) + 1

)
, thus %/a ≤

rn(~m, a; ~x, y). On the other hand,

a rn(~m, a; ~x, y) ≤ 2−naSn(~m, a; ~x, y) < %+ 1 + 2−n(k + 1)(a− 1) ≤ %+ a
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as long as 2n ≥ k + 1, thus rn(~m, a; ~x, y) < %/a+ 1, i.e., rn(~m, a; ~x, y) ≤ %/a. This proves (20),

whence also (22):

a ξn(~m, a; ~x, y) = 2−naSn(~m, a; ~x, y)− % = ξn(~m; ~x)± 2−n(k+1)(a−1)
0 .

To prove (21), we may assume lh(~b) = 1; working modulo b,

en(~m, a; ~x, y; b) ≡
∑
i<k

xih̃ia[~m]6=i + yh̃[~m]− [~m]a rn(~m, a; ~x, y)

≡
∑
i<k

xihi[~m]6=i + [~m]

(∑
i<k

xi

⌊
ah̃i
mi

⌋
+ yh̃− a rn(~m, a; ~x, y)

)
≡
∑
i<k

xihi[~m]6=i − rn(~m; ~x)

≡ en(~m; ~x; b)

using (19) and (20). 2

Corollary 5.6 VTC 0(imul) proves that for any ~x < ~m and ~a ⊥ ~m, if n ≥ |k + l|, then

en
(
~m,~a; en(~m; ~x; ~m,~a);~b

)
= en(~m; ~x;~b),(23)

2−
∑

j |aj |ξn(~m; ~x) ≤ ξn
(
~m,~a; en(~m; ~x; ~m,~a)

)
≤ 2−

∑
j(|aj |−1)ξn(~m; ~x) + 2−n(k + l).(24)

Proof: By induction in l, using (21), (22), and 2−|a| < 1
a ≤ 2−(|a|−1). 2

The CRR of 1, which is just the sequence ~1, will feature prominently in many calculations,

as ξn(~m;~1) is our proxy for 1/[~m]. The next lemma summarizes its most basic properties.

Lemma 5.7 VTC 0(imul) proves: if n ≥ |k| ≥ 1, then

2−
∑

i|mi| < ξn(~m;~1) < 2−
∑

i(|mi|−1) + 2−n(k + 1),(25)

en(~m;~1;~a) = ~1.(26)

Proof: Since m0 ≥ 2 and 2n ≥ 2, we have rn(m0; 1) = b2−nd2n/m0ec = 0, thus

en(m0; 1; a) = 1 · 1 · 1− 0 = 1

for any a, i.e., en(m0; 1;~a) = ~1. In particular, en(m0; 1; ~m) = ~1, hence

en(~m;~1;~a) = en
(
~m; en(m0; 1; ~m);~a

)
= en(m0; 1;~a) = ~1

by (23). Moreover,

2−|m0| <
1

m0
≤ 2−n

⌈
2n

m0

⌉
= ξn(m0; 1) <

1

m0
+ 2−n ≤ 2−(|m0|−1) + 2−n,

thus

ξn(~m;~1) = ξn
(
~m; en(m0; 1; ~m)

)
≤ 2−

∑
i>0(|mi|−1)ξn(m0; 1) + 2−nk

< 2−
∑

i(|mi|−1) + 2−n(k + 1)

using (24). The other inequality is similar. 2
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The next lemma expresses the fact that if ~x and ~y are respectively the CRR of X,Y < [~m],

then ~x+ ~y (modulo ~m) is the CRR of (X + Y ) mod [~m], which is X + Y − c[~m] for c ∈ {0, 1}.
The first version we prove here also allows c = −1 (which is impossible in the real world); we

will fix this discrepancy in Corollary 5.10 below, under a stronger requirement on n.

Lemma 5.8 VTC 0(imul) proves: if ~x, ~y < ~m, ~z = (~x + ~y) rem ~m, and n ≥ |k|, then there

exists c ∈ {−1, 0, 1} such that

rn(~m;~z) = rn(~m; ~x) + rn(~m; ~y) + c−
∑

xi+yi≥mi

hi,(27)

en(~m;~z; a) ≡ en(~m; ~x; a) + en(~m; ~y; a)− c[~m] (mod a),(28)

ξn(~m;~z) = ξn(~m; ~x) + ξn(~m; ~y)− c± 0
2−nk,(29)

where hi = [~m]−16=i rem mi.

Proof: Let I = {i < k : xi + yi ≥ mi}, so that zi = xi + yi for i /∈ I, and zi = xi + yi −mi for

i ∈ I. Then

2−nSn(~m;~z) = 2−n
∑
i<k

⌈
2n(xi + yi)hi

mi

⌉
−
∑
i∈I

hi

= 2−nSn(~m; ~x) + 2−nSn(~y; ~m)−
∑
i∈I

hi ± 0
2−nk

= rn(~m; ~x) + rn(~y; ~m)−
∑
i∈I

hi + ξn(~m; ~x) + ξn(~y; ~m)± 0
2−nk.

Since k ≤ 2n and 0 ≤ ξn(~m; ~x) + ξn(~y; ~m) < 2, this readily implies (27) and (29). Moreover,

en(~m;~z; a) ≡
∑
i<k

xihi[~m]6=i +
∑
i<k

yihi[~m]6=i −
∑
i∈I

hi[~m]

−
(
rn(~m; ~x) + rn(~m; ~y) + c−

∑
i∈I

hi

)
[~m]

≡ en(~m; ~x; a) + en(~m; ~y; a)− c[~m]

modulo a. 2

The following lemma can be read as stating that 0 < X < [~m] =⇒ 1 ≤ X ≤ [~m]−1. While

this sounds like a triviality, it is in fact an important result implying that (for large enough n)

ξn cannot take arbitrary values in [0, 1], but it is a discrete quantity coming in steps of 1/[~m]

(i.e., ξn(~m;~1)). Among other consequences, this will eventually allows us to prove a bound on n

above which rn and en stabilize.

Lemma 5.9 VTC 0(imul) proves that for any ~0 6= ~x < ~m,

(30) min
{
ξn(~m; ~x), 1− ξn(~m; ~x)

}
≥ ξn(~m;~1)− 2−n(3k).
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Proof: The statement is vacuous for k = 0, and it also holds trivially unless 2n > 3k and

ξn(~m;~1) > 2−n(3k). We claim that this condition implies

(31) 2n ≥ max
i<k

mi.

If k ≥ 2, then ξn(~m;~1) > 2−n(3k) gives

2−n(3k) < 2−
∑

i(|mi|−1) + 2−n(k + 1)

by (25), hence

max
i<k

mi ≤ 21+
∑

i(|mi|−1) ≤ (2k − 1)2
∑

i(|mi|−1) < 2n.

If k = 1, then m0 ≥ 2 and n ≥ 1 ensure d2n/m0e ≤ 2n−1 < 2n, thus ξn(m0; 1) = 2−nd2n/m0e.
If 2nξn(m0; 1) > 3k = 3, we obtain 2n/m0 > 3, and a fortiori 2n ≥ m0.

Now, let us prove (30) by induction on k. For k = 1, we have ξn(m0; 1) = 2−nd2n/m0e, and

(31) ensures d2n(m0 − 1)/m0e < 2n, thus ξn(m0;x) = 2−nd2nx/m0e, and we obtain

ξn(m0; 1) ≤ ξn(m0;x) ≤ 1− ξn(m0; 1) + 2−n.

Assume (30) holds for k ≥ 1, we will prove it for k + 1. Let 〈~0, 0〉 6= 〈~x, y〉 < 〈~m,mk〉.
As above, we assume ξn(~m,mk;~1, 1) > 3(k + 1)2−n, thus 2n ≥ mk by (31), which ensures

d2n(mk − 1)/mke < 2n.

We have

(32) ξn(~m,mk;~1, 1) ≤ 1

mk
ξn(~m;~1) + 2−n(k + 1)(1−m−1k )

by (22). We distinguish two cases. If ~x = ~0, let ỹ = y[~m]−1 rem mk; then 1 ≤ ỹ ≤ mk − 1, and

ξn(~m,mk; ~x, y) = 2−n
⌈

2nỹ

mk

⌉
=

ỹ

mk
± 2−n

0 ,

hence

min
{
ξn(~m,mk; ~x, y), 1− ξn(~m,mk; ~x, y)

}
≥ 1

mk
− 2−n ≥ ξn(~m,mk;~1, 1)− 2−n(k + 2)

using (32).

If ~x 6= ~0, let y′ =
(
y − en(~m; ~x;mk)

)
rem mk, and ỹ = y′[~m]−1 rem mk. Then

ξn(~m,mk; ~x, y) = ξn
(
~m,mk; en(~m; ~x; ~m,mk)

)
+ ξn(~m,mk;~0, y

′)− c± 0
2−n(k+1)

=
1

mk
ξn(~m; ~x) + 2−n

⌈
2nỹ

mk

⌉
− c± 2−n(k + 1)

=
1

mk

(
ξn(~m; ~x) + ỹ

)
− c± 2−n(k + 2)

for some c ∈ {−1, 0, 1} using (29) and (22). Since 0 ≤ ỹ ≤ mk − 1, we have

min
{

1
mk

(
ξn(~m; ~x) + ỹ

)
, 1− 1

mk

(
ξn(~m; ~x) + ỹ

)}
≥ 1

mk

(
ξn(~m;~1)− 2−n(3k)

)
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by the induction hypothesis, thus

min
{
ξn(~m,mk; ~x, y) + c, 1−

(
ξn(~m,mk; ~x, y) + c

)}
≥ ξn(~m,mk;~1, 1)− 2−n

(
3km−1k + (k + 1)(1−m−1k ) + k + 2

)
≥ ξn(~m,mk;~1, 1)− 2−n

(
km−1k + k + 1 + (k + 1)(2−m−1k )

)
≥ ξn(~m,mk;~1, 1)− 2−n

(
3(k + 1)

)
> 0

using (32) and mk ≥ 2, which implies c = 0 and the result. 2

Corollary 5.10 VTC 0(imul) proves that if n ≥ |k|+2+
∑

i<k|mi|, then Lemma 5.8 holds with

c ∈ {0, 1}.

Proof: If, say, ~x = 0, then ~z = ~y, and the statement holds with c = 0. Thus, we may assume

~x 6= ~0 6= ~y. If c = −1, then

1 > ξn(~m;~z) = ξn(~m; ~x) + ξn(~m; ~y) + 1± 0
2−nk

implies

2−nk > ξn(~m; ~x) + ξn(~m; ~y) ≥ 2ξn(~m;~1)− 2−n(6k) > 21−
∑

i|mi| − 2−n(6k)

using Lemmas 5.9 and 5.7, thus

21−
∑

i|mi| < 2−n(7k) < 2|k|+3−n.

This is a contradiction if n ≥ |k|+ 2 +
∑

i<k|mi|. 2

The next crucial lemma states how large n needs to be so that rn(~m; ~x) is the true rank,

and en(~m; ~x;~a) the correct basis extension of ~x; it also gives the rate of convergence of ξn(~m; ~x).

This will considerably simplify our subsequent arguments, as we can fix the rank and basis

extension functions independently of any extraneous parameters, and it will make calculations

with ξn self-correcting, preventing accumulation of errors (we may temporarily switch to ξn′

with n′ ≥ n as large as we want to make any given argument work with sufficient accuracy, and

get back to ξn using (35)).

Lemma 5.11 VTC 0(imul) proves: if n′ ≥ n ≥ |k|+ 2 +
∑

i<k|mi|, then for all ~x < ~m and ~a,

rn(~m; ~x) = rn′(~m; ~x),(33)

en(~m; ~x;~a) = en′(~m; ~x;~a),(34)

ξn(~m; ~x) = ξn′(~m; ~x)± 2−nk
0 .(35)

Proof: If ~x = ~0, all quantities in (33)–(35) are 0, thus we may assume ~x 6= ~0 (whence k ≥ 1).

