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Abstract

In this paper we study the interaction of a small rigid body in a viscous compressible fluid. The system
occupies a bounded three dimentional domain. The object it allowed to freely move and its dynamics follows
the Newton’s laws. We show that as the size of the object converges to zero the system fluid plus rigid body
converges to the compressible Navier-Stokes system under some mild lower bound on the mass and the inertia
momentum. It is a first result of homogenization in the case of fluid-structure interaction in the compressible
situation. As a corollary we slightly improved the result on the influence of a vanishing obstacle in a compressible
fluid for v > 6.

1 Introduction

In this work we study the interaction of a small rigid body with a compressible viscous fluid. The object is allowed
to freely move and its dynamic follows the Newton’s laws.

These types of problems have both mathematical and physical interests and have been investigated for fluids
with different properties in the last years. The first results in this direction studied the case where the rigid body
cannot move. This problem takes the name of obstacle problem and the shrinking limit -called homogenization-
has been widely studied in the case of viscous fluids. In [29] the author deduced the Darcy’s law from the
homogenization of the Stokes equations in a particular regime. Later Allaire understood that the homogenization
process for both Stokes and stationary Navier-Stokes systems depends on the size of the holes and deduce the
Darcy’s law, the Brinkman’s law and the no-influence of the holes in three different settings, see [1] and [2]. Later
on these results were extended for some regimes to the case of unsteady fluid, see [27, 9, 17]. Moreover, in [16],
[20] where the articles deal with an inviscid, incompressible fluid and the last one with a viscous one.

These results were then extended to the case of a rigid body which is allowed to move. In particular in [12] and
[13], they study the problem in the case the fluid is two dimentional, non-viscous and incompressible and in [21],
[14] and [15] where they consider the case of viscous incompressible fluid in both two and three dimensions.

For compressible viscous fluid, again when a rigid body is not moving, the homogenization for perforate domains
was studied in [26], [8], [7] and [23]. In the first two papers the size of the holes and the mutual distance were com-
parable and a Darcy’s law was derived. Recently this result was extended in [19]. In the last two works the authors
consider the case of tiny holes and they recover respectively the stationary and non-stationary compressible Navier
Stokes system. An extension of the homogenization for perforate domain in the case of steady full compressible
system where authors again recover the full system, see [24]. Let us mention that homogenization problem in the
compressible case was proved only in three dimensional case.

In this paper we consider the case of a shrinking object in a compressible viscous barotropic fluid with pressure
p(p) = ap?, a is a positive constant, for simplicity we consider ¢ = 1, an assumption on the constant v will be
precised later. In particular we show that in the limit the presence of the small object does not influence the
dynamics. This is a first result in the case of moving shrinking object in the compressible barotropic fluid.

The idea of the proof is to use a cut off function around the rigid body and to pass to the limit in the weak
formulation of the equations. In three dimension the gradient of the cut-off is bounded in LP for 1 < p < 3, so we
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need that the pressure is LP, for p > 3~/2 which gives the restriction v > 6, to pass to the limit in the pressure
term. Let us mention that the existence of weak solution is valid for v > 3/2.
We impose a second restriction on the mass and the inertia matrix of the object of size . This condition allows
us to have an a priori estimate of the velocity of the solid from the energy estimate. The condition reads
3v—4
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This condition will naturally appear when we prove the improved regularity of the pressure which is the main
difficulty and difference with respect to the case of incompressible fluids where no restrictions are need on the mass
and the inertia matriz of the object.

In the next section we introduce the problem at a mathematical level.

1.1 Formulation of problem

In this paper we study the interaction between a compressible viscous fluid and a small rigid body which is allowed
to freely move. In particular we will show that as the size of the object tends to zero the presence of the rigid body
is negligible. Let start by recalling the equations satisfied by the fluid plus rigid body system.

Opr +div(prur) =0 for x € F(t),
O(prur) +div(pru @ ur) — divS(Vur) + Vp(pr) =0 for z € F(t),
ur =0 for x € 09,
UF = us for z € 9S(¢),

ml'(t) = — y(is(t) (S(Vur) — p(pr)Dnds, (1)[equ:CNs:RB]

T (t)oww(t) = T (t)w(t) x w(t) — j{ (z = (1)) x (S(Vur) — p(pF)I) nds,
85(t)

(prur)(0) = qro, pr(0) =pro for x € Fo,
K(O) = fo, W(O) = Wwp-

In the above system S(t) C € is the position of the solid at time ¢ and F(t) = Q \ S(¢) is the part of the domain
occupied by the fluid. The scalar quantity pr describes the pressure of the fluid. The vector field ur is the velocity
of the fluid. The 3 x 3 matrix

Vur + Vug

5 + A+ p)tr(Vur)l — pkl

S(Vur) = p(pr)l = pD(ur) + (A + p)div (uzp)l — pxl = p
is the stress tensor where p > 0 is the viscous coefficient and 3\ + 2u > 0, the coefficient v > 6. The vector h(t)
is the position of the center of mass of the solid, the velocity of the center of mass h'(t) = ¢, the angular velocity is
denoted by w and us = £+ w x (z — h(t)) is the solid velocity. The mass of the solid m, the position of the center
of mass h(t) and the inertia matrix of the solid S(t) are defined as

m = fS t) pPs d.’ﬂ,
h(t) = o fg(t) ps © d,
T(t) =[5 psle = h(E)PL— (z — h(t)) ® (z — h(t))] d=.

(by ps > 0 we denote the density of the rigid body.) The normal vector exiting from the fluid domain is denoted
by n. Finally Fo = Q\ So, ¢r,0, pr,0, o and wy are the initial data.

The goal of this paper is to show that as the size of the object S tends to zero, the associated weak solutions
converge up to subsequence in a weak sense to a couple (p, u) that satisfies the compressible Navier Stokes equations
in all 2, which read as

Op + div (pu) =0 for x € Q,



O (pu) + div (pu ® u) — divS(Vu) + Vp(p) =0 for x € Q, (2)[equ:cns|
u=0 for x € 0N2.

The paper is structured as follow. In the next section we recall an appropriate definitions of weak solutions
associated respectivelly with the systems (1) and (2). In the next one we state the main result and we discuss the
hypothesis. Then we introduce a Bogovskii operator that follows the rigid body, we show the pressure estimates
which is the central part of the article and we conclude by briefly explaining how to pass to the limit in a weak
formulation.

1.2 Definition of weak solutions

We start by recalling the definition of variational solution for the system (1) from [6], where an existence result was
proven. Actually we decide to slightly change this definition by incorporating the compatibility condition between
the rigid motion and the velocity field directly in the spaces as in [11], [3], [18].

Let Q be an open, bounded, connected subset of R? with regular boundary. The unknowns of the problem
are three namely S(t) C Q the position of the solid at time ¢, p the density which describes the density of the
fluid in F(t), of the rigid body in S(¢) and it is extended by zero in R3 \  and u the velocity field that has to be
compatible with the solid velocity in S(¢).

Regarding the pressure law we consider the isentropic pressure-density p(p) = p? and v > 3/2. Moreover we
denote by P(p) = p?/(y — 1). For the viscosity coefficients we assume p > 0 and 3\ 4+ 2p > 0. Finally we denote
the space of the rigid vector field by R = {w : R® — R? such that w(z) = [ + w x x for some [, w € R?*}. In the
following for a measurable set A we say that w : A — R? is a rigid vector field on A if there exists 1 € R such that
w = W|4 almost everywhere and with an abuse of notation we write w € R.

