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THE PRODUCT OF W-SPACES
A. ZUEVSKY

ABSTRACT. Let V be a grading-restricted vertex algebra, W be its module, W
be the algebraic complection of W, and W., ..., be the space of rational dif-
ferential forms in (z1,...,2n). Using geometric interpretation in terms of sewing
two Riemann spheres with a number of marked points, we introduce a product of
elements of two spaces Waq,...,z;, and Wy, 4., and study its properties. The
product takes values in Wx,,....apiy1,...,yn - We prove that the product is defined
by an absolutely convergent series. In applications, we consider a product of ele-
ments of two spaces CF,(V,W) and C",(V, W) of chain-cochain double complex
associated to a grading-restricted vertex algerba V' coherent with the differential
of the complex. We prove that the product brings about a map to the space
C*+" (V, W), and satisfy an analogue of Leibniz formula.

m-+m/

1. INTRODUCTION

The problem of defining a product of W-spaces (and in particular, C7(V,W)-
spaces) is very important for the cohomology theory of vertex algebras, continual
Lie algebras, the theory of integrable models, as well as for further applications to
cohomologies of smooth manifolds [11]. A cohomology theory for grading-restricted
vertex algebras was introduced in [6] (see also [10]). Vertex algebras, generalizations
of ordinary Lie algebras, are essential in conformal field theory. [3], and it is a rapidly
developing field of studies. Algebraic nature of methods applied in this field helps
to understand and compute the structure of vertex algebra characters [1-3, 8, 14].
On the other hand, the geometric side of vertex algebra characters is in associating
their formal parameters with local coordinates on a complex variety. Depending on
geometry, one