Put hi = [~m]−16=i rem mi. Since

2n
′−n
⌊

2nxihi
mi

⌋
≤
⌊

2n
′
xihi
mi

⌋
, 2n

′−n
⌈

2nxihi
mi

⌉
≥
⌈

2n
′
xihi
mi

⌉
,
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we have

(36) 2−n
′
Sn′(~x) = 2−n

′∑
i<k

⌈
2n
′
xihi
mi

⌉
≤ 2−n

′∑
i<k

2n
′−n
⌈

2nxihi
mi

⌉
= 2−nSn(~x)

and

2−nSn(~x) ≤ 2−n
∑
i<k

⌊
2nxihi
mi

⌋
+ 2−nk = 2−n

′∑
i<k

2n
′−n
⌊

2nxihi
mi

⌋
+ 2−nk

≤ 2−n
′∑
i<k

⌊
2n
′
xihi
mi

⌋
+ 2−nk ≤ 2−n

′
Sn′(~x) + 2−nk.(37)

Thus, using (30) and Lemma 5.7,

rn(~x) + 1 > 2−n
′
Sn′(~x) ≥ rn(~x) + ξn(~x)− 2−nk ≥ rn(~x) + 2−

∑
i|mi| − 2−n(4k) ≥ rn(~x)

as long as n ≥
∑

i|mi|+ |k|+ 2. Then rn′(~x) = rn(~x); (34) follows as the only dependence of en
on n is through rn, and (35) follows from (36) and (37). 2

Definition 5.12 For ~x < ~m, we define r(~m; ~x) = rn(~m; ~x) and e(~m; ~x;~a) = en(~m; ~x;~a), where

n = |k|+ 2 +
∑

i<k|mi|.

The meaning of the next lemma is that if ~m is odd, the CRR of (1 + [~m])/2 is 2−1 rem ~m

(i.e., the sequence of inverses of 2 modulo each mi). The CRR reconstruction procedure will

involve such factors.

Lemma 5.13 VTC 0(imul) proves: if ~x < ~m ⊥ 2, ~a ⊥ 2, k > 0, and n ≥ |k + 1|+ 4 +
∑

i|mi|,
then

e(~m; 2−1 rem ~m;~a) ≡ 2−1(1 + [~m]) (mod ~a),(38)

ξn(~m; 2−1 rem ~m) =
1

2
+ ξn(~m, 2;~1, 1).(39)

Proof: We may assume lh(~a) = 1. Working modulo a, we have

2e(~m; 2−1 rem ~m; a) = e(~m, 2;~1, 0; a)

≡ e(~m, 2;~1, 1; a)− [~m] +
(
r(~m, 2;~1, 1)− r(~m, 2;~1, 0)

)
2[~m]

≡ 1− [~m] +
(
r(~m, 2;~1, 1)− r(~m, 2;~1, 0)

)
2[~m]

by (17), the definition of en, and (26). Now, the definition of Sn gives

(40) Sn(~m, 2;~1, 1)− Sn(~m, 2;~1, 0) =

⌈
2n

2

⌉
= 2n−1,

thus

r(~m, 2;~1, 1)− r(~m, 2;~1, 0) =

{
1, if ξn(~m, 2;~1, 1) < 1

2 ,

0, otherwise
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for any n ≥ |k + 1| + 4
∑

i|mi|. However, (25) ensures ξn(~m, 2;~1, 1) < 1
2 as long as k ≥ 1 and

2n ≥ 4(k + 2), hence

2e(~m; 2−1 rem ~m; a) ≡ 1 + [~m] (mod a)

as required. Also, (40) ensures

ξn(~m; 2−1 rem ~m) = ξn(~m, 2;~1, 0) =
1

2
+ ξn(~m, 2;~1, 1)

using Lemma 5.4. 2

The following lemma shows that if X (which is not too big w.r.t. ~m) has CRR ~x, then e(~x;~a)

is X rem ~a as expected, and ξn(~x) ≈ X/[~m] (formulated with ξn(~1)).

As a corollary, we obtain that X (which is not too big) is uniquely determined by its CRR.

Lemma 5.14 VTC 0(imul) proves: if |X| ≤
∑

i<k

(
|mi| − 1

)
, ~x = X rem ~m, and n ≥ |k|+ 2 +∑

i<k|mi|, then

e(~m; ~x;~a) = X rem ~a,(41)

X
(
ξn(~m;~1)− 21−nk

)
≤ ξn(~m; ~x) ≤ Xξn(~m;~1).(42)

Proof: We may assume lh(~a) = 1. If we fix X, we can prove the statement for b2−tXc, t ≤ |X|,
by reverse induction on t; that is, it suffices to show that it holds for X = 0 (trivial) and

X = 1 (Lemma 5.7), and that it holds for X ≥ 2 assuming it holds for bX/2c. To facilitate the

induction argument, we strengthen the lower bound for X ≥ 1 to

(43) Xξn(~1)− (2X − 1)2−nk ≤ ξn(~x) ≤ Xξn(~1).

Assume that (41) and (43) hold for Y = bX/2c, and put ~y = bX/2c rem ~m. Using Corol-

lary 5.10, there is a constant c ∈ {0, 1} such that

e(2~y; a) ≡ 2e(~y; a)− c[~m] (mod a),

ξn(2~y) = 2ξn(~y)− c± 0
2−nk.

However, since

2ξn(~y) ≤ 2Y ξn(~1) ≤ X2−
∑

i(|mi|−1) ≤ X2−|X| < 1

by the induction hypothesis and Lemma 5.7, we must have c = 0, thus

e(2~y; a) ≡ 2e(~y; a) ≡ 2Y (mod a),

and

2Y ξn(~1)−
(
4Y − 2 + 1

)
2−nk ≤ ξn(2~y) ≤ 2Y ξn(~1)

using the induction hypothesis. If X = 2Y , then ~x = 2~y and we are done. If X = 2Y + 1 and

~x = 2~y +~1, we apply Corollary 5.10 once again: there is c′ ∈ {0, 1} such that

e(~x; a) ≡ e(2~y; a) + 1− c′[~m] (mod a),

ξn(~x) = ξn(2~y) + ξn(~1)− c′ ± 0
2−nk
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using (26). As above,

ξn(2~y) + ξn(~1) ≤ (2Y + 1)ξn(~1) ≤ X2−
∑

i(|mi|−1) ≤ X2−|X| < 1,

thus c′ = 0, and

e(~x; a) ≡ e(2~y; a) + 1 ≡ 2Y + 1 ≡ X (mod a),

Xξn(~1)− (2X − 1)2−nk ≤ Xξn(~1)− (4Y )2−nk ≤ ξn(~x) ≤ Xξn(~1)

as required. 2

Corollary 5.15 VTC 0(imul) proves: if |X|, |Y | ≤
∑

i<k

(
|mi| − 1

)
and X ≡ Y (mod ~m), then

X = Y .

Proof: Put ~x = X rem ~m and ~y = Y rem ~m. If, say X < Y , then

ξn(~x) ≤ (Y − 1)ξn(~1) < Y
(
ξn(~1)− 21−nk

)
≤ ξn(~y)

by Lemma 5.14 as long as n ≥ |k|+ 2 +
∑

i<k|mi| and Y 21−nk < ξn(~1). (Since Y < 2
∑

i(|mi|−1)

and ξn(~1) > 2−
∑

i|mi| by (25), this holds if we take n ≥ |k|+ 2 + 2
∑

i|mi|.) Then it follows that

~x 6= ~y. 2

The final, and most complicated, technical result in this subsection expresses that given the

CRR of X < [~m] in basis ~m, and the CRR of Y < [~a] in basis ~a (where ~m ⊥ ~a), we obtain

the CRR of XY < [~m][~a] in the basis 〈~m,~a〉 by extending both original CRRs to the combined

basis, and multiplying them elementwise (modulo each prime).

We first need a simple “reciprocity lemma” relating inverses of two primes modulo each

other.

Lemma 5.16 I∆0 proves that if m and a are distinct primes, then

(44) m
(
m−1 rem a

)
− a
(
(−a−1) rem m

)
= 1.

Proof: We have m(m−1 rem a) ≡ 1 (mod a), i.e., m(m−1 rem a) = 1 + au for some u. Since

0 < m(m−1 rem a) < am, we have 0 ≤ u < m, and −au ≡ 1 (mod m), thus u = (−a−1) rem m.

2

Definition 5.17 If ~x, ~y < ~m, then ~x×~y denotes the elementwise product 〈xiyi rem mi : i < k〉.
More generally, we will write

∏
u<t ~xu for the elementwise product of terms 〈xu,i : i < k〉 =

~xu < ~m, u < t.

Lemma 5.18 VTC 0(imul) proves: let ~m ⊥ ~a, ~x < ~m, ~y < ~a, and n ≥ |k+ l|+ 2 +
∑

i<k|mi|+∑
j<l|aj |. Then

e
(
~m,~a; e(~m; ~x; ~m,~a)× e(~a; ~y; ~m,~a);~b

)
= e(~m; ~x;~b)× e(~a; ~y;~b),(45)

ξn
(
~m,~a; e(~m; ~x; ~m,~a)× e(~a; ~y; ~m,~a)

)
= ξn(~m; ~x) ξn(~a; ~y)± 2−n(k + l).(46)
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Proof: If, say, ~x = ~0, then both sides of (45) and (46) are 0, thus we may assume ~x 6= ~0 6= ~y.

Put ~u = e(~a; ~y; ~m) and ~v = e(~m; ~x;~a), so that

e(~m; ~x; ~m,~a)× e(~a; ~y; ~m,~a) = 〈~x× ~u, ~y × ~v〉.

Let

hi = [~m]−16=i rem mi, h̃i = [~a]−1hi rem mi,

h′j = [~a]−16=j rem aj , h̃′j = [~m]−1h′j rem aj .

For any i < k and j < l, Lemma 5.16 gives⌈
2nxihi
mi

⌉⌈
2nyjh

′
j

aj

⌉
= 22n

xihiyjh
′
j

miaj
± 2n(mi+aj)

0

= 2nxihi
(
m−1i rem aj

)2nyjh
′
j

aj

− 2nyjh
′
j

(
(−a−1j ) rem mi

)2nxihi
mi

± 2n(mi+aj)
0

= 2nxihi
(
m−1i rem aj

)⌈2nyjh
′
j

aj

⌉
− 2nyjh

′
j

(
(−a−1j ) rem mi

)⌈2nxihi
mi

⌉
±

2n(mi+aj+mia
2
j )

2nm2
i aj

Then, expanding the definition,

ξn(~x) ξn(~y) =
(
2−nSn(~x)− r(~x)

)(
2−nSn(~y)− r(~y)

)
= 2−2n

∑
i<k
j<l

⌈
2nxihi
mi

⌉⌈
2nyjh

′
j

aj

⌉

− 2−nr(~y)
∑
i<k

⌈
2nxihi
mi

⌉
− 2−nr(~x)

∑
j<l

⌈
2nyjh

′
j

aj

⌉
+ r(~x) r(~y)

= 2−n
∑
i<k

⌈
2nxihi
mi

⌉(
−
∑
j<l

yjh
′
j

(
(−a−1j ) rem mi

)
− r(~y)

)
+ 2−n

∑
j<l

⌈
2nyjh

′
j

aj

⌉(∑
i<k

xihi
(
m−1i rem aj

)
− r(~x)

)
+ r(~x) r(~y)±

2−n
(∑

imi+
∑

j aj+
∑

imi
∑

j a
2
j

)
2−n

∑
im

2
i

∑
j aj

.

For any i < k,

hi

(
−
∑
j<l

yjh
′
j

(
(−a−1j ) rem mi

)
− r(~y)

)
≡ hi[~a]−1e(~a; ~y;mi) ≡ h̃iui (mod mi),

thus

si =
h̃iui + hi

(∑
j<l yjh

′
j

(
(−a−1j ) rem mi

)
+ r(~y)

)
mi
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is a (small) integer, and we have⌈
2nxihi
mi

⌉(
−
∑
j<l

yjh
′
j

(
(−a−1j ) rem mi

)
− r(~y)

)
=

2nxihi
mi

(
−
∑
j<l

yjh
′
j

(
(−a−1j ) rem mi

)
− r(~y)

)
± 0
mi

∑
j a

2
j

=
2nxih̃iui
mi

− 2nxisi ± 0
mi

∑
j a

2
j

=

⌈
2nxiuih̃i
mi

⌉
− 2nxisi ± 0

mi
∑

j a
2
j+1.