The initial data are the position Sy C 2 of the solid where we assume Sy to be open, connected, simply
connected, path-connected, measurable, with non empty interior and with Lipschitz boundary. The initial density
po > 0, which is strictly positive on Sy. Finally we prescribed the initial momentum gy such that g is a.e. identically
zero on {z € w such that py = 0} and the restriction of gg/pg on Sp is a rigid velocity field on Sp.

EF:CNS:RB) Definition 1. Let (S, po, qo) an initial data such that P(po) € L'(Q) and |qo|?/po € LY(Q). Then a triple (S, p, u)
is a weak solution of (1) with initial datum (S, po, go) for some T > 0 if

o S(t) C Q is a bounded domain of R® for allt € [0,T) such that

XS(taz) - ]lS(t)(‘T) € LOO((()?T) X Q)

p € L>=(0,T; LY(Q)) such that p > 0 and P(p) € L>=(0,T; L(Q)).

e ueV={ue L*0,T; W, %)) such that vls) € R}

(S, p,u) satisfy the transport equation dyp + div (pu) = 0 in both a distributional sense in [0,T) x R® and in
a renormalized sense where we extend p and u by zero in the exterior of [0,T] x Q.

The transport of S by the rigid vector field us holds:

T
/ / 06 +us-Vé+ [ 6(0,) =0,
0 JS(t) So

for any ¢ € C°(0,T) x R?).

e The momentum equation is satisfied in the weak sense

T T
/qmp—&-/ /(pu)-atgo—k[pu@u]:D<p+pdivg0:/ /Su:Dw
Q 0 Jo 0o Jo



for any ¢ € W with

W= {(p € C([0,T) x Q) such that for some S,, open neighbourhood of U {t} x 8(t)

t€[0,T]
it holds y|s,, € COO([O,T];R)}
e For a.e. T €[0,T] the following energy equality holds
1 T 1 2
[ 3o+ Plorydr+ [ [ aup e asde < [ 004 pge (3)emerasmioms
02 o Ja Q2 po

Remark 1. Let us mention in work [6] the motion of the rigid body is described through a family of isometries of
R3 by
nlt,s]: R = R3 S(t) = nlt,s](S(s)) for0<s<t<T,
or equivalently )
nlt, s| = nlt, 0] (n[s,0]) ",
where the mapping n[t,0] satisfies
nt, 0](z) = nlt](z) = X(t) + O@t)z, O(t) € SO(3).

We say that the velocity u is compatible with the family {S,n}, if the function t — n[t](x) is absolutely continuous
on [0,T) for any x € R® and if

<gnm>«mmW@):u@@ for © € 8(t) and a.e. t € (0,T).
In other words if

u(t,r) = us(t,r) = L(t) + Q(t)(x — X (t)) for z € S(t) and a.e. t € (0,T),

where
0 = X0, Q) = (F00) ©@)™

for a.e. t € (0,T). Note that the matriz Q(t) is skew-symmetric, so the term Q(x—X) can be written as w x (x—X)
for a uniquely determined vector w.

In the definition of weak solution it is required that the velocity u is compatible with {S,n} and the functions
nt] : R? — R3 are isometries

Let now recall the definiton of variation solution of the system (2) from [28]. As before we assume that the
initial density pp > 0 and the initial momentum ¢q is such that ¢ is a.e. identically zero on {x € w such that

pPo = 0}

(DEF:CNS) Definition 2. Let (po,qo) be an initial data such that P(po) € L*() and |qo|?/po € L*(Q). Then a couple (p,u)
is a weak solution of (2) with initial datum (po,qo) for some T > 0 if

e p € L%(0,T; LY(Q)) such that p > 0 and P(p) € L>=(0,T; L*(Q)).
o ue L20,T; Wy (Q)).

o (p,u) satisfy the transport equation dyp + div (pu) = 0 in both a distributional sense in [0,T) x R? and in a
renormalized sense where we extend p and u by zero in the exterior of [0,T] x .

e the momentum equation is satisfied in the weak sense

T T
/qo<p+/ /(pu)-atsoﬂpu@u]tDs0+pdiw=/ /SUID%
Q 0 Q 0 Q

for any ¢ € C=([0,T) x Q).



o for a.e. 7 €[0,T] the following energy equality holds
1 9 i 2 . 2 1 ‘QO|2
—plul*(r,.) + P(p(r,.)) dx + p|Du|” + A|divu|® dedt < [ ———— + P(po)dz.
Q2 o Ja a2 po

In the next section we present the main result of the paper.

2 Main result and discussion

The result of this paper read as follow. Let So C ©Q be the position of the initial solid, let Z be such that
So C B1(%) and let Sy = {z such that Z+ (x — Z)/e € So} be a sequence of position of initial solid such that
So,e C 2 and p. > 0 their associated density. In the following we consider the case where the mass and its angular
momentum satisfy the assumptions

3y—4
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£es?
In particular the mass of the object can converge to zero.

Theo:main) Theorem 1. Let v > 6. Let (So.e, po,e,Go,e) be a sequence of initial data such that they satisfy

® pocls,. = Pe and poe|r,. — po in LV(2), where we extend by zero in So ..

® ¢5../poe— q3/po in L'(Q).

Let (Se, pe,us) be solutions of (1) in the sense of Definition 1 associated with the initial data (Soe, Po,esQ0,e)-
Then up to subsequence there exists (p,u) such that

pre—pin Cy(0,T;LY(Q)  and  u. —=wu in L2(0,T; W, 2(Q)).
Moreover the couple (p,u) satisfy (2) with initial data (po,qo) in the sense of Definition 2.

First of all recall that existence of local in time weak solution were proved in [4] and the global existence of
weak solution in [6]. The difficulty of this result is to perform improved estimates of the pressure due to the loss
of an uniform estimates of the velocity of the rigid body. In particular the dynamics of the rigid body in the limit
remains unknown.

Regarding the hypotesis, to show this result we use a cut-off around the solid and to pass to the limit in the
pressure term we need that pr is in L? for ¢ > 3/2v and for this we need the restriction v > 6. Regarding the
mass, for incompressible fluid see [14] and [15] the energy estimates were enought to pass to the limit. Here we
need to show the improved regularity of the pressure and in contrast with the case of the fluid alone, where the less
integrable term was the convective one p.u. ® u., here the worst term is the one coming from the time derivative
and can be bounded by a constant times

57y—60—6
€ 2670 (|le| + elwel),
see Proposition 3. This shows that to have a control of the L7*? for bigger 6, we need an better control on the
solid velicity which is associated throw the energy estimates to a better control on the mass m. and the inertia
matrix J.. For these reasons in our approch appears the theshold
3y—4
’Y )

which is the one to get p. uniformly bounded in L37/2.

Remark 2. It is possible to consider some external forces of the type p.f- + g in the system (1). More precisely
we can add prf+ g in the right hand side of the momentum equation (the second equation of (1)), [spsf+g and
Js(x = h(t)) x (psf + g) on the right hand side of the Newton’s laws associated with respectively the evolution of
the center of mass and the angular rotation (the fifth and the sixth equation of (1)).



Then Theorem 1, Proposition 2 and 8 holds also in the presence of external forces if we assume
fo — f in L? (O,T;LEWG%G(Q)) and  g. — g in L? (O,T;Lg(ﬂ)> .

Note that the gravitation force can be considered, in fact it is enough to choose f. = g the gravitational acceleration.

Let us conclude this section with a Corollary. In the case the rigid body is not allowed to move the study
of its influence as its size tends to zero is called vanishing obstacle problem. With the use of appropriate cut-off
presented in Section 3.3, we are able to show that the presence of the small hole does not affect the dynamics of
the fluid also for v = 6. (In the previous works they restict to the case v > 6). Let us state rigorously the corollary.