Likewise, ⌈
2nyjh

′
j

aj

⌉(∑
i<k

xihi
(
m−1i rem aj

)
− r(~x)

)
=

⌈
2nyjvj h̃

′
j

aj

⌉
− 2nyjtj ±

aj
∑

im
2
i∑

imi
,

where

tj =
h̃′jvj − h′j

(∑
i<k xihi

(
m−1i rem aj

)
− r(~x)

)
aj

is an integer. Thus, continuing the computation above,

ξn(~x) ξn(~y) = 2−n
⌈

2nxiuih̃i
mi

⌉
+ 2−n

⌈
2nyjvj h̃

′
j

aj

⌉
−
∑
i<k

xisi −
∑
j<l

yjtj + r(~x) r(~y)±
2−n
(∑

imi+
∑

j aj+
∑

imi
∑

j a
2
j+

∑
im

2
i

∑
j aj

)
2−n
(∑

im
2
i

∑
j aj+

∑
imi

∑
j a

2
j+k+l

∑
imi

)
= Sn(~x× ~u, ~y × ~v)−

∑
i<k

xisi −
∑
j<l

yjtj + r(~x) r(~y)

± 2−n
(∑

imi
∑

j a
2
j +

∑
im

2
i

∑
j aj +

∑
imi

∑
j aj

)
= Sn(~x× ~u, ~y × ~v)−

∑
i<k

xisi −
∑
j<l

yjtj + r(~x) r(~y)± 2−n
∑

im
2
i

∑
j a

2
j

(using (mi − 1)(aj − 1) ≥ 2, which implies mia
2
j + m2

i aj + miaj ≤ m2
i a

2
j ). By Lemmas 5.7

and 5.9, there is n0 such that

min
{
ξn(~x) ξn(~y), 1− ξn(~x) ξn(~y)

}
> 2−n

∑
im

2
i

∑
j a

2
j

for all n ≥ n0. It follows that

(47) r(~x× ~u, ~y × ~v) =
∑
i<k

xisi +
∑
j<l

yjtj − r(~x) r(~y),

and

n ≥ n0 =⇒ ξn(~x× ~u, ~y × ~v) = ξn(~x) ξn(~y)± 2−n
∑

im
2
i

∑
j a

2
j .
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In order to prove (46) for all n ≥ |k + l|+ 2 +
∑

i|mi|+
∑

j |aj |, we pick n′ ≥ max{n, n0} such

that 2n
′
> 22n+1

∑
im

2
i

∑
j a

2
j , and we apply Lemma 5.11:

ξn(~x× ~u, ~y × ~v) = ξn′(~x× ~u, ~y × ~v)± 2−n(k+l)
0

= ξn′(~x) ξn′(~y)± 2−n(k+l)
0 ± 2−n

′∑
im

2
i

∑
j a

2
j

=
(
ξn(~x)± 0

2−nk

)(
ξn(~y)± 0

2−nl

)
± 2−n(k+l)

0 ± 2−n
′∑

im
2
i

∑
j a

2
j

= ξn(~x) ξn(~y)±
(
2−n(k + l) + 2−n

′∑
im

2
i

∑
j a

2
j

)
= ξn(~x) ξn(~y)±

(
2−n(k + l) + 2−2n−1

)
.

Since the terms on both sides are integer multiples of 2−2n, this implies

ξn(~x× ~u, ~y × ~v) = ξn(~x) ξn(~y)± 2−n(k + l).

It remains to prove (45). We may assume lh(~b) = 1, i.e., ~b = 〈b〉. The result is easy to check

if b = mi or b = aj , hence we may assume b ⊥ ~m,~a. Using Lemma 5.16 again, we compute

modulo b:

[~m]−1[~a]−1e(~x; b) e(~y; b) ≡
(∑
i<k

xihim
−1
i − r(~x)

)(∑
j<l

yjh
′
ja
−1
j − r(~y)

)
≡
∑
i<k
j<l

xihiyjh
′
jm
−1
i a−1j

− r(~y)
∑
i<k

xihim
−1
i − r(~x)

∑
j<l

yjh
′
ja
−1
j + r(~x) r(~y)

≡
∑
i<k
j<l

xihiyjh
′
j

(
a−1j (m−1i rem aj)−m−1i ((−a−1j ) rem mi)

)
− r(~y)

∑
i<k

xihim
−1
i − r(~x)

∑
j<l

yjh
′
ja
−1
j + r(~x) r(~y)

≡
∑
i<k

xihim
−1
i

(
−
∑
j<l

yjh
′
j

(
(−a−1j ) rem mi

)
− r(~y)

)
+
∑
j<l

yjh
′
ja
−1
j

(∑
i<k

xihi
(
m−1i rem aj

)
− r(~x)

)
+ r(~x) r(~y)

≡
∑
i<k

xim
−1
i (h̃iui −misi) +

∑
j<l

yja
−1
j (h̃′jvj − ajtj) + r(~x) r(~y)

≡
∑
i<k

xiuih̃im
−1
i +

∑
j<l

yjvj h̃
′
ja
−1
j

−
(∑
i<k

xisi +
∑
j<l

yjtj − r(~x) r(~y)
)

≡
∑
i<k

xiuih̃im
−1
i +

∑
j<l

yjvj h̃
′
ja
−1
j − r(~x× ~u, ~y × ~v)

≡ [~m]−1[~a]−1e(~x× ~u, ~y × ~v; b)

by (47). 2
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5.2 Chinese remainder reconstruction and iterated products

We now introduce the CRR reconstruction procedure. The definition mostly follows the proof

of [11, Thm. 4.1], inlining the construction from [11, L. 4.5]. (The latter lemma shows how to

compute the CRR of bX/[~a]c from the CRR of X; since we cannot yet define what [~a] is in the

first place, we do not know how to formulate the lemma in a stand-alone way.)

Definition 5.19 (In VTC 0(imul).) If ~x < ~m and ~a is a subsequence of ~m, let ~x �~a denote the

corresponding subsequence of ~x. (Thus, in fact, ~x � ~a = e(~m; ~x;~a).)

Let Rec(~m; ~x) denote the ΣB
0 (card, imul)-definable function formalizing the following algo-

rithm. Given a nonempty ~m ⊥ 2 and ~x < ~m, let s = 2 +
∑

i<k|mi|, and using Theorem 3.2, let

~a = 〈au,j : u < s, j < l〉 be a sequence of distinct odd primes such that ~a ⊥ ~m and

(48)
∑
j<l

(
|au,j | − 1

)
> 2s

for all u < s. We write ~au = 〈au,j : j < l〉 and ~a<t = 〈au,j : u < t, j < l〉. For each t ≤ s, we

define residue sequences ~wt < 〈~m,~a<t〉 and ~yt < ~m by

~wt =
(

2−t
∏
u<t

(
1 + [~au]

))
e(~m; ~x; ~m,~a<t) rem 〈~m,~a<t〉,

~yt = [~a<t]
−1(~wt � ~m− e(~a<t; ~wt � ~a<t; ~m)

)
rem ~m,

and for t < s, we define a residue sequence ~zt < ~m and a (possibly negative) number bt by

~zt = (~yt − 2~yt+1) rem ~m,

bt =

{
−1, if ~zt ≡ −~1 (mod ~m),

zt,0 otherwise.

(Here, zt,0 < m0 is the 0th component of ~zt = 〈zt,i : i < k〉.) Finally, we define

Rec(~m; ~x) =
∑
t<s

2tbt.

To get the basic intuition: in the real world, if ~x is the CRR of X in basis ~m, then ~wt is the

CRR ofX
∏
u<t

(
1+[~au]

)
/2 in basis 〈~m,~a<t〉, and ~yt is the CRR of

⌊
X
∏
u<t

(
1 + [~au]

)
/
(
2[~au]

)⌋
=

bX2−tc in basis ~m (using the fact that [~au] is large enough so that
(
1 + [~au]

)
/
(
2[~au]

)
exceeds

1/2 only by a negligible amount). Thus, ~zt is the CRR of bit(X, t) = bt, and Rec(~m; ~x) = X.

In particular, in reality bt ∈ {0, 1}, whereas our argument in VTC 0(imul) will only establish

that ~zt is the CRR of one of −1, 0, 1, 2, which is extracted as bt (see Lemma 5.22); a priori,

Rec(~m; ~x) may be negative.

Since we cannot refer in VTC 0(imul) to the product X
∏
u<t

(
1 + [~au]

)
/2 that we do not

know to exist, we base our analysis instead on ξn estimation: in particular, we aim to show

ξn(~yt) ≈ ξn(~wt) ≈ 2−tξn(~x). To this end, we first need to rewrite the definition of ~wt as a

recurrence:
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Lemma 5.20 VTC 0(imul) proves: using the notation from Definition 5.19,

e(~m,~a<t; ~wt; ~m,~a) = e(~m; ~x; ~m,~a)×
∏
u<t

e(~au; 2−1 rem ~au; ~m,~a),(49)

~wt+1 = e(~m,~a<t; ~wt; ~m,~a≤t)× e(~at; 2−1 rem ~at; ~m,~a≤t),(50)

for all t < s.

Proof: By Lemma 5.13, the definition of ~wt amounts to

(51) ~wt = e(~m; ~x; ~m,~a<t)×
∏
u<t

e(~au; 2−1 rem ~au; ~m,~a<t).

In light of this, for any given t, (49) implies (50): we have

e(~m,~a<t; ~wt; ~m,~a≤t)× e(~at; 2−1 rem ~at; ~m,~a≤t)

= e(~m; ~x; ~m,~a≤t)×
∏
u<t

e(~au; 2−1 rem ~au; ~m,~a≤t)× e(~at; 2−1 rem ~at; ~m,~a≤t)

= e(~m; ~x; ~m,~a≤t)×
∏
u≤t

e(~au; 2−1 rem ~au; ~m,~a≤t)

= ~wt+1.

Thus, it suffices to prove (49) by induction on t. For t = 0, the statement follows from

~w0 = ~x. Assuming (49) holds for t, we also have (50), therefore

e(~m,~a≤t; ~wt+1; ~m,~a) = e
(
~m,~a≤t; e(~m,~a<t; ~wt; ~m,~a≤t)× e(~at; 2−1 rem ~at; ~m,~a≤t); ~m,~a

)
= e(~m,~a<t; ~wt; ~m,~a)× e(~at; 2−1 rem ~at; ~m,~a)

= e(~m; ~x; ~m,~a)×
∏
u<t

e(~au; 2−1 rem ~au; ~m,~a)× e(~at; 2−1 rem ~at; ~m,~a)

= e(~m; ~x; ~m,~a)×
∏
u≤t

e(~au; 2−1 rem ~au; ~m,~a)

by Lemma 5.18. 2

Now we can estimate ξn(~wt) and ξn(~yt) using the properties developed in Section 5.1.

Lemma 5.21 VTC 0(imul) proves: using the notation from Definition 5.19, let n ≥ |k| + 2 +∑
i|mi|. Then for all t ≤ s,

(52) ξn(~m; ~yt) = 2−tξn(~m; ~x)± 2−nk+2−2s

2−nk+ξn(~m;~1)
.

Proof: Let us first assume that n is sufficiently large. We start with a bound on ξn(~wt). We

have

ξn(~m; ~w0) = ξn(~m; ~x).
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By Lemmas 5.20, 5.18, 5.13, and 5.7, we have

ξn(~m,~a≤t; ~wt+1) = ξn(~m,~a<t; ~wt)
(
1
2 + ξn(~at, 2;~1)

)
± 2−n

(
k + s(t+ 1)

)
= ξn(~m,~a<t; ~wt)

(
1
2 ±

2
−

∑
j(|at,j |−1)

0

)
± 2−n

(
k + s(t+ 1)

)
= ξn(~m,~a<t; ~wt)

(
1
2 ±

2−2s−1

0

)
± 2−n

(
k + s(t+ 1)

)
,

thus by induction on t ≤ s, we obtain

ξn(~m,~a<t; ~wt) = 2−tξn(~m; ~x)± 21−n(k+ts)+2−2s

21−n(k+ts)
.

Notice that

~wt − e(~a<t; ~wt � ~a<t; ~m,~a<t) = 〈[~a<t]~yt,~0〉,

thus by Lemma 5.4 and Corollary 5.10, there is ct ∈ {0, 1} such that

ξn(~m; ~yt) = ξn(~m,~a<t; [~a<t],~0)

= ξn(~m,~a<t; ~wt)− ξn
(
~m,~a<t; e(~a<t; ~wt � ~a<t; ~m,~a<t)

)
+ ct ± 2−n(k+ts)

0

(for n large enough, ct is independent of n due to Lemma 5.11). Now, since

e(~a<t; ~wt � ~a<t; ~m,~a<t) = e(~m;~1; ~m,~a<t)× e(~a<t; ~wt � ~a<t; ~m,~a<t),

we have

e(~a<t; ~wt � ~a<t; ~m,~a<t) ≤ ξn(~m;~1) ξn(~a<t; ~wt � a<t) + 2−n(k + ts)

≤
(
1− 2−

∑
u,j |au,j | + 2−n(3ts)

)
ξn(~m;~1) + 2−n(k + ts)

≤ ξn(~m;~1)− 2−s̃ + 2−n(k + 4ts)

by Lemmas 5.18, 5.9, and 5.7, where s̃ = s+
∑

u,j |au,j |. It follows that

1− ξn(~m;~1) + 2−n(3k) ≥ ξn(~m; ~yt) ≥ ct − ξn(~m;~1) + 2−s̃ − 2−n(k + 4ts),

which implies ct = 0 by considering n large enough so that 2−s̃ > 2−n(4k + 4ts). Thus,

ξn(~m; ~yt) = ξn(~m,~a<t; ~wt)± 2−n(k+ts)

ξn(~m;~1)+2−n(k+4ts)

= 2−tξn(~m; ~x)± 2−2s+2−n(3k+3ts)

ξn(~m;~1)+2−n(3k+6ts)
.