Corollary 1. Let v > 6. Let F. = So . and let (po.e, Go,e) be a sequence of initial data such that they satisfy
® poc — po in LY(Q), where we extend by zero in Spc.
® q3</po:—> a3/po in L'(Q).

Let (pe,ue) be solutions of (2) in the domain F. in the sense of Definition 2 associated with the initial data
(po.es90,e). Then up to subsequence there exists (p,u) such that

pe — p in Cp(0,T;LV(Q))  and  ue —= u in L*(0,T; Wy ()).
Moreover the couple (p,u) satisfy (2) with initial data (po,qo) in the sense of Definition 2.

Note that in a similar way with the use of some appropriate cut-off from Section 3.3, it is possible to extend
the homogenisation result from [23] to the case v = 6.

In the remaining we will show Theorem 1. We will start by recalling properties of the so called Bogovskil,
we present the improved estimates for the pressure and finally we show how to pass to the limit in the weak
formulation.

3 Proof of the main theorem

In this section we show Theorem 1. We start by presenting a Bogovskil type operator for time dependent domain.
We prove a priori estimates for the velocity field and the pressure. Finally we show how to pass to the limit in the
weak momentum equation with the help of an appropriate cut-off.

3.1 The Bogovskil operator for time dependent domain

A key point to show the improved pressure estimates is to be able to invert the divergence operator. For domains
with tiny holes this operator was widely studied for example in [7] and [23] where they extended a construction
introduced by Allaire in [1].

The Bogovskil operarator associated with the initial solid position S. is defined as the composition of three
operators an extension operator, a Bogovskii operator associated with a subdomain of €2 and a restriction operator.
In particular we define the extension operator

E L"(R*\ Sp.) — L"(R®)  where &.(f) = f for x € R*\ Sy . and E.(f) = 0 elsewhere.

The Bogovskil operator Bg, associted with the domain Q; as Theorem I11.3.2 of [10]. And finally the restriction
operator

Relu] = neu+ Be[div ((1 — no)u)— < div (u) >s, )]
where n.(z — he(0)) = n((x — heo)/e) with 1 —n € C°(B2(0)) such that 0 <np<land1—n=11in B1(0), B: a
Bogovskil operator, from Theorem II1.3.2 of [10], associated with the domain Ba.(he o) \ Sc,0 and

< divu > 71 divu
v — vu.
$0e 7 [B(0)\ Soe| Js, .



This definition is analogous to the one presented in [23]. In particular the Bogovskii operator reads as
B.=R.oBo& : L"(Q\So.) = Wy (2\ So.e))

The position of the solid evolves in time and its position can be recover by the position of the center of mass h.
and the rotation matrix Q.. We define a time dependent Bogovskii by consider extention and restriction operators
that follow the rigid body, in particular

ELf(t,2)|(x) = EX[f (¢, h(t- + Q(E)y)(QT (1) (z — B'(1))),
RLF(t,x)](z) = RIF(t, h(t- + Q)](QT (t)(x — 1 (1))
and
B =7R.oB o &L

We recall some estimates independent of the small parameter ¢ related to the Bogovskii operator proved in
[23].

(PROP:2) Proposition 1. Let Q; C Q with Lipschitz boundary and let 1 < q < 3. Then the linear operator B : L9(Q; \
Soe) — W&’q(Q;R:s) such that for any f € LY such that fQ1\30 _ [ =0, it holds

diVBé(f) = 5t(f) in €2, ngé(f)HWM(sz) < CHfHLq(Ql\SO,E),

for some C independent of €. Moreover,

IBL(H) L) < CllfIlLs@i\so..)-

Note that the above proposition is Proposition 2.2 of [23] with o = 1 and in the exponent of the ¢ do not appear
the —3 because it is coming from the fact that the consider a problem with e~3 holes.
We are now ready to show the pressure estimates.

3.2 Energy estimate and improved pressure estimate

In this section we prove all the a priori estimates that we need to show Theorem 1.
Let (Sc, pe,us) be weak solutions of (1) that satisfy the hypothesis of Theorem 1. From the energy inequality
(3), we deduce that

1 pl #(t,.) 1 1
/ *p]-‘,g|u_7-'|2(t7 O+ UCSASSACay —me|le(V))? + zwe(t) - Te(t)we(t)
Feor 2 v—1 2 2
! 2 2 1 |QE 0|2
—l—/ / ulDur e|” + Adivug |* dedr < / ———— 4 P(pe,0)dx.
0 JF.(= Q2 peo

We deduce that

o7 curellLo=omr2(F. ) < C,
e, 7ll 2o 0727 (7o) < C,s
3y-4
e 2 |[le|lposo,ry — 0, (5)[en:est]
14334
e lwell oo 0,y — 0,
lurellzzo,rwizF. ) < C,
where C' is a constant independent of e.

We will use the above estimates to show some better integrability of the pressure. For simplicity from now we
denote by p. the extention by zero of the fluid velocity pr . in the interior of the solid S..



(PROP:1) Proposition 2 (Pressure estimates). Let Q; be a set compactly contained in Q with Lipschitz boundary and let
(Sey pesue) be solutions of (1) in the sense of Definition 1 associated with the initial data (Soe, pe,qo,e). Then

t
[ s
0 JQ1\S:(t)

fort < T and C is independent of € and depends on the L? norm of qo/+/po and the LY norm of po.

Remark 3. The key point is to get the higher integrability of the pressure. In the stationary compressible fluid
without structure we can refer to [7], where they considered the case v > 3 which guarantees them the L* integrability
of the pressure. Case 3/2 < v < 3 was done in the work of [25] and more general case in [5]. The instationary
case is much more delicate problem and it was developed in [23]. For them to get the higher integrability they
required v > 6. In our case we consider particular case with one rigid body which is shrinking and we “relaz” our
assumption on vy > 6. In comparison with incompressible case [1/], we need restriction on the mass and the angular
momentum, see condition 4.

Remark 4. Although the above result is enough to prove Theorem 1, we also show a uniform bound on the pressures
pe in LY forv/2 < 0 < 2y/3—1, assuming some more restictive hypothesis on the mass me and the inetia matriz

Te-

(PROP:3) proposition 3. Let v > 6, let 0 € (7/2,27/3 — 1] and suppose that

0 5y—6

me 2 0155’1;6_6 and - \780,55 > 0252+ W+6_6 |§|2 (6)

Let Qq a set compactly contained in Q0 with Lipschitz boundary and let (Sz, pe,ue) solutions of (1) in the sense of
Definition 1 associated with the initial data (Soe, pe,qo,e). Then

t
[f =
0 JQ1\S:(t)

fort < T and C is independent of € and depends on the L? norm of qo/+/po and the LY norm of po.

Let us start with the proof of Proposition 2.

3.2.1 Proof of Proposition 2

We follow the classical idea to prove the improved regularity for the pressure, in other words, we test the momentum
equation with the Bogovskil operator B. applied to pg. The fact that the Bogovskii operator is time dependent
creates new difficulties and the estimates of this terms are the main novelty.

Proof of Proposition 2. Let 3 be an open set with Lipschitz boundary such that 1 C Qs C Q and the inclusion
are compact. Then we test the momentum equation of (1) with

pYBL[Yp? — (¥p)] = pYRL 0 Bo, o EMpl — (1p?)]

where ¢ € C°[0,T), ¥ € CX(22) and ¥ =1 in Oy, § = /2 and (.) denotes the average.