In order to obtain the bound as stated in the lemma, we use Lemma 5.11 as in the proof of

Lemma 5.18: for sufficiently sufficiently large n′,

ξn(~m; ~yt) = ξn′(~m; ~yt)± 2−nk
0

= 2−tξn′(~m; ~x)± 2−2s+2−nk+2−n′ (3k+3ts)

ξn′ (~m;~1)+2−n′ (3k+6ts)

= 2−tξn(~m; ~x)± 2−2s+2−nk+2−n′ (3k+3ts)

ξn(~m;~1)+2−nk+2−n′ (3k+6ts)
.

For large enough n′, we may drop the 2−n
′
(3k + 6ts) terms, as all the remaining terms are

integer multiples of 2−z for z = max{n+ t, 2s}. 2
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The next task is to make sense of ~zt and bt: the basic idea is to derive ξn(~zt) = O
(
ξn(~1)

)
from the bounds on ξn(~yt), and then use discreteness of the ξn values (Lemma 5.9) to infer that

~zt is the CRR of an O(1) integer, which is bt.

Lemma 5.22 VTC 0(imul) proves: using the notation from Definition 5.19, ~y0 = ~x, ~ys = ~0,

and for each t < s, we have bt ∈ {−1, 0, 1, 2} and ~zt = bt rem ~m. Moreover,

(53) ξn(~m; ~yt) = 2ξn(~m; ~yt+1) + btξn(~m;~1)± 2−nk
2−n(3k)

for n ≥ |k|+ 2 +
∑

i|mi|.

Proof: The first identity follows immediately from the definition. By Lemmas 5.21 and 5.7,

ξn(~ys) ≤ 2−s + 2−2s + 2−nk < 22−s − 2−n(3k) < ξn(~1)− 2−n(3k)

for large enough n, which implies ~ys = ~0 by Lemma 5.9.

Let t < s. By Corollary 5.10 and Lemma 5.21, we have

ξn(2~yt+1) = 2ξn(~yt+1)± 0
2−nk = 2−tξn(~x)± 21−2s+21−nk

2ξn(~1)+2−n(3k)

(the right-hand side is < 1 for n large enough, hence the constant c from Lemma 5.8 cannot

be 1). Using Corollary 5.10 again, there is ct ∈ {0, 1} (independent of n if n is large enough)

such that

ξn(~zt) = ξn(~yt)− ξn(2~yt+1) + ct ± 2−nk
0 = ct ± 2ξn(~1)+2−2s+2−n(5k)

ξn(~1)+21−2s+2−n(3k)
,

thus for large enough n, we have(
ct = 0 and ξn(~zt) ≤

5

2
ξn(~1)

)
or

(
ct = 1 and ξn(~zt) ≥ 1− 3

2
ξn(~1)

)
.

We claim that this implies

(54) ~zt = −~1 rem ~m or ~zt = ~0 or ~zt = ~1 or ~zt = ~2.

Assume first ξn(~zt) ≤ 5
2ξn(~1). Either ~zt = ~0 and we are done, or

ξn(~zt) ≥ ξn(~1)− 2−n(3k)

by Lemma 5.9, and ~z′t = ~zt −~1 satisfies

ξn(~z′t) = ξn(~zt)− ξn(~1) + c± 2−nk
0 ≥ c− 2−n(3k)

for some c ∈ {0, 1} by Corollary 5.10. For n large enough, c = 1 is ruled out by Lemma 5.9,

hence c = 0, and

ξn(~z′t) ≤
3

2
ξn(~1) + 2−nk.

Repeating the same argument, either ~z′t = ~0 and ~zt = ~1, or ~z′′t = ~z′t −~1 satisfies

ξn(~z′′t ) ≤ 1

2
ξn(~1) + 21−nk,
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in which case we must have ~z′′t = ~0 by Lemma 5.9, hence ~zt = ~2.

If ξn(~zt) ≥ 1− 3
2ξn(~1), a similar argument yields ~zt ≡ −~1 (mod ~m).

Now, (54) immediately gives bt ∈ {−1, 0, 1, 2} and ~zt ≡ bt~1 (mod ~m). Moreover, Lemma 5.8

gives

ξn(~2) = 2ξn(~1)± 0
2−nk,

ξn(−~1) = 1− ξn(~1)± 2−nk
0 ,

and then

ξn(~yt) = ξn(2~yt+1) + ξn(bt~1)− ct ± 0
2−nk

= 2ξn(~yt+1) + ξn(bt~1)− ct ± 0
2−n(2k)

= 2ξn(~yt+1) + btξn(~1)± 2−nk
2−n(3k)

follows.5 We did not pay attention to how large n need to be, but we can make sure it holds

for n ≥ |k|+ 2 +
∑

i|mi| using Lemma 5.11 as above. 2

We are ready to prove that CRR reconstruction works.

Theorem 5.23 VTC 0(imul) proves: if ~m is a nonempty sequence of distinct odd primes, and

~x < ~m, then X = Rec(~m; ~x) satisfies 0 ≤ X < 2
∑

i|mi| and ~x = X rem ~m.

Proof: Using the notation from Definition 5.19, we define

Yt =
∑
u<s−t

2ubt+u

for all t ≤ s, where bt ∈ {−1, 0, 1, 2} by Lemma 5.22. Clearly, Ys = 0, and we see that

(55) Yt = 2Yt+1 + bt

for t < s. By the definition of ~zt and Lemma 5.22, we have ~ys = ~0 and

~yt ≡ 2~yt+1 + bt~1 (mod ~m)

for t < s, hence by reverse induction on t, we obtain

~yt = Yt rem ~m.

In particular, Y0 = X satisfies ~x = X rem ~m.

At this point, X may be negative; we only know −2s < X < 2s+1. However, combining (55)

with (53), we obtain for large enough n

ξn(~yt) = Ytξn(~1)± 2s−t−n(3k)

by reverse induction on t, hence in particular

ξn(~x) = Xξn(~1)± 2s−n(3k).

This ensures X ≥ 0, and in view of Lemma 5.7, also X < 2
∑

i|mi|. 2

5A subtle point here is that we rely on −~1 6≡ ~2 (mod ~m): otherwise, if ct = 0 and ~zt = ~2, then Definition 5.19

makes bt = −1 rather than bt = 2, in which case btξn(~1) is off by 1 from ξn(bt~1)−ct in the argument above. That

is, the given proof only works unless k = 1 and m0 = 3. However, in the latter case, all the numbers involved are

standard, and one can check that in actual reality, always bt ∈ {0, 1}, hence the bad case does not arise.
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Corollary 5.24 VTC 0(imul) proves: if ~m is a nonempty sequence of distinct odd primes, and

~x = X rem ~m, where |X| <
∑

i<k

(
|mi| − 1

)
, then Rec(~m; ~x) = X.

Proof: Let h = |X|. For large enough n, we have

ξn(~yh) ≤ (1− 2−h)ξn(~1) + 2−2s + 2−nk < ξn(~1)− 2−n(3k)

by Lemmas 5.21 and 5.14, thus ~yh = ~0 by Lemma 5.9. Likewise, ~yt = ~0 for all t ≥ h, thus

bt = 0 for t ≥ h. It follows that Rec(~m, ~x) < 2h+1, hence X ≡ Rec(~m; ~x) (mod ~m) implies

X = Rec(~m; ~x) by Corollary 5.15. 2

It is now straightforward to infer IMUL: we can compute
∏
i<nXi by performing the iterated

product in CRR and applying Rec; the soundness of the reconstruction procedure easily implies

that the result satisfies the required recurrence.

Theorem 5.25 VTC 0(imul) proves IMUL.

Proof: Given a sequence 〈Xi : i < n〉, let us fix a sequence of distinct odd primes ~m such that

(56)
∑
i<k

(
|mi| − 1

)
>
∑
i<n

|Xi|

using Theorem 3.2. For each i < n, let ~xi = Xi rem ~m, and for each u ≤ v ≤ n, we define

~yu,v =
v−1∏
i=u

~xi rem ~m,

Yu,v = Rec(~m; ~yu,v)

(this is elementwise modular product). Clearly, ~yu,u = ~1, hence Yu,u = 1 by Corollary 5.24. For

any fixed u ≤ n, we prove

(57) |Yu,v+1| ≤
v∑
i=u

|Xi| and Yu,v+1 = Yu,v ·Xv

by induction on v = u, . . . , n − 1: for v = u, we have ~yu,u+1 = ~xu, hence Yu,u+1 = Xu by

Corollary 5.24. Assuming (57) holds for v − 1, we have

|Yu,vXv| ≤ |Yu,v|+ |Xv| ≤
v∑
i=u

|Xi| <
∑
i<k

(
|mi| − 1

)
,

and

~yu,v+1 = ~yu,v × ~xv ≡ Yu,vXv (mod ~m)

by Theorem 5.23, hence

Yu,vXv = Rec(~m; ~yu,v+1) = Yu,v+1

by Corollary 5.24, which gives (57) for v.

Thus, 〈Yu,v : u ≤ v ≤ n〉 witnesses that IMUL holds. 2
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For purposes of the next section, it will be convenient to observe that Theorem 5.25 also

gives a proof of IMUL in the basic theory corresponding to logspace:

Corollary 5.26 VL proves IMUL.

Proof: Since VL is a CN theory and includes VTC 0, it suffices to show VL ` Tot imul. Now,

Tot Iter clearly implies its variant where we start the iteration at a different element than 0, and

then we can construct the sequence witnessing the computation of
∏
i<n ai rem m by iterating

the function F (〈i, x〉) = 〈i+ 1, xai rem m〉 starting from 〈0, 1〉. 2

6 The polylogarithmic cut

After putting iterated multiplication in TC0(pow), Hesse, Allender, and Barrington [11] go on to

show that iterated multiplication restricted to polylogarithmically small inputs is in AC0, essen-

tially by proving that AC0 includes the polylogarithmically scaled-down version of TC0(pow). In

fact, although they do not state it that way, this is a consequence of Nepomnjaščij’s theorem [19],

which implies more generally that AC0 includes the polylogarithmically scaled-down version

of L, and even NL (which is essentially NSPACE(log log n), as log
(
(log n)O(1)

)
= O(log log n)).

The counterpart of such scaling-down arguments in arithmetic is the following model-

theoretic construction:

Definition 6.1 If M = 〈M1,M2,∈, |·|, 0, 1,+, ·, <〉 is a model of V 0, the polylogarithmic cut

Mpl of M is the substructure of M with first-order and second-order domains

Mpl,1 = {x ∈M1 : ∃c ∈ ωM � ∃z x ≤ |z|c},
Mpl,2 = {X ∈M2 : |X| ∈Mpl,1} = {X ∈M2 : X ⊆Mpl,1}.

By formalizing Nepomnjaščij’s construction, Müller [17] proved that polylogarithmic cuts of

models of V 0 are models of VNC 1 (see [7] for a definition):

Theorem 6.2 (Müller [17]) If M � V 0, then Mpl |=VNC 1. 2

In fact, earlier Zambella [27] effectively proved that polylogarithmic cuts are even models of the

stronger theory VL, though the result was presented in a different way. For definiteness, we

include a self-contained proof while strengthening the theory further to VNL, again following

the idea of Nepomnjaščij [19].

Theorem 6.3 If M � V 0, then Mpl |= VNL.

Proof: Work in V 0. Let 0 < a ≤ |z|c and E ⊆ [0, a] × [0, a]. For l = 0, . . . , 2c, We define

ΣB
0 formulas ϕl(d, s, t) with parameter E that express E-reachability in ≤ d ≤ wl steps, where

w = d|z|1/2e:

ϕ0(d, s, t)⇔ d ≤ 1 ∧ s ≤ a ∧ t ≤ a ∧
(
s = t ∨ (d = 1 ∧ E(s, t))

)
,

ϕl+1(d, s, t)⇔ ∃〈xi : i ≤ k〉
(
k < w ∧ kwl ≤ d ∧ ∀i ≤ k xi ≤ a

∧ x0 = s ∧ ∀i < k ϕl(w
l, xi, xi+1) ∧ ϕl(d− kwl, xk, t)

)
.
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Notice that (using our efficient sequence encoding) the sequence quantified in the definition

of ϕl+1 has bit-length O
(
k +

∑
i≤k|xi|

)
= O(w|a|) = O(|z|1/2||z||) = O(|z|), hence it can be

encoded by a small number bounded by a polynomial in z, thus the formulas ϕl are indeed ΣB
0 .

By (meta)induction on l, we claim that V 0 proves

ϕl(d, s, t)→ d ≤ wl ∧ s ≤ a ∧ t ≤ a,(58)

∀s, t ≤ a
(
ϕl(0, s, t)↔ s = t

)
,(59)

∀d < wl ∀s, t ≤ a
(
ϕl(d+ 1, s, t)↔ ∃u ≤ a

[
ϕl(d, s, u) ∧

(
u = t ∨ E(u, t)

)])
.(60)

The properties (58) and (59) are straightforward. We have (60) for l = 0 from the definition

of ϕ0. Assuming (60) holds for l, we prove it for l + 1.

Left to right: if ϕl+1(d + 1, s, t), let ~x = 〈xi : i ≤ k〉 be the sequence that witnesses the

definition. By (58), we have kwl ≤ d+1 ≤ (k+1)wl; if d+1 = kwl, we may drop the last element

xk = t from ~x and the definition will still be satisfied, hence we may assume kwl ≤ d < (k+1)wl.

By (60) for l, ϕl(d+ 1− kwl, xk, t) implies ϕl(d− kwl, xk, u) for some u ≤ a such that u = t or

E(u, t). Then ~x witnesses that ϕl+1(d, xk, u) holds.

For the right-to-left implication, we reverse the process: if ~x witnesses ϕl+1(d, s, u), where

u = t or E(u, t), we can ensure kwl ≤ d < (k + 1)wl by extending ~x with u if necessary; then

ϕl(d−kwl, xk, u) implies ϕl(d+ 1−kwl, xk, t) by (60) for l, whence ~x witnesses ϕl+1(d+ 1, s, t).

It follows that

Y =
{
〈d, u〉 : d, u ≤ a ∧ ϕ2c(d, 0, u)

}
,

which exists by ΣB
0 -COMP , witnesses the truth of TotReach (the defining axiom of VNL) in the

polylogarithmic cut. 2

Corollary 6.4 If VNL proves ∀X ϕ(X), where ϕ ∈ Σ1
1, then

V 0 ` ∀z ∀X
(
|X| ≤ |z|c → ϕ(X)

)
for every constant c.

Proof: Σ1
1 formulas are preserved upwards from cuts. 2

Corollary 6.5 V 0 proves ∀w IMUL
[
|w|c

]
, ∀wTot∗Div

[
|w|c

]
, and ∀wTot∗imul

[
|w|c,−

]
(even mod-

ulo arbitrary m > 0, not just primes) for every constant c.

Proof: VL ⊆ VNL proves IMUL, hence DIV , by Corollary 5.26, hence V 0 proves IMUL
[
|w|c

]
and Tot∗Div

[
|w|c

]
by Corollary 6.4. Then Tot∗imul

[
|w|c,−

]
also follows: given m and 〈xi : i < n〉

where n ≤ |w|c and w ≥ maxi xi, we can compute Y =
∏
i<n xi using IMUL

[
|w|c+1

]
, and

Y rem m using Tot∗Div

[
|w|c+1

]
. 2

Remark 6.6 Using the arguments in Corollary 5.26 and Theorem 6.3, it is easy to prove in V 0

directly Tot∗imul restricted to products
∏
i<n ai rem m where n ≤ |w|c and |m| ≤ |w|1−ε for some

constant ε > 0. However, a nontrivial result like Theorem 5.25 seems to be required to get to

larger m.
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As a consequence of Corollary 6.5,
∏
i<min{n,|w|c} ai rem m is in V 0 definable by an L

V 0 func-

tion fc(A,n,m,w) (where A encodes 〈ai : i < n〉), and consequently, ΣB
0 (fc) = ΣB

0 over V 0.

In other words, we may, and will, use modular products of polylogarithmic length freely in

ΣB
0 formulas.

7 Modular exponentiation

While [11] show modular powering ar rem m of small integers to be in AC0, we do not know

how to prove the corresponding result in V 0; instead, we will work in the theory V 0 +WPHP ⊆
VTC 0.

The argument in [11] involves computation with abn/dc, where n = m − 1 is the size of the

group, and d a logarithmically small prime. This means it suffers from chicken-vs-egg problems

as the analysis of the modular powering algorithm needs powering with non-polylogarithmic

exponents, which is only defined after the modular powering algorithm is proved to work.

Moreover, the expression of abn/dc in terms of (a−n rem d)1/d relies on Fermat’s little theorem,

which again cannot be stated, let alone proved, without having a means to express an in the

group. (Actually, Fermat’s little theorem is not even known to be provable in the theory

V0 + Ω1 ⊇ V0 + WPHP , which can define modular exponentiation with no difficulty; it appears

that the strong pigeonhole principle is required to prove it. See [12, §4].)

It turns out we can avoid both problems by using a modified (and arguably simpler) algo-

rithm that exploits the basic idea of [11], viz. Chinese remaindering of exponents, more directly.

We formulate the results for prime moduli here, but this is only to simplify the bounds; the

construction as such works for any finite abelian group.

First, we need to make sure there are enough polylogarithmically small primes d such that

x 7→ xd is a bijection on (Z/mZ)×. (In the real world, these are exactly the primes not dividing

m− 1.) We obtain this with two applications of WPHP : one ensures that x 7→ xd is surjective

whenever it is injective, and the other shows that the number of primes d for which it is not

injective (i.e., such that (Z/mZ)× contains an element of order d) is quite limited, essentially

because (Z/mZ)× contains a subgroup whose order is the product of all such “bad” primes.

Lemma 7.1 For any constant c, V 0 + WPHP proves: if m and d ≤ |w|c are primes such that

xd 6≡ 1 (mod m) for all 1 < x < m, then for all y coprime to m, there exists a unique x < m

such that xd ≡ y (mod m). We will write x = y1/d.

Proof: Since x 7→ xd is a group homomorphism, the fact that it has trivial kernel implies it is

injective. Assume for contradiction that it is not surjective, and fix y outside its image. Since

m is prime, the residues coprime to m comprise the interval [1,m− 1]. Thus, we can define an

injective function F : {0, 1} × [1,m − 1] → [1,m − 1] by F (u, x) = yuxd rem m, contradicting

PHP
2(m−1)
m−1 . 2

Lemma 7.2 For any constant c, V 0 + WPHP proves: if m is a prime, and 〈di : i < k〉 a

sequence of distinct primes di ≤ |w|c such that for each i, x 7→ xdi rem m is not a bijection

on (Z/mZ)×, then
∑

i<k

(
|di| − 1

)
≤ |m|.
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Proof: Using Lemma 7.1, for each i, let xi be the least number in [2,m− 1] such that xdii ≡ 1

(mod m). (This is ΣB
0 definable, hence 〈xi : i < k〉 exists.)

Notice that using xdii ≡ 1 and Tot∗imul

[
|w|c,−

]
, we can define xui rem m for arbitrary u as

xu rem di
i rem m; this will satisfy xu+vi ≡ xui x

v
i (mod m) by induction on v. Since di is prime

and xi 6≡ 1, we have xui ≡ 1 only if di | u.

Assume first that
∑

i<k|di| ≤ 2|m| + c||w||, thus d =
∏
i<k di exists, and d ≤ 2c+2m2|w|c

is a small number. Using Tot∗imul

[
k|w|c,−

]
, we can define a function F : [0, d) → [1,m − 1] by

F (u) =
∏
i x

ui
i rem m, where ui = bu/

∏
j<i djc rem di (that is, we use [0, d) to encode

∏
i[0, di)).

We claim that F is injective, hence d < 2m by PHP2m
m , which implies

(61)
∑
i<k

(
|di| − 1

)
≤ |2m| − 1 = |m|

by (10). Since F is a group homomorphism w.r.t. the elementwise sum of sequences modulo ~d,

it suffices to show that it has trivial kernel. Thus, let ~u < ~d be such that
∏
i x

ui
i ≡ 1. By

induction on v, we can prove ∏
i<k

xuivi ≡ 1

for all v. In particular, for any j < k, taking vj =
∏
i6=j di gives

1 ≡
∏
i<k

x
uivj
i ≡ xujvjj ,

thus dj | ujvj . Since vj is coprime to dj , this shows dj | uj , i.e., uj = 0; thus, ~u = ~0, as j was

arbitrary.

If
∑

i|di| > 2|m|+ c||w||, let k′ < k be maximal such that
∑

i<k′ |di| ≤ 2|m|+ c||w||. By the

proof above, we have
∑

i<k′
(
|di| − 1

)
≤ |m|, thus∑

i<k′+1

|di| ≤ 2
∑
i<k

(
|di| − 1

)
+ |dk′ | ≤ 2|m|+ c||w||,

contradicting the choice of k′. 2

We now get to the construction of modular exponentiation ar rem m. As we already men-

tioned, the basic idea (following [11]) is to express exponents in CRR modulo a list ~d of poly-

logarithmic primes such that x 7→ x1/di is well-defined. Unlike [11], the way we employ this idea

here is to define ax/d for x = O(d), where d =
∏
i di, using a form of (14). We then extend it to

all x by periodicity, allowing us to define ar as a(rd)/d.

Theorem 7.3 V 0 + WPHP proves Tot∗pow.

Proof: Since V 0 + WPHP is a CN theory, it suffices to prove Totpow. Given a prime m, let

〈di : i < k′〉 be the list6 of all primes

(62) di ≤ 2|m|
(
||m||+ 1

)17
6It may not be immediately apparent why we can construct a sequence consisting of all these primes. Note

that the ith element of the sequence is ∆0-definable using Theorem 2.3 as the unique prime d satisfying (62) and

∀x < m (x > 1→ xd 6≡ 1 (mod m)) such that there are exactly i smaller primes with this property.
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such that xdi 6≡ 1 (mod m) for all x 6≡ 1 (mod m). We have∑
d≤2|m|(||m||+1)17

(
|d| − 1

)
≥ 2|m|

by Theorems 3.2 and 6.3, hence∑
i<k′

(
|di| − 1

)
≥ 2|m| − |m| = |m|

by Lemma 7.2. Let k ≤ k′ be smallest such that∑
i<k

(
|di| − 1

)
≥ |m|.

Then ∑
i<k

(
|di| − 1

)
≤ |m| − 1 + |dk−1| ≤ |m|+ ||m||+ 17

∣∣||m||+ 1
∣∣ = O(|m|),

hence d =
∏
i<k di exists as a small number, while

d ≥ 2
∑

i(|di|−1) ≥ 2|m| > m.

By Lemma 7.1, x 7→ xdi rem m is a bijection on (Z/mZ)× for each i < k. Put d̃i =
∏
j 6=i dj =

d/di.

Let 0 < a < m be given. For every r ≤ 2d, we define

(63) ar/d = au(r)
∏
i<k

(a1/di)ui(r) rem m

using the notation of Lemma 7.1, where

ui(r) = rd̃−1i rem di,

u(r) =
1

d

(
r −

∑
i<k

ui(r)d̃i

)
.

Here, ∑
i<k

ui(r)d̃i ≡ uj(r)d̃j ≡ r (mod dj)

for each j < k, hence
∑

i<k ui(r)d̃i ≡ r (mod d), i.e., u(r) is an integer, and −k ≤ u(r) ≤ 2,

where k ≤ |m|. Thus, ar/d can be evaluated using Tot∗imul

[
|m|O(1),−

]
.