We note that actually the test function is not enough smooth in the time variable but the following estimates
can be made rigorous by convoluting the test function with a smoothing kernel following the trajectory of the rigid
motion and proceed as in Section 7.9.5 of [28].

If we test the momentum equation with ¢wBE[1p? — (1p?)] we deduce

T 8
/ /J—' ® T =D (7)[ea:eq:3]
0 =(t i=1

where

fE

T T
— _ t 0 _ 0 — _ %13 0 0
J1 - /0 / . psue¢¢at85[wpe <1/}p5>]7 J2 A /]:E(t) pgugw¢ Ba [¢p5 <1pp€>]7



T T
Jz = eUe E:v Bé g_ g ) Jy =2 D EZDBZ g_ g )
\ / /fﬁ(t)qspu@u (OB HpS — Wpl)]) s Ta =2 / /mas (ue) : D (BLfol — (p?))
T T
g / / odiv (us)div (VB[R — (o)), Jo / /F BB = ()

Iy = / /f | Pt and g = /F OO0, )B(0.)6£(0,.) — (0,120, )

We estimate the right hand side of (7), by considering all the terms .J; separately. We start from the easiest one

e,
|Js| < || =22 [1y/Pe00(0)8(0, )B2[1(0,.)p (0, .) = (¥(0,.)p2(0, Wl z2(F. (o))

VP0llL2 (7. (0)
4e,0

< Iv/Peoll L2 (7 (o) 16(0)1:(0, ) B2[16(0, .) p2 (0, ) — (0, )pE (0, NIl L2/ v 7o
VPeoll 27 (0))
4de,0 0

< : lv/Peollz2v (F. 0 11(0, ) pe (0, ) Lov/ev—s o,
VP0llL2 (7. (0) )

which is bounded because 6/(5y — 3) < 2 for v > 3/2 and p. € Cy,(0,T; L"(s)).

1 <Cloelsmoracrn | [ o

Fe (t)
<Clpe ||L°°(07T;L7(]:s(t)))’

where we use 6 < .

| Jg| = ¢p VyBLpp? — (p?)]

< ||p€||L°°(O,T;LW(]:E(t))HBS ol = (W)l L 0,152 (. (1))
<Cllwp? = (Wp”) L3 0.15L5(F. (1))
= Cle/epH%37/2(07’1";[137/2(]:5@)))'

where we use 260 < ~.

|J5] =

T
A / / v (ue) (of — (pl)) + ddiv (ue)Vep - Bl jp® — (16p%)]
0 Fe(t)

< Clluell oz oy (19N 00127y + ILWPD 120 )
< Clluell o rawy 2z 1P 2 0,500 (7. 0

where we use 20 < ~.

|']4‘ S C”uE||L2(07T;W()1*2(f5(t))) H¢V(¢B§[¢PZ - <¢Pg>])||L2(0,T;Lz(}-g(t)))
0 0
< Clluell 2 0, 0w 2 (7. 1)) [l — <¢Pe>||L2(o,T;L2(f5(t)))
< CHUE”L?(O,T;WOI'Z(]-'E(t)))Hpeuiw(O,T;LW(]-'E(t)))’

where we use 260 < 7.



|J3‘ < CHUE”L2 0, TWl )2 (F=(1))) ||p6¢v l/th [wps - <¢pg>])||Loc(07T;L3/2(]:E(t))) .
we estimate the last term as
||,05 'l/}Bt W]ps WP?)DHL.@/Z(;E@)) < HpEHL’Y(}}(t)) ||V(1/JB§ [¢,02 <71bps ||L3'y/(2’y 3 (Fey)
<lpell oz @ ol — Wpl) | Lovrv-o) (7. 1))
< C”Ps||9L3w9/<2w—3>(]:5(t))a
we conclude that
|Js| < CHU6”L2(0 TWE 2 (Fa(t) ||Pe||L°°(OT L (Fe(t)) )||PE||Loo 0,T;L370/(2v=3) (F.(t)))’

note that |J3| is bounded assuming ¢ < 2v/3 — 1.

|J2| < CllpeuellL2 0,03 F. ) 161l 20,1y IBEWAE — (oD oo 0,7:15/2 (7. 1)
< Cllpeucl 20102 F. o 19 | 20,1y 1908 — (0pE) | Loe (0,711 (7. (1))
< Cllpeuellrzo,r;2 (7 @ 1 20,0102 Lo (0,750 (. (1))

in partcular it is bounded for 6 < ~.
We move to the most difficult term which is the one involving the time derivative Bogovskii. Recall that p.

satisfies a transport equation in a renomalizad sense for which we can use b(.) = |.|? with § = +/2 as test function
due to Lemma 6.9 of [28] apply with 8 =, A\; = /2 — 1. Moreover ¢p satisfy
Or(6p2) + div (Ypluc) + (0 — Vopldivu. — p. Vi - u. = 0. (8)

Before showing the estimates of J;, we compute the time derivative of the Bogovskil operator Bt. Let now f be a
sufficiently smooth function then

OBL[f] =0, (RL o By, o E![f])
=0y (R2[Ba, [E'[f1)(h(t) + QUIMIQT (t)(x — h(t))))
=R [0,Ba, [ELf]] + (us,e - V) B, [EL[f]]] — us,e - VRL[Ba, [EL[f1]]
=RL [01Ba, [EL[f1]] + RE [(us.c - V) B, [ELfN] — us - - VREBa, [ELf1]]-

Moreover the function £ (yp?) = 1/’0%—,5 which satisfies (8) in [0, T] x R3.
We rewrite the term 9,B¢ WP%,E - (1/),03_-’5>] taking advantage of some cancellation. For f with zero average, we
denote by g = E[f] and exploting the definition of R!

R [(us e - V)Bo,[g]] — us,e - VRLBa, [g]]
=ne(use - V)Ba,[g] + Be[div ((1 — n:)(us e - V)Ba,[g])— < div ((us,c - V)Ba,[g]) >s. 1]
— (us,e - V)ne - Ba,[g] — ne(use - V)Ba,|g]
— (us,e - V) Be[div (1 — 1) Ba, [g]) — < div (Bg, [9]) >s. (1))
B.[div ((1 = n:)(us,e - V)Ba,[g])— < div ((us,c - V)Ba,[g]) >s. )] — (us,e - V)ne - Ba,[g]
— (us,e - V) Be[div ((1 — 1) Ba, [g])]

We rewrite the first term of the last expression. To do that we introduce the notation

(Ue)ij = 0i(us,e)j = Oi(we X x);.
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We have

div ((1 = me)(us,e - V)Ba,[g]) = — Ve - (us,e - V)Ba,[g]) + (1 = 1:)Ue : VBa,[9]]
(1 —=n:)us, - Vg
= = Ve - (us,e - V)Ba,|g]) + (1 —n:)Ue : VBq,lg]
gVne - use +use - V((1 —ne)g). (9)[canc:equ:fin

Similarly

div ((1 — 7:)Ba, [g]) = —Vn. - Ba, [g} + (1 —ne)g.

Let now consider

RL [Ba, [0:(vpl — (p)]] =neBa, [0:(vpl — (4p2))]
+ B [div ((1 — 02)Ba, [0:(1p? — (¥pl))])— < div (Ba, [0: (1ol — (¥p))]) >]

= n.Bo, [04(Vol — (W) + B.| = Vi - Bo, [0u(wp! — (p)))

+ (L= )0y (p? — (1hp?))— < Ou(hpl — (wpl))) > ]
(10) [ave erasates)

Using the fact that 1p? satisfies (8), the first term of (10) reads

(1 =)0 (wpl = (¥pl)) = — (1 —ne)(div (plue)

— (1 =n)((0 — Vpldivue — (6 — 1)ppldivuc))
+ (1 =1)(p VY - ue — (p-V) - ue))

— div (1 = ne)bplue) — Vnetpplue

— (1 =n)((0 — Vpldivue — (6 — 1)ppldivuc))
+ (1 =1)(p Vi - uec — (p VU - ue)).

Finally we notice that the first term of the right hand side of the above equality together with the last term of (9)
read

—diV((l - 775)1/),02%) +uge - V((l - na)wpgue)} = —diV((l - ne)lbpg(ua - US,E))~

Analogously we have
— < 0 (Ppl — (p?))) > — < div ((us,e - V)Ba, [Wpl — (o)) >s. =< div (¥l (u- — us:) >
+ < (0 — Dppldivue — (0 — Dyppldivus) > — < pVib - ue — (p V1 - us) >= 0,

because any term is zero. We deduce that

Be[ = Ve - B, [0:(¥pf — (pf))]) + div (1 — no)Bay, [0:(1p? — (1p?))])— < div (Ba, [0:(1pf — (¥pf))]) >
+ Be[div ((1 = me)(use - V)Ba,[g])— < div ((us.c - V)Ba,[g]) >s. 1)l

=B.| —div((1- Ua)¢ﬁ§(us - US,S)) - V%Wf“e
- (1 - 7]8)((0 - 1)¢/J’gdivue - <(6 - 1)¢P§divue>) =+ (1 - Ue)(PaV1/) cUe — <pev¢ : us>)
Vi (us,e - V)Bay[p! — (pl)]) + (1 = n)Ue : VBo, (el — (wpl)] + pln. - us..|.

In a compact way, we can write

OB [vpl — (¥p?)] Zm,

11



where

n1 = neBo, [0:(vpl — (Wp)]], 12 = =BV - Bo,[0:(bpl — (¥pl))])— << V. - Bo, [0:(¢p? — (bpl))]) 3>,
ng = —Bc[div (1 = n)¢pl(ue —use))l, na=—Be[Vne - ucthpl— << Ve - ucippl ],
ns = —B:[(1 = n)((0 — Dyppldivue — (0 — )ppldivuc))— << (1= n)((0 — Dppldivue — (0 — )ppldivue)) >>],

ng = Be[(1 = 0)(p VY - ue — (pV - ue))— < (L =) (pe VY - ue — (0 VY - ue)) 3>,
n7 = —(use - V)B[(1 = 1) (¥pf — (¥pl))— << (1 =) (p? — (wpl)) >>],
ng = (us,e - V)Be[Vie - Bo, [Ypl — (pl)]— << Vi - Ba, [pl — (¥p?)] >,

ng = B[Yp?Vn. - us.— << YplVn. - us. >>],
nio = Be[(1 = n2)Us : VB, [¥pl — (vpl)]— << (1 = n:)Us : VBa, [pl — (¥pl)] >>]
i1 = B[~V - (us,e - V)Ba, [pl — (¥pl)])— < =V - (us,e - V)Ba, [pl — (wpl)]) >,
and 1y = —(use - V)ne - Ba,[pl — (Ypl)— << vpl — (vpl) >,

and << . >> denotes the average on B.(h.(t)) \ S:(t). We have that

T T 12 12
_ t 0 0 — _ o .
/0 /F | oneucon Bt — (ool /0 [ o omi== 3B

with

T
B; :/ / \/&ﬁpsus\/&%
o Jr.(
We now estimante the terms B; separately. Denote by B.[f] = B:[f— <& f >>]. Recall that

I/ ovpe

(0 T; LV+4 (F. (t))> < ||\/&/&06||st2(07T;st/z(;€(t))) ||Ue||L2(O,T;L6(]~'E(t)))

and note that

|Bil < I/ éwp-

>||\[

(OTL F- (1) (OTW 1(F. (t)))'

It remains to estimates v/¢n; for i = 1,...12. Let us start with ¢ = 12.
IV Ozl povrev— )y < (el + elwe DIVl Lov/ v 7 ) |1V OBas [0 — (Wp) ]l L= (7. 1))
< (] + elwe N2/t || Lo (. (1))

we apply Brezis- Bourgain theorem, (see also Remark I11.3.7, [10]), properties of Bogovskii operator [10] and from
the behaviour of n : ||n||, = ¢ 7. We deduce
|Bia| < C||¢1/201/11/9P5||%M/Z(Q,T;Lrsw/Z(fg(t)))-
=11
We have
— 47 0 0
IV Ol povser— (r. ) = 0Be[~Vne - (us,e - V)Bay [¥pl — (o))l Lovsv- (7. (1))
<ellV/@Be[=Vine - (us. - V)Bay [pf — WpD)lllovsss-o (5. 1))
<ellVoVne - (us.e - V)Ba, [1hp? — W) ovs 520 (£ (1))
2=
< (€] +elwe )T 1OV Ba, [pl — (o) Dllzscr. oy
< (0] + elwe )BT/ dpl | Lo (7. (1)) -
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where we apply the behaviour of the rigid velocity, the cut off function 7 and Remark 3.19, (3.3.35)3

|Bi1| < C”(bl/%wl/gpsH%?’w/?(O,T;L?"r/?(.Fi(t)))‘

Similarly we have

I/ @m0l Lo sv- (7. 1) = IV SBel(1 = ne)Us : VBoy, [pl — (p) Il Lovssa-0 (7. 1))
<elV/éB:[(1 = n)Us : VBa, [vopl — (WpD)]]ll Loviisr-o (7. 1))
<ellVo(1 —n)Us = VBa, [1hp? — (WD)l Lov /- (7. (1))
< elwe 65 VOV Ba, [wof — (0]l o0
<elwe ||V plll Loz ()

We deduce
‘Blo| < C”le/%wl/ops”0L37/2(0,T;L3w/2(]-‘5(t)))'
We have
IV @noll pos - (7. 8y = IV SBel(¥0p? — (0p)) Ve - ws el porrsv— (5. (1))
<5Hf wps T/JPE Vna US&HLGW/(SW 9 (F. (1)
< (16| + elwe ) 1V Ewol | Loz 1))
We deduce
|Bo| < CH¢1/29¢1/905||iaw/2(o,T;st2(f€(t)))~
We have
IV Onsl Lov/ero (F. iy <V O(us,e - V)Be[Vne - Ba, [p? — W)l Loviero (7.1
< (Jle| + elewe]) Hf Ve - Boy [¥p? — (¥p2) || Lovson- (. (1)
< ([e| + elwe DI Vel Lo (7. () 1V EBaa [0 — (p2) | o)
< ([e] + elwe N2 |Gl | Lo 7. (1))
We deduce
|Bs| < ClI¢" 9 pel| 5220 1502 (. )
We have
v/ bzl Lo v V(F() S IVo(us,e - V)B[(1 —ne)(wpl — WP porr 500 (7. (1)
< (|le] + lwel) II\[ B(1 =) (Wp? — (W) Lovso— (7. )
< (L] + elwe)e? ||f¢ngL3(f (1))
We deduce

|B| < ClI¢ 9 pel|sr 20 11502 (o )

Recall that
lpuell L2 (07,08 (7. 1)) < C

follows from the energy estimate and ~ > 6. This allows us to estimate

|Be| < [|petiellr= (0,12 (F. oy llénell L2 0,7;03/2(F. (1))