We claim that

(64) a(r+s)/d ≡ ar/das/d (mod m)

for all r, s such that r+ s ≤ 2d. Indeed, we have ui(r+ s) = ui(r) +ui(s)− cidi with ci ∈ {0, 1},
hence u(r + s) = u(r) + u(s) +

∑
i<k ci, and

a(r+s)/d ≡ au(r)+u(s)+
∑

i ci
∏
i<k

(a1/di)ui(r)+ui(s)−cidi

≡ au(r)au(s)a
∑

i ci
∏
i<k

(a1/di)ui(r)(a1/di)ui(s)a−ci

≡ ar/das/d.
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Using WPHP , there exist r < s ≤ 2m ≤ 2d such that ar/d = as/d. Putting t = s − r, we

have 0 < t ≤ 2m and at/d = 1 by (64) (which implies a(rt)/d = 1 for all r such that rt ≤ 2d by

induction on r). We then extend the definition of ar/d to arbitrary small r by putting

ar/d = a(r rem t)/d.

This agrees with the original definition for r ≤ 2d using (64), and the new definition also

satisfies (64). Finally, we define

ar = a(rd)/d.

Direct computation shows that ui(0) = ui(d) = 0, u(0) = 0, and u(d) = 1, hence a0/d = 1 and

ad/d = a. Thus, we obtain the defining recurrence for pow:

a0 = 1,

ar+1 = ara rem m.

We only defined it for 0 < a < m, but we can simply put

0r =

{
1, r = 0,

0, r > 0

for a = 0. 2

As in Remark 6.6, it follows that we can use pow freely in ΣB
0 formulas (as long as we stick

to extensions of V 0 + WPHP):

Corollary 7.4 ΣB
0 (pow) = ΣB

0 over V 0 + WPHP. 2

Once we have exponentiation, let us show for further reference that any element of (Z/mZ)×

has a well-defined order, and that orders have the expected basic properties.

Lemma 7.5 V 0 + WPHP proves: if m is a prime, then every 0 < a < m has a unique order

0 < om(a) < 2m which satisfies

ar ≡ 1 (mod m) ⇐⇒ om(a) | r

for all r.

Proof: Using WPHP , there are r < r′ < 2m such that ar ≡ ar
′ ≡ arar

′−r (mod m), thus

r′− r > 0 and ar
′−r ≡ 1 (mod m) as ar is invertible. Let om(a) = t be the least t > 0 such that

at ≡ 1 (mod m). On the one hand, this implies atr ≡ 1 (mod m) for all r. On the other hand,

if ar ≡ 1 (mod m), we have

1 ≡ ar ≡ a(r rem t)+tbr/tc ≡ ar rem t(at)br/tc ≡ ar rem t (mod m),

hence r ≡ 0 (mod t) by the minimality of t. 2
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We note that om(a) is ΣB
0 -definable (using Corollary 7.4) as the least t > 0 such that at ≡ 1

(mod m).

Lemma 7.6 V 0 + WPHP proves that for any prime m and 0 < a, a′ < m:

(i) For any r, om(ar) = om(a)/ gcd{om(a), r}. Thus, if r | om(a), then om(ar) = om(a)/r.

(ii) There exists 0 < b < m such that om(b) = lcm{om(a), om(a′)}.

Proof: (i): Let t = om(a) and d = gcd{t, r}. Then for any s, ars ≡ 1 iff t | rs iff t
d |

r
ds iff t

d | s
as t

d and r
d are coprime.

(ii): Put t = om(a) and t′ = om(a′). First, we claim that if gcd{t, t′} = 1, then om(aa′) = tt′:

on the one hand, (aa′)tt
′ ≡ (at)t

′
(a′t

′
)t ≡ 1. On the other hand, if (aa′)r ≡ 1, then 1 ≡ (aa′)rt

′ ≡
art
′
, hence t | rt′, which implies t | r as t and t′ are coprime. A symmetric argument gives t′ | r,

hence tt′ = lcm{t, t′} | r.
We prove the general case by induction on t. If t = 1, we may take b = a′. Otherwise,

t is divisible by a prime p; write t = spe and t′ = s′pe
′
, where p - s, s′. Since om(ap

e
) =

s < t and om(a′p
e′

) = s′ by (i), there exists b such that om(b) = lcm{s, s′} by the induction

hypothesis. Moreover, one of as and a′s
′

has order pmax{e,e′}, hence bas or ba′s
′

has order

lcm{s, s′}pmax{e,e′} = lcm{t, t′} by the coprime case. 2

8 Generators of multiplicative groups

We could finish the proof of the main result at this point if we could show that VTC 0 (possibly

using, say, Tot∗pow and Tot∗imul

[
|w|c,−

]
) proves Tot imul. In the real world, iterated multiplication

modulo a prime m reduces easily to powering modulo m as (Z/mZ)× is cyclic, and we can do

iterated sums of the corresponding discrete logarithms in TC0. Thus, it would suffice to prove

in VTC 0 that multiplicative groups of prime fields are cyclic.

Unfortunately, we do not know how to do that directly. However, as a starting point

to further investigation, let us at least establish that IMUL is equivalent to the cyclicity of

multiplicative groups of prime fields over VTC 0.

Proposition 8.1 The following are equivalent over VTC 0.

(i) IMUL.

(ii) For all primes m, the groups (Z/mZ)× are cyclic:

∃g < m ∀a < m
(
a 6= 0→ ∃r < m gr ≡ a (mod m)

)
.

(iii) For all primes m and p, if a, b < m are such that a 6= 1 and ap ≡ bp ≡ 1 (mod m), then

b ≡ ar (mod m) for some r < m.

Proof:

(ii) → (i): In view of Theorem 5.25, it suffices to prove Tot∗imul. Given a prime m and

〈ai : i < n〉, where w.l.o.g. 0 < ai < m for each i < n, we define g to be the least generator
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of (Z/mZ)×, a sequence 〈ri : i < n〉 such that ri < m is least such that gri ≡ ai (mod m), and

a sequence 〈bi : i ≤ n〉 by

bi = g
∑

j<i rj rem m.

Then b0 = 1 and bi+1 = biai rem m, hence ~b witnesses that Tot imul holds. Now, we need to

apply this argument in parallel several times to get the aggregate function, but this is not a

problem.

(iii)→ (ii): Let g be an element of (Z/mZ)× of maximal order, and put t = om(g). (While

Lemma 7.5 only claims t < 2m, we have in fact t < m, as VTC 0 implies PHPm
m−1.) Assume

for contradiction that g is not a generator of (Z/mZ)×, and fix 0 < a < m such that a 6≡ gr for

all r < t. Let s ≤ om(a) be minimal such that as ≡ gr for some r < t. Since s > 1, there is a

prime p | s; replacing a with as/p if necessary, we may assume s = p. This implies p | om(a):

otherwise a ≡ (ap)p
−1 rem om(a) ≡ gr for some r, a contradiction.

By Lemma 7.6 (ii), the maximality of t implies p | om(a) | t, thus b = gt/p has order p. But

then a ≡ br ≡ grt/p for some r by (iii), a contradiction.

(i)→ (iii): Let om(a) = p and bp ≡ 1 (mod m). The basic idea is to use IMUL to construct

the polynomials fi(x) =
∏
j<i(x−aj) (mod m) for i ≤ p, aiming to show fp(x) ≡ xp− 1, which

yields
∏
j<p(b− aj) ≡ 0.

Fix n ≥ p|m|, put αj = (−aj) rem m for j < p, and write∏
j<i

(2n + αj) =
∑
j≤i

Ci,j2
jn, 0 ≤ Ci,j < 2n.

By induction on i ≤ p, we claim that∑
j≤i

Ci,j ≤ mi,(65)

Ci,j =


1, j = i,

Ci−1,j−1 + αi−1Ci−1,j , 0 < j < i,

αi−1Ci−1,0, 0 = j < i.

(66)

For i = 0, (65) and (66) are obvious. Assuming the statements hold for i, we have∑
j≤i+1

Ci+1,j2
nj = (2n + αi)

∑
j≤i

Ci,j2
jn

= Ci,i2
(i+1)n +

i∑
j=1

(Ci,j−1 + αiCi,j)2
jn + αiCi,0.(67)

Here,

Ci,i +
i∑

j=1

(Ci,j−1 + αiCi,j) + αiCi,0 = (1 + αi)
∑
j≤i

Ci,j ≤ m ·mi = mi+1

by the induction hypothesis, hence also the individual terms in this sum are bounded by mi+1 ≤
mp < 2n. Thus, matching up the terms in (67) gives (66) for i+ 1, hence also (65).
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If we also define Ci,j = 0 for j < 0 or j > i for notational convenience, (66) gives the

recurrence

C0,0 = 1,

Ci+1,j ≡ Ci,j−1 − aiCi,j (mod m)

for all j and 0 ≤ i < p, which amounts to saying that
∑

j Ci,jx
j is the polynomial

∏
j<i(x−aj);

formally, for any u < m, we can prove

(68)
∏
j<i

(u− aj) ≡
∑
j≤i

Ci,ju
j (mod m)

by induction on i ≤ p.
We now wish to formalize the symmetry property fp(x) ≡ fp(ax) (or equivalently, fp(x) ≡

fp(a
−1x)), which will imply that most coefficients of fp vanish. To this end, we claim that Ci,j

satisfies the recurrence

(69) Ci+1,j ≡ ai−j+1Ci,j−1 − ai−jCi,j

for all j and 0 ≤ i < p, which expresses the identity of polynomials∏
j≤i

(x− aj) ≡ ai(x− 1)
∏
j<i

(a−1x− aj) (mod m).

Since (69) holds trivially for j < 0 or j > i + 1, and the cases j = 0 and j = i + 1 amount to

the identities Ci+1,0 ≡ −aiCi,0 and Ci+1,i+1 ≡ 1 ≡ Ci,i, it suffices to prove by induction on i

that (69) holds for all 0 < j ≤ i. For i = 0, this statement is vacuous. Assuming it holds for i,

we prove it for i+ 1 as follows:

Ci+2,j ≡ Ci+1,j−1 − ai+1Ci+1,j

≡ (ai−j+2Ci,j−2 − ai−j+1Ci,j−1)− ai+1(ai−j+1Ci,j−1 − ai−jCi,j)
≡ ai−j+2Ci,j−2 − (ai−j+1 + a2i−j+2)Ci,j−1 + a2i−j+1Ci,j

≡ ai−j+2(Ci,j−2 − aiCi,j−1)− ai−j+1(Ci,j−1 − aiCi,j)
≡ ai−j+2Ci+1,j−1 − ai−j+1Ci+1,j .

Applying (69) with i = p− 1, we obtain

Cp,j ≡ ap−jCp−1,j−1 − ap−j−1Cp−1,j
≡ a−j(Cp−1,j−1 − ap−1Cp−1,j)
≡ a−jCp,j ,

which implies

Cp,j ≡ 0
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for all 0 < j < p. We also have Cp,p = 1, and then (68) for i = p and u = 1 gives

0 ≡
∑
j≤p

Cp,j ≡ 1 + Cp,0,

thus Cp,0 ≡ −1; that is, fp(x) ≡ xp − 1. Then, assuming bp ≡ 1, (68) for u = b gives∏
j<p

(b− aj) ≡ bp − 1 ≡ 0,

whence b ≡ aj for some j < p. 2

The proof of (ii) → (i) in Proposition 8.1 does not quite require the cyclicity of (Z/mZ)×.

Recalling that (apart from pow) we have Tot∗imul

[
O
(
|m|
)
,−
]
, it would be enough to find

a (ΣB
0 (card)-definable) set X ⊆ [1,m − 1] of cardinality O

(
|m|
)

such that every element

of (Z/mZ)× can be written as
∏
y∈Y y mod m for some Y ⊆ X; in particular, such an X can be

constructed if we can find a set G of generators of (Z/mZ)× such that
∑

a∈G|om(a)| = O
(
|m|
)
.

Ignoring issues of definability, the structure theorem for finite abelian groups (stating that

any such group is the product of cyclic groups of prime power orders) ensures that such a

generating set exists in the real world for every finite abelian group, obviating the need for a

condition like (iii). The structure theorem for finite abelian groups was proved in [12] in the

theory S1
2+WPHP(Σb

1), which, in our present setup, is a fragment of V 0+Ω1; unfortunately, the

Ω1 is needed in the argument not just to prove WPHP (which we have in VTC 0 anyway), but

also to quantify over subsets of (Z/mZ)× of cardinality O
(
|m|
)
, and thus of bit-size O

(
|m|2

)
.

As such, we do not know how to make the proof work in VTC 0.

However, a key insight is that we can smoothly combine this approach with a (iii)-like

condition. Namely, assume that for a given m, we know (iii) to hold for p < x. Then the

argument in (iii) → (ii) ensures that (Z/mZ)× has a cyclic subgroup that includes the p-

torsion components of (Z/mZ)× for all p < x, thus, when looking for other generators as in the

structure theorem, we may assume their orders are powers of primes p ≥ x. In particular, this

restricts the number of generators to about |m|/|x|, reducing the bit-size of the generating set

to O
(
|m|2/|x|

)
.

We will show below (Lemma 8.5) how to make this idea formal, and use it to break the

circular argument in Proposition 8.1: by paying attention to how large numbers are needed in

each step, we will see that if we assume (iii) to hold up to x, and go around the circle, we end

up with (iii) holding up to something larger than x, setting the stage for a coup de grâce by

induction.

Definition 8.2 Let Cyc[z, x] denote condition (iii) in Proposition 8.1 restricted to m ≤ z and

p < x. Notice that Cyc is a ΣB
0 formula.

Lemma 8.3 VTC 0 proves IMUL
[
x2|z|

]
→ Cyc[z, x].

Proof: The main instance of IMUL used in the proof of (i) → (iii) in Proposition 8.1 was∏
j<p(2

n+αj), where n = p|m|, thus
∑

j<p|2n+αj | = p(n+1) ≤ (p+1)2|m| ≤ x2|z|. Moreover,

we need products of length p modulo m in (68), simulated with IMUL followed by division by m

(using pow); these instances have size p|m| ≤ x|z|. 2
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Lemma 8.4 VTC 0 proves Tot∗imul[−, x3]→ IMUL[x].

Proof: We need to examine the usage of imul in Section 5. For Subsection 5.1, the reader can

easily verify that as we already announced at the beginning of 5.1, the proof of each result in

Section 5.1 uses only instances of imul modulo primes that actually appear in the statement of

the result (generally ~m, as well as the various ~a and ~b); the only place where we introduce a new

auxiliary prime p to work modulo p is in Lemma 5.13, where p = 2, and we can do products

modulo 2 already in V 0.

As for Subsection 5.2, all the results up to Corollary 5.24 need only instances of imul modulo

~m as given in the statements, and modulo the primes ~a introduced in Definition 5.19. Finally,

the proof of Theorem 5.25 that we are actually interested in uses imul modulo ~m as introduced

in the proof, and modulo the corresponding primes ~a from Definition 5.19 in order to apply the

preceding results.

In order to estimate ~m and ~a, let
∑

i<n|Xi| ≤ x. Since IMUL[x] holds for standard x, we

may assume x is nonstandard to simplify the bounds. The only requirement on ~m was that

~m ⊥ 2 and (56). Now, in view of |2| = 2, Theorem 3.2 ensures that it suffices to take for ~m

all odd primes up to (x + 2)|x + 2|17 = O
(
x |x|17

)
. Going back to Definition 5.19, we have

s = O(x); we claim that in order to find ~a satisfying the requirements, it suffices to take the list

of all primes below t = O
(
s2|s|17

)
, omit 2 and ~m, and split it into sublists ~au, u < s, of minimal

length that satisfy (48). Since the individual primes on the list have length O
(
|s|
)
, this will

make ∑
j<l

(
|au,j | − 1

)
≤ 2s+O

(
|s|
)

for each u < s, while

|2| − 1 +
∑
i<k

(
|mi| − 1

)
≤ s,

thus there will be enough primes available as long as∑
p≤t

(
|p| − 1

)
≥ 2s2 +O

(
s |s|

)
,

and Theorem 3.2 guarantees that a suitable t = O
(
s2|s|17

)
= O

(
x2|x|17

)
will satisfy this. For

x large enough, this makes t < x3. 2

Lemma 8.5 For any polynomial p, VTC 0 proves Cyc[z, x]→ Tot∗imul

[
−,min

{
z, p(x, |z|)

}]
.

Proof: Consider a prime m ≤ z such that |m| = O
(
|x| + ||z||

)
. As in the proof of (iii) → (ii)

in Proposition 8.1, let g be an element of (Z/mZ)× of maximal order t = om(g) < m. By

Lemma 7.6, om(a) | t for all a ∈ (Z/mZ)×. We will expand {g} to a not-too-large generating

set by mimicking the proof of [12, Thm. 3.12].

Let us say that 〈gi : i < k〉 is a good independent sequence with exponents 〈ti : i < k〉 if∑
i<k|ti| ≤ 2|m|, each ti is a prime power peii where pi ≥ x, gtii ≡ 1 (mod m), and

(70) ∀r < t ∀~r < ~t
(
gr
∏
i<k

grii ≡ 1 (mod m) =⇒ 〈r, ~r〉 = ~0
)
.
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Here, the product modulo m can be evaluated using Tot∗pow and Tot∗imul

[
|m|,−

]
, and the con-

ditions on ~t ensure that ~r can be encoded by a bounded first-order quantifier (using the efficient

sequence encoding scheme), hence the definition of good independent sequences is ΣB
0 .

If ~g is a good independent sequence with exponents ~t, then ti = om(gi) < m for each i < k,

and the mapping

ϕ~g(r, ~r) = gr
∏
i<k

gtii rem m (r < t, ~r < ~t)

is a group homomorphism Ct×
∏
i<k Cti → (Z/mZ)× with a trivial kernel; as such, it is injective.

Moreover, ϕ~g is ΣB
0 -definable, hence it exists as a set. Since ti ≥ x, we have k ≤ 2|m|/|x|; it

follows that the sequence ~g can be encoded using O
(
k |m|

)
= O

(
|m|2/|x|

)
= O

(
|z|
)

bits, that

is, by a bounded first-order variable. Consequently, we can use bounded ΣB
0 -maximization to

find a good independent sequence ~g such that
∑

i<k|ti| is maximal possible.

We claim that ϕ~g is surjective. Assume for contradiction that b /∈ im(ϕ~g). Since im(ϕ~g) is

ΣB
0 -definable, there exists a least r > 0 such that br ∈ im(ϕ~g). We have r > 1, thus r has a

prime divisor p. By replacing b with br/p if necessary, we may assume r = p. Thus, we can

write

bp = gs
∏
i<k

gsii

for some s < t and ~s < ~t. We define s′ < t, ~s′ < ~t, and b′ = gs
′∏

i g
s′i
i as follows:

• Since p | om(b) | t, we have g
t
p
s∏

i g
t
p
si

i ≡ 1, thus t | tps by independence, that is, p | s.
We put s′ = s/p so that gs

′p = gs.

• For any i < k such that pi 6= p, let s′i = sip
−1 rem ti, so that g

s′ip
i ≡ gsii .

• For any i < k such that pi = p and p | si, we put s′i = si/p so that g
s′ip
i = gsii .

• Otherwise, s′i = 0.

Since b′ = ϕ~g(s
′, ~s′), bb′−1 rem m is still outside im(ϕ~g), while (bb′−1)p is inside. Thus, we may

replace b with bb′−1; this ensures s = 0, and

(71) si 6= 0 =⇒ p = pi ∧ p - si

for each i < k. We distinguish two cases.

If ~s = ~0, then bp ≡ 1. We claim that 〈~g, b〉 is a good independent sequence with exponents

〈~t, p〉, contradicting the maximality of
∑

i|ti|. Since p | t, the elements b and a = gt/p have both

order p, while b cannot be a power of a as it is outside im(ϕ~g); thus, Cyc[z, x] implies p ≥ x.

The independence of ~g together with bi /∈ im(ϕ~g) for 0 < i < p implies that 〈~g, b〉 satisfies (70).

This means that ϕ~g,b is injective, hence pt
∏
i ti (which exists by Theorem 2.2) is less than m

by PHP ; in particular,

|p|+
∑
i<k

|ti| ≤ 2
(
|p| − 1 +

∑
i<k

(
|ti| − 1

))
< 2|m|,
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as required by the definition of a good independent sequence.

If ~s 6= ~0, let i0 < k be such that si0 6= 0 (thus pi0 = p and p - si0 by (71)), and such that

ei0 is maximal possible among these. Without loss of generality, assume i0 = 0. We claim

that 〈b, g1, . . . , gk−1〉 is a good independent sequence with exponents 〈pt0, t1, . . . , tk−1〉, again

contradicting the maximality of ~g. The maximality of e0 along with (71) implies bpt0 ≡ 1.

What remains to show is that the sequence satisfies (70); the bound |pt0| +
∑

i≥1|ti| ≤ 2|m|
then follows from PHP as above. So, assume that

(72) grbr
′
0

k−1∏
i=1

grii ≡ 1,

where r < t, r′0 < pt0, and ri < ti for 0 < i < k. By taking the pth power, this implies

gprg
r′0s0
0

k−1∏
i=1

g
pri+r

′
0si

i ≡ 1,

hence in particular p | t0 | r′0 by the independence of ~g, as p - s0. Thus, writing r0 = r′0/p, (72)

can be written as

grgr0s00

k−1∏
i=1

gri+r0sii ≡ 1.

Then the independence of ~g gives r = 0, r0 = 0 (using p - s0 and r0 < t0), and then ri = 0 for

all 0 < i < k, as required.

This finishes the proof that ϕ~g is a bijection, thus {g} ∪ {gi : i < k} generates (Z/mZ)×. In

order to save us from the trouble of dealing with exponents, let

X =
{
g2

j
: j < |t|

}
∪
{
g2

j

i : i < k, j < |ti|
}

;

then X ⊆ (Z/mZ)× has size card(X) = |t|+
∑

i|ti| = O
(
|m|
)
, and every a ∈ (Z/mZ)× can be

written as a =
∏
Y rem m for some Y ⊆ X. Notice that having fixed X, we can represent Y

by card(X) bits, and therefore by a single small number; in particular, we can ΣB
0 -define the

Ya with the least code such that a ≡
∏
Ya. Then we can compute iterated products modulo m

using Tot∗imul

[
O
(
|m|
)
,−
]

and Tot∗pow by

∏
i<n

ai ≡


0, if ai ≡ 0 for some i < n,∏
x∈X

xcard{i<n:x∈Yai}, otherwise.

This definition provably satisfies the recurrence∏
i<0

ai ≡ 1,∏
i<n+1

ai ≡ an
∏
i<n

ai.

We have proved Tot imul[−, w] for w = min
{
z, p(x, |z|)

}
. In order to show Tot∗imul[−, w], we

have to deal with a sequence of iterated products modulo different m ≤ w in parallel. As usual,
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it suffices to show that given m, we can ΣB
0 -define a suitable set X as above. Now, we have

already seen that a good independent sequence ~g for m can be encoded using O
(
|z|
)

bits; the

corresponding exponents ~t are ΣB
0 -definable from ~g as ti = om(gi), thus we can ΣB

0 -define the

maximum of
∑

i|ti| among such sequences, and then ΣB
0 -define a good independent sequence

with least code that achieves the maximum. Then we can define X from ~g. 2

We note that the argument in Lemma 8.5 actually shows Cyc[z, x]→ Tot∗imul[−, w] whenever

w ≤ z and |w|2 ≤ |x| |y| for some y. However, we will only need the formulation given in

Lemma 8.5 to proceed, while in the end, we will obtain full Tot∗imul anyway.

We are now ready to finish the proof of the main result of this paper.

Theorem 8.6 VTC 0 proves IMUL.

Proof: For any fixed z, we can prove

(73) x6|z|3 ≤ z → Cyc[z, x]

by induction on x: Cyc[z, 0] holds vacuously, and VTC 0 proves

Cyc[z, x] ∧ (x+ 1)6|z|3 ≤ z → Tot∗imul

[
−, (x+ 1)6|z|3

]
→ IMUL

[
(x+ 1)2|z|

]
→ Cyc[z, x+ 1]

by Lemmas 8.3, 8.4, and 8.5.