13
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We have

l6n6ll Lo (7. (1)) S NOBel(L = 1) (V4 - e = (p V9 - ue))]l| 1372 7. )
< 52/5H¢B5[(1 - ne)(PanJ cUe — <p5v1/1 : ’U,€>)} HL2(]~'E(t))
<DL = 1) (pe Vo - ue — (pe V- u))l| oss (7. 1))

<e?/® HUEHL5(}'€(t))”Qj)pg”L%(]_-E(t))'

We deduce that for § < 2v/3

|Bs| < CllpellGoe (0.7, 17 (7. )

Recall that by energy estimates we have

| el <C and  |[peuellpoe o, my2v/ 40 (7)) < C

6y
L2(0,T;L ST (Fe(1)))
Using =~ > 6 and interpolation we have

1/3 2/3
”pEuE”LG(O,T;Lz(}'E(t))) < HpEuE”L/Z’(O,T;LS(]-‘E@)))”pEuSHL/oo((),T;L12/7(]:E(t)))'

|Bs| < [|petiel| oo, 1;L2(F. o) | 9m5 | Loss (0,702 (7. (1)) -
lonsllze (7. 1)) < 9B[(1 = 1) (0 — Dppldivue — (0 — 1)ppldivuc))]llze(z. 1)

<X =n)((0 - 1)¢pgdivu€||L5/5(}-€(t))
<|Idiv (ue) | L2 (7 o) 1002 o (7. (1)) -

We deduce
| Bs| < C”d’l/eps||est/Z(o,T;sz/Z(fE(t)))-
We have
|Ba| < ||petiel| 2 0,m506v/ @0 (7. ) |0nall 20, 10077670 (7. (1)) -
Moreover

||¢n4||L6-y/(5’\/—6)(]-'E(t)) < HQﬁBe (Ve ‘Ued’ﬂg]HLGW(M—@(]-}(t))
< el|pB[Vne - ucthpl|| 22 (5. (1))
<el|pVne - ucthpl|| o/ sv-o) (7. (1)

el Loz (o) 102N L3 r -9 (7. (1)) -

We deduce, for § < 2v/3 —1

| Ba| < Cllpellfoe (0.1 (7. 1))

In Bs there is the term u. — u. g ans u. and u. g have different integrability in time. To prove the estimate we
introduce a smooth cut-off x. : Be(he(t)) \ Sc(t) — [0, 1] such that

Xe = 1 in an open neighborhood of 9S8, (t),

Xe = 0 in an open neighborhood of 0B, (h.(t)) (11) [cuttoff]

lsupp(x.)| < eGr=4H/(r=2),
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We have

ng = — Bc[div (1 — n.)vpl(ue — us.))]
= — B [diV ((1 —Te — Xa)wpgue)] + B. [diV ((1 —TNe — Xe)wpgus,a)]_FBs [diV (X&’L/)pg(ua - US,E))]
= né + n§ + ng

It holds

|Bs| < |lpeticl 12 (0,7 167/ 0 (£ ty)) (1615 + 00l p2(0,7: 160,500 (7. (1)) )

IV/évp- Va3 e, e

(o 75157 (F. (t))) o,T;L%<f5(t)))'

Moreover
H(bn%)HL?(O,T;LGW(EW*G)(J-'E(t))) < “¢¢pgu€||L2(O,T;L57/(57*5)(.Fg(t)))
0
< Hu&”LQ(o,T;Ler(t)» HPEHL""(O,T;L”(E(U))’
which holds for 6 < 2v/3 — 1.
HngHL2(O,T;L67/(5“/*6)(}'g(t))) < || ptoxepl (ue — us.e)ll 20,1500/ 5v-0 (7. 1))
< ||UEHL2(O,T;L6(]—'5(t))) ||Pe||L°°(O,T;L“/(]—‘E(t)))

+ (1)l oo 0,7 + €llwell oo 0,7 Xl oo (0,729 -2 (7. oy 1007 | 20,7522 (7 )

< ||USHL2(O,T;L6(}'5(t))) ||p5||L°°(0>T§L7(fe(t)))

3y-4y-2
+ (el o,1) + €llwellLoeo.1))e 7= = 190wl 20,13 L3(F. (1)) -

IVen3]l

1_
e r ) < IVé(1 — ne — xo)vpl o

< (Je] + elwe )@ =0/2) f¢p5 ILB(fs(t)»

We deduce
|Bs| < C (HpE”GLOO(O,T;L’Y(]-'E(t))) + ||¢1/20¢1/eﬂa||(st/z(o,T;mvﬂ(fE(t)))) '
It is well-known that for p < 6
6By, [0:(Wpl — (Wl o (7.0 < (luellor. ) + 1AV (we)ll L2z 1)) 162 Lov /- (7. (1)) (12)[gen:est|
Then
|Ba| < ||puiel| s o,ms2 (7. oy ll@nall Loss 0,702 (7. (1)) -
Moreover

nallre(. 0y < I6B:[Vne - Ba, [0:(p? — o))l L2 (x. 1))
<el| BV - Ba, [0:(p? — (p?))D]ll o (7. (1))
<el¢Vn. - B, [0:(wpl — (oDl (7. 1))
< (uell zo (7o ey + v (ue)l L2 (7. 0)) 16802 | 13 (7o )

where we use (12) with p = 2. We deduce

| Ba| < Cl6* 0 el v2(0 o072 (7. (47
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We have

|B1| <|lpeucllrsco,mi2F. iy llénallLess 0,102 (7. 1))
<|lpetiell Lso,rsz2 (7. (o) 1on=Bagy [0:(hp? = (o)) I ns/s 0. 7502 (F. (1))
<lpeuellpoorr2 (7o) ([uellL2o.r Loz @)y + 1AV (el 20,0y < 7. (00)) 109PE L3 (0.7 x 7. (1))

<O el 20 11502 (o))

Putting all the estimates together and recalling that 6 = v/2 we deduce that (7) reads

T 7 12 T 1/3+2/3
[ [ e[ ], owa)
0 JF(D) i=2 i=1 0 J7Fe

3.2.2 Proof of Proposition 3

From Proposition 2 we deduce that p. is uniformly bounded in L*/2((0,t) x €;). We will use this information
and the extra hypotesis (6) to show that p. is uniformly bounded in L7+((0,%) x ©;) for 6 in (v/2,2v/3 — 1].

Proof of Proposition 3. As in Proposition 2, we test the momentum equation with
SUBLIPL — (p")] = YR 0 Ba, o £'Npl — (o)),
for 6 € (v/2,2v/3 —1]. As in Proposiotion 2 we deduce that
g 2 y+6 :
Y0 _ ,
/ /m) oL =3

Note that the term J, Js, J7, Js can be estimates in the same way as Proposition 2. We are left with Jy, Jy, J5
and Jg. We start with Jg

<N¢p21l Lar2((0,1) x20) |1 BE [l — (W)l Lao,m:05(F. (1))

T
/ / opl VyBLYp? — (Yp?)]
0 Fe(t)

<Cllwpl = Wp”) 130 1:15/2(F. (1y))
< C||P||%oo(o,T;Lv(fE(t)))v
for 30/2 < ~.
Moreover
[ Ja+ Js| <2/ Ve 20,1027 oy IV @B L = (D)D)l 20,702 (7. (1))
<Cllwpl = Wpd)lr20,7502(F. (1))
< CH'L/JI/GpEH%QQ(O,T;L?G(]—'E(t)))
§C||1/J1/9Pe||i3w/2(o,T;L3w/2(};(t)))7
for 20 < 3v/2. We are left with J;.
We show the estimates for J;. To this aim we estimates the B; terms. It holds

” \/gd)peus HL 2(41;:?)

< 5 ) )
) (O,T;ngjﬁg (Fs(t))> > ||\/$¢Pe||1: +9(O,T,L‘Y+9(}‘E(t)))Hue”LQ(O,T,LG(]—}(t)))v

we deduce that

90, T5LEFYFO (Fe (1)) 0,T;L >0+ =6 (F(t))

|BZ| S H\/&/’Psus” 2(v+0) 6(~v+0) ||\/$nz|| 2(y+6) 6(v+0) .
L2FF ( ) Lv+6—2< )
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We estimate the terms \/¢n;. Let notice that the inequality used for nio and ng, for ni; and ng and for nig, n7
and n§ are the same so we only show the estimate for nis, n1; and nyg. It holds that

||\fn12|| ETCEL) < ([le] + elwe)[[ Ve ||\/5392[1/J,0§ wp5>]

G(W‘Fe)
T0O=6 (Fo(t)) TO=6 (Fe (}' (t))

< (Jte] + ewe)e T IIprell o

(F=(®))
In the estimate above we use the identity

20 — 0 1

3(y+6) y+60 3
(3_ 6(y+0) >77+9—6_57—9—6

TY+0—-6) 6(y+0)  2(y+0)
We deduce
57v—0—6
|Bia| < C([[lc]|Lo<(0,1) + €lwe|pot0.r) )e 20T ||¢1/20¢1/9PsH%we(o,T;Lwe(]:a(t))y
We have
||\/5n11|| 6(140) = V6B~V - (use - V)Bay[pl = o)l o
SFO=6 (F (1)) L5GH0=6 (Fc(t))

<el|V/éB[~Vn. - (us, - V)Ba,[pl — (eI

LTS (7, (1))
<el[VoVn. - (us: - V)Ba, [p? — Wph)DIl _scrrer
L5O+0)=6 (F_(t))
3y

< (Jte! + elwe )" I [|/6VBa, [9f — (WP aso

< ([6e] + lwe e B0 IV owolll, 2o

(F=()

(Fe(1))

where we used
5(7—&-0)—6_ 0 5y —0—6
6(y+60)  y+0  6(y+06)
(3_ 6(y+6) )5706_37+96
5y—0—-6) 6(y+0)  2(y+0)

We deduce

5v—6—6
|Bial < C(Ilell o (07) + €lwel g0 e 2T 6290 o100 oo . g0y -

Similarly we have

||\/$n10” 6(7+0) = ||\/$BE[(1 —ne)Us : VB, [wpg - WJP?H]H 6('v+9)

LEGHO-6 (F. (1)) F0=6 (F-(t))
SE”\/536[(1 —ne)Ue : VBaq, ijg - <¢ps>]]|| 36<v+9)

30=6(Fe(1))

<ell V(1 = n)Ue = VBa, [pl — (WpD)Ill_ors0
LSOO (7. (1)

5v—6—6
< elwe e T || \/6VBa, [l — WD, x50
< elwele T ||/ Gpll| aso

(F=(®))

(Fe(t))’
where we use
5y +50 -6 5y —60—6 0
6(y+0) 6(y+0) y4+6°
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We deduce
54—6-6
|Bio| < Celwe|pocto,1)€ 2GFD H¢1/29¢1/GPE||iw+9(0,T;LW+9(]-'E(t)))'

Note that the estimates for Bg, By, n} holds for § < 2v/3 — 1. It remains to show Bs, n3, By and B;. Note that
the difficulty to deal with Bs, By and B is the presence of the term of the type p.u.Bq,[p?div (u.)]. To estimate
this term we use an interpolation inequality. Note that

1+a 2
||P5U6HLT 0,T:Ls (F. (1)) < C||ps||(m+e(é T, L+0 (F. (1))
with 1 042 1 +0+6 +O+1
'Y ’Y i
—=a—F—+(1— d - =a—++(1-a)——.
P yag TU TNyl S=agmgy Ty
The dual exponent are
1 y+0-2 2y +20 — 1 1 5y+50—6 y+0—1
—=al Tt 1—a) T~ and — = T (1)
7T gap T T Tyl gmeme g Tme 5y

/L()preusgﬂz [Vovp’div (u)]| < IV ovpeuel Lro,rine (7. (o) 1Bas [V oo div (ue)] | .
t

Moreover

1Ba, [V/éup’div (ue )]

(0,15 LS (Fe (1))

L7 (0,515 (Fo (1)) = <|IVewp’div ()|, (0,T5L35' /3+5' (F. (1))
< | div (o) 220,22 ) |1V S AV (o) | L2rr 20 (0 oot 16 (5. (1))

To close the estimate we need to show that there exist a € [0, 1] such that

2r' v+ 6 6s’ ~y+6
< — d < —
2—r" 7 6 a 6—s" — 0
Equivalently
1
39+7§7 and 79+7§l
2y +20 — 1 6y+60 ~ s
After a small computation we have
40 — 2y + 3 y—0-1
— < a< ——.
2v4+20-3 - T y+0+1

Note that 109 5 ) 0_1

27+20—-3 "5 y4+0+1
for § < 2v/3 — 1, in particular we can estimates By, By and B;.  Let conclude with the term n3 we apply again
the cutt of x. see (11).

0
||¢n§HL2(O,T;L67/<57*6)(fe(t))) <|[@xepe (ue — us,e)HL?(O,T;LGW/(SM)(fa(t)))
< HUEHLZ(o,T;LG(&(n)) 1< o= 0.1 (72 1))

0
+ (1€l Loe (0,7 + €llwellLoe (0,1 ||Xs|\Lw(07T;Lm% o) I6¥0° L2 (0,7;26-00/0 (F. (1))

< ||u5||L2(0,T;L6(]~‘5(t))) ||p5||L°°(07T;L"(]'—s(t)))

5v—6—6
+ (1l Lo,y + €llwell Lo 0,1))€ 20 |92l L2 (0,7 Ler+0170 (. (1))

5v—6—6
where we choose ||xc|| +0) =g 2040
L ’Y(’Y+9) 6~0 (Fe (t)))

We show that for § < 2v/3 — 1, the density p. in uniformly bounded in L7+? provide that

/ 57-6-6 51-6-6
|h€(t)|5 26+ < C  and 5|w5(t)‘5 20 < C,

which hold true, combining the energy estimates with the assumptions (6). The proof is then finish.
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3.3 An appropriate cut-off

(sec:5) We are now ready to pass to the limit in the weak formulation. The tricky term is the one involving the pressure,
in fact it is not enough to consider a cut-off and its e-scales. The idea is to use cut-off that minimise in some sense
the L3 norm of the gradient. These types of cut-off have been widly used to treat these kind of problems. We

recall the main properties and we refer to [15] for the proofs.
First of all for A, B € R with 0 < A < B, we denote by a = B/A > 1 and we define the function

1 for 0 <z < A,
faB(z) = % for A<z < B,
0 for z > B.

It holds that f4 g € WH°(RT). We define the three dimentional cut-off

1= Nea. (@) = fea.e(lz]),
where a. will be choosen appropriately.

Proposition 4. Under the hypothesis that eae — 0, it holds

1. The functions 1 —ne o, — 0 in LY(R3) for 1 < ¢ < +o0.

2. We have 2
5 _2r
Ve bs @) = Goganz
3. For1<qg<3,
31
3 3—q

q 2
197 0 Loy < 27 e

Proof. After passing to spherical coordinates the proof is straight-forward. See Lemma 2 of [15].
Let us fix a in dependence of m. and J; in such a way that

Me
37—4
eag) 7

=400 and lim inf & Is0cE

e — 0, @z — +o0o0, lim _—
S 9 S 9 e0 EESZ ((.:(:%6)2_,’_3'y’Y 4

e—0 (

From now we write 7. instead of 7. o, for a choosen sequence a. that satisfy (13).