This implies IMUL[x] for all x: taking z such that z ≥ x6|z|3, we have Cyc[z, x] by (73),

thus Tot∗imul[x
3] by Lemma 8.5, and IMUL[x] by Lemma 8.4. 2

Corollary 8.7 VTC 0 proves that (Z/mZ)× is cyclic for all primes m. 2

Corollary 8.8 VTC 0 proves DIV : for every X > 0 and Y , there are Q and R < X such that

Y = QX +R. 2

By results of Jeřábek [13], we obtain the following consequence of Theorem 8.6 relating

VTC 0 to Buss’s single-sorted theories of arithmetic (see [13] for background):

Corollary 8.9 VTC 0 proves the RSUV translations of Σb
0-IND and Σb

0-MIN . 2

Using the RSUV -isomorphism of VTC 0 to ∆b
1-CR, we can formulate the results in terms of

the theories of Johannsen and Pollett:

Corollary 8.10 ∆b
1-CR and C0

2 prove Σb
0-IND, Σb

0-MIN , and (a suitable single-sorted formu-

lation of ) IMUL. Moreover, C0
2 [div ] is an extension of C0

2 by a definition, and therefore a

conservative extension. 2

We stress that in Corollary 8.10, Σb
0 refers to sharply bounded formulas in Buss’s original

language, not in the expanded language employed in [15, 16]. (In the latter language, Σb
0-IND is

equivalent to PV1, and Σb
0-MIN to T 1

2 , which is strictly stronger than C0
2 unless the polynomial

hierarchy collapses to TC0, provably in the theory.)
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9 Tying up loose ends

Our arguments leading to the proof of Theorem 8.6 involved a few side results that might be

interesting in their own right, but we only proved them in a minimal form sufficient to carry

out the main argument. In this section, we polish them to more useful general results.

9.1 Chinese remainder reconstruction

The first side-result concerns the CRR reconstruction procedure. The statement of Theo-

rem 5.23 gives only a loose bound on Rec(~m; ~x), and involves unnecessary constraints on ~m.

These restrictions carry over to Corollary 5.24, whose statement also imposes an unnecessary

bound on X.

Once we prove IMUL and DIV in VTC 0, it is not particularly difficult to improve the

bounds in Theorem 5.23 and Corollary 5.24 to X <
∏
i<kmi, and to generalize Rec(~m; ~x) so

that it also applies to mi = 2. Alternatively, we may abandon Definition 5.19 altogether in

favour of a more obvious algorithm (note that we do not require ~m to consist of primes):

Definition 9.1 (In VTC 0.) Given a sequence ~m of pairwise coprime nonzero numbers, and

~x < ~m, let

Rec+(~m; ~x) =
(∑
i<k

xihi
∏
j 6=i

mj

)
rem

∏
i<k

mi,

where

hi =
∏
j 6=i

m−1j rem mi.

Theorem 9.2 VTC 0 proves the following for any pairwise coprime sequence ~m.

(i) For every ~x < ~m, Rec+(~m; ~x) is the unique X <
∏
imi such that ~x = X rem ~m.

(ii) For every X, Rec+(~m;X rem ~m) = X rem
∏
imi.

Proof:

(i): Put M =
∏
i<kmi. It is easy to show by induction on k that if X is divisible by mi for

each i < k, then it is divisible by M . Thus, also X ≡ X ′ (mod ~m) implies X ≡ X ′ (mod M).

This shows uniqueness. We have Rec+(~m; ~x) < M by definition, and

hi
∏
j 6=i

mj ≡

{
1, i′ = i

0, i′ 6= i

}
(mod mi′)

implies Rec+(~m; ~x) ≡ xi (mod mi).

(ii): By definition, X ′ = X rem M satisfies X ′ < M and X ≡ X ′ (mod ~m), thus X ′ =

Rec+(~m;X rem ~m) by (i). 2

Remark 9.3 It is possible to generalize CRR reconstruction further to arbitrary sequences ~m.

First, VTC 0 can define M = lcm(~m) as
∏
j<l p

ej
j , where ~p is a list collecting all prime factors

of ~m, and ej = maxi vpj (mi). Then, VTC 0 can prove that for any ~x < ~m which satisfies xi ≡ xi′
(mod gcd(mi,mi′)) for all i < i′ < k, there exists a unique X < M such that ~x = X rem ~m by

applying Theorem 9.2 modulo 〈pejj : j < l〉. We leave the details to the reader.
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9.2 Modular powering

In Theorem 7.3, we proved that V 0 + WPHP can do powering modulo (small) primes. We

will generalize it in two ways: first, we can formalize powering modulo arbitrary small nonzero

numbers, and second, we will indicate how to formulate the result purely in the single-sorted

theory I∆0 + WPHP(∆0).

Theorem 9.4 V 0 +WPHP proves that for every m, a < m, and r, there exists an elementwise

unique sequence 〈ai : i ≤ r〉 such that ai < m, a0 ≡ 1 (mod m), and ai+1 ≡ aai (mod m) for

each i.

Proof: Uniqueness follows by induction on i.

For existence, assume first that m = pe is a prime power. Then we can define powering

in (Z/mZ)× in the same way as in Section 7: as already noted there, the basic method applies to

arbitrary abelian groups (provided we can do products of logarithmic length, which we can here

as the proof of Tot∗imul

[
|w|,−

]
in Corollary 6.5 works modulo arbitrary m); we only need to be a

bit more careful with applications of WPHP , as (Z/mZ)× no longer consists of the entire interval

[1,m− 1]. However, we may construct (as a set) a bijection between (Z/mZ)× and
[
0, ϕ(m)

)
,

where ϕ(m) = (p− 1)pe−1: e.g., we can map x < ϕ(m) to pbx/(p− 1)c+
(
x rem (p− 1)

)
+ 1 ∈

(Z/mZ)×. With this in mind, we can prove Lemma 7.1 (for x coprime to m) using an instance

of PHP
2ϕ(m)
ϕ(m) . The proof of Lemma 7.2 then works unchanged (making sure the xi are coprime

to m), and so does the proof of Theorem 7.3 as long as a is coprime to m. For general a, we

write a ≡ puã with u ≤ e and ã ∈ (Z/mZ)×, and we define

ai ≡

{
0, ui ≥ e,
puiãi, otherwise.

If m is not a prime power, we find its prime factorization m =
∏
j<k p

ej
j . We apply the

construction above in parallel to define 〈ai,j : i ≤ r, j < k〉 where ai,j = ai rem p
ej
j , and then we

define ai rem m as the unique ai < m such that ai ≡ ai,j (mod p
ej
j ) for each j < k. (This form

of the Chinese remainder theorem is provable already in V 0, cf. D’Aquino [8].) 2

In order to get the result already in I∆0+WPHP(∆0), one way would be to chase the proofs

in Sections 6 and 7 as well as of Theorem 9.4, and make sure that we can formulate everything

without explicit usage of second-order objects, using only ∆0-definable “classes”. However, it

is perhaps less work to infer it directly from Theorem 9.4 using the witnessing theorem for V 0

and the conservativity of V 0 over I∆0:

Proposition 9.5 If V 0 ` ∀x ∃X ϕ(x,X), where ϕ ∈ ΣB
0 , there exists a polynomial p and a

∆0 formula θ(x, u) such that

(74) I∆0 ` ∀xϕ
(
x, {u < p(x) : θ(x, u)}

)
.

Here, ϕ
(
x, {u < p(x) : θ(x, u)}

)
denotes the ∆0 formula obtained from ϕ(x,X) by replacing

all atomic subformulas t ∈ X with t < p(x) ∧ θ(x, t), and atomic subformulas α
(
|X|, . . .

)
with

∃z ≤ p(x)
(
α(z, . . .) ∧ ∀w ≤ p(x)

(
z ≤ w ↔ ∀u < p(x) (θ(x, u)→ u < w)

))
.

The same holds for V 0+WPHP and I∆0+WPHP(∆0) in place of V 0 and I∆0, respectively.
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Proof: By [7, Thm. V.5.1] (which is basically Herbrand’s theorem for V 0), there is an L
V 0

function symbol F such that V 0 ` ∀xϕ(F (x)), and F is ΣB
0 bit-definable by the Claim in the

proof of [7, V.6.5], i.e., V 0 ` F (x) = {u < p(x) : θ(x, u)} for some term p and θ ∈ ΣB
0 . Thus,

(74) by the conservativity of V 0 over V 0 and over I∆0.

In the presence of WPHP , we have V 0 ` ∀x ∃X ∃n
(
ϕ(x,X)∨¬PHP2n

n (X)
)
, thus there is an

L
V 0 function F (x) = {u < p(x) : θ(x, u)} such that V 0 ` ∀x ∃n

(
ϕ(x, F (x)) ∨ ¬PHP2n

n (F (x))
)

as above. Then I∆0 ` ∀x ∃n
(
ϕ(x, {u < p(x) : θ(x, u)}) ∨ ¬PHP2n

n ({u < p(x) : θ(x, u)})
)

by

conservativity, hence I∆0 + WPHP(∆0) proves ∀xϕ
(
x, {u < p(x) : θ(x, u)}

)
. 2

Alternatively, Proposition 9.5 has an easy direct model-theoretic proof as in [7, L. V.1.10].

Corollary 9.6 There exists a ∆0 formula π(a, r,m, b) such that I∆0 + WPHP(∆0) proves

π(a, r,m, b)→ b < m,

m 6= 0→ ∃!b π(a, r,m, b),

m 6= 0→ π(a, 0,m, 1 rem m),

π(a, r,m, b)→ π(a, r + 1,m, ab rem m).

Proof: By applying Proposition 9.5 to Theorem 9.4, we obtain a ∆0 formula π′(a, r,m, i) that,

provably in I∆0 +WPHP(∆0), defines the bit-graph of a function 〈a, r,m〉 7→ ar+2|m|A, where

A is a code of a sequence 〈ai : i ≤ r〉 satisfying a0 = 1 rem m and ai+1 = aai rem m. We can

then define π(a, r,m, b) as b < m ∧ ∀i < |m|
(
bit(b, i) = 1↔ π′(a, r,m, i)

)
. 2

Remark 9.7 Using ∆0-induction, it is easy to show in I∆0 + WPHP(∆0) that the formula π

in Corollary 9.6 is unique up to provable equivalence, and that it satisfies the Tarski high-school

identities ar+s ≡ aras, (ab)r ≡ arbr, and ars ≡ (ar)s modulo m.

Since the statements in Corollary 6.5 are ∀Σ1
1, they can be translated to I∆0 in a similar

way. Not all of these translations are genuinely interesting, though. In particular, functions with

non-small integers as inputs or outputs are rather awkward to formulate, using ∆0 formulas

describing individual bits of the numbers, etc. On the other hand, when restricted to small

numbers, the translation of IMUL
[
|w|c

]
(actually, the result is small only if c = 1, barring

uninteresting products with lots of 1s) to I∆0 is already known from [4]. Likewise, division of

small numbers is trivial. Concerning imul, if 〈ai : i < n〉 is given in I∆0 explicitly by a sequence,

we can again do
∏
i<n ai rem m by the results of [4] as we can just compute

∏
i<n ai and reduce

it modulo m, but the result is new in the more general case that 〈ai : i < n〉 is only given by a

∆0-definable function:

Corollary 9.8 For every ∆0 formula ϕ(~z, n, a) and every constant c, there is a ∆0 formula

π(~z, n,m,w, y) such that I∆0 proves: for all m > 0, w, and ~z, if ∀n < |w|c ∃!aϕ(~z, n, a), then

∀n ≤ |w|c ∃!y π(~z, n,m,w, y), and for all n < |w|c and all y, a,

π(~z, 0,m,w, 1 rem m),

π(~z, n,m,w, y) ∧ ϕ(~z, n, a)→ π(~z, n+ 1,m,w, ya rem m).
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(That is, if ϕ with parameters ~z defines a function f(n), then π defines a function g(n,m)

satisfying g(0,m) ≡ 1 (mod m) and g(n + 1,m) ≡ g(n,m)f(n,m) (mod m) for all n < |w|c.)
2

10 Conclusion

We proved that VTC 0 can formalize the Hesse, Allender, and Barrington TC0 algorithms for

integer division and iterated multiplication. While this result is hopefully interesting in its

own right, on a broader note it contributes to our understanding of VTC 0 as a robust and

surprisingly powerful theory, capable of adequate formalization of common TC0-computable

predicates and functions and their fundamental properties. In particular, it makes a strong case

that VTC 0 is indeed the right theory corresponding to TC0; previous results of [13] suggested

that VTC 0 + IMUL might be another viable choice, perhaps more suitable than VTC 0 itself,

but results of the present paper render this distinction moot.

A possible area for further development of VTC 0 is to try and see what it can prove about

approximations of analytic functions such as exp, log, trigonometric and inverse trigonometric

functions. In view of bounds on primes in Section 3 and in Nguyen [20], another intriguing

question is if VTC 0 can prove the prime number theorem.

On a different note, our result on formalization of a ∆0-definition of modular exponentiation

essentially relied on several instances of the weak pigeonhole principle, but it is not clear to

what extent is this really necessary. We leave it as an open problem if we can we construct

a well-behaved modular exponentiation function in a substantially weaker theory than I∆0 +

WPHP(∆0), or even in I∆0 itself.
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