3.4 Pass to the limit in the weak formulation

14 . . e
(Sec >From the energy estimates (5) and the pressure estimate from Proposition 1, we deduce that

pe2p in Ly (0.1 LA@),
pe —p in Cu(0,T;L7(Q)),

u. —~u in  L*(0,T; Hy(Q))

pette = pu in Cy(0,T; L2/ O+

NePelle @ Ue —> pu@u  in ([07 )

gt —p i (0. L2)

)

),
),

= +o00.

(13) [ -aphaops|

where we use the momentum equation to show the second-last convergence. Recall that the weak formulation for

the transport equation reads

/ o, (0 / / peOip + peue - Vo = 0,
F.(0) Fe(t)
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for any ¢ € C°([0,T) x Q). Passing to the limit with e, we have

/ po(0 / / pedrp + pu - Vo = 0.
F(0) F(t)

We now pass to the limit in the momentum equation. For ¢ € C°([0,T) x Q;R?) we test the weak formulation of
the momentum equation with ¢n.. It reads

/QOen / /peue ) - 0c(nep) + [petie @ uc] - D(nep) + pIdiv (n-¢) / /Sug. (Nep).

Let € goes to zero. We obtain

T
/qggo / /pu Orp + [pu®u] : Dp + p7div ( )f/ /Su:Dcp
0 Q

= lim (/ /(psue)~<pUS,E~VnE+[ﬂsug®ue] : §(Vns®sﬁ+<p®vns)+plvne~w
0 Q

e—0

T
1
+/ SU657(V775®<P+§0®V776) -
o Jo 2

It remains to show that the right hand side is zero. To do that we show that any of the term converge to zero.

(peus) TPUS e - Ve

A <|pell L3v/2supp (o)) lUe | 20,78 (@) s, | oo (0.7 IV 0] oo (0,75 £67/ (57—

§C|uS,£

o — =m0
The second term reads

< ||ps||L°°(O,T;L”f(Q))HUEH%Q(O,T;LG(Q) ||V778||L°°(0’T;L3(9))

T
1
/ /[paua ® ue] : Q(Vne R+ p®Vn.)
0 Q

C

— — 0.
~ (log e )?/3

where we use v > 3. Similarly
T
c
/ / PIVNe @
o Ja

< |1p2 /2 (supp(e)) | Vel Lo (0,703 () < (log )23 — 0.

Finally

<MJuellL20, w12 Vel e 0,712 (02))

T

1
//Sung(Vm@tp—HD@VnE)
o Jo 2

ea

<C

— 0.

log a.
To conclude is enough to identify the limit of the pressure, more precisely to show that
pr=p.

It is now well-known how to proceed in this final step and we briefly present the proof in the next section.
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3.5 Identification of the pressure

A key tool to identify the pressure is the study of the so-called effective viscous flux which enjoys a better com-
pactness property. In what follow we prove the key lemma that is needed to follow the classical proofs presented
in [22] or [28].

Lemma 1. For any v € C°(2), it holds

lim / / e (57 — (200 + Ndiv () / / b (77— (2 + Ndiv (u)) p

e—0

up to subsequence.

Proof. Cosider ¢. = yn.VA™1[p.] and ¢ = )V A~L[p]. From the energy estimate 1) VA~![p] is uniformly bounded
in L°°(0,T; W7(Q)) and
8t1/)VA71[p5] = wVAil[diV (peue)]

is uniformly bounded in some LP. We deduce that
YVA p] — VAT ] in Cy(0,T; WH(Q)) (14) [cucon]

and from the fact that the compact embedding of W17 (Q) c C%(€2) the convergence is strong in CY((0,7) x Q).
Using (14) and the convergence of the initial data we have

lim / / Pele - Orde + [petie @ uc] 1 Vo + pldiv (¢e) — uVue : Voo — (u+ A)div (ue) : div (¢e)

e—0
= / / pu -0+ [pu @ u] : Vo + p¥div (¢) — pVu : Vo — (i + A)div (u) : div ().
o Jo

Using the definition of ¢. and ¢ we rewrite the above equality as follows.

T
lim / /QW/J (P2pe = pVue : VEA™ pe] — (1 + A)div (ue)p%)

e—0 Jo

T
- /O . ¥ (07p — pVu: VAT p] = (u+ N)div (u)p)

T T
——tim [ [ norve-vasip)+ [0 [ Fve-vaty
=0 Jo Ja 0o Jo

T
— lim $pIVne - VAT o]
Q

e—0 0

ot / : /Q NV : (Vo © VA~ o)) — /O ' /Q Vu: (Vi © VA~ )

e—0

T
+p lim PV : (V. ® VA [p.])
Q

e—0

+(pu+ M) hm/ /nsdlv (ue) : Vi - VA  p.] — ,u+>\/ /dlv 1V - VA ]

e—0

(W+A) hm/ /wdlv u:) : V. - VA p.]

T
~tim [ [ o o (Tn e VA o) - liny / [ o VA puJus. .
Q Q

e—=0 0 e—0 0
T T
- lim/ / Nepette @ ue : (Vi) @ VAT p.]) +/ / pu@u: (V@ VA~ p])
e=0Jo Ja 0o Ja

T
i | /Q et - [pe(ue - V)VA"[p.]) — p- VA div (o)

e—=0 Jo
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— [ [ v ot 9)vAT ) — pTA v ().

First of all notice that any line of the right hand side exept the last two are zero by using the convergence in
CY(0,T) x Q) of VA™1[p.] and the convergences presented at the beginning of Section 3.4. Regarding the last
two lines we recal that applying the Div-Curl Lemma we deduce

pelue - V)VA™ p]) = po VAT div (peuic)] — p(u- V)VA™ p]) = pVA [div (pu)]  in Cy(0,T; L7753 (1))

in particular the convergence is strong in L?(0,T; (WP(Q))*) for any q and p > 6v/(5y — 9), where we use the
compactness of the Sobolev embeddinga for the exponets

1—3>—3<1—7+3>.
p 2y
Note that n.u. — u in L?(0, T; W'?(Q)) for p < 2. Finally the convergence follows because 67/(5y — 9) < 2 for

v > 6.
Regarding the left hand side we rewrite the term

T T T
/ /ngz/)VuE:VQA_l[pg] = Z/ /8i(77£wu5,j)6i8jA_1[pe] —Z/ /Uaai¢ua,jai8jA_l[Ps]
o Ja 7 Jo Ja 7 Jo Ja
T
_Z/ /8in5wu51j8i8jV2A71[ps]
/ /nswdlv us pPe + / /wvna le us pPe + / /UEVT/) Ue Pe
Q

-3 / JREZTCEINETAEDS / [ omvuc 00,78 o).
i 0 Q i 0 Q

Similarly

//wu V2A //u)dw p+/ /kup Z/ /awujafm ol.

We deduce that

[ e 92 = g Nt ) o = [ 7= (i Neiv ()
—u/ /ans div (ue)pe “Z/ /8775wu5388V A7 p.]
qu /0 /Q DOz 10,0, A [pa]w%j /0 /Q Do, 0:0,A (o]

T T
+ﬂ/ /nst~usps—u/ /Vvup.
0 Q 0 Q

As before the right hand side converges to zero and the lemma is proved.
Remark 5. Note that we are in the case v > 6 so to conclude it is enought to follow Lions approch.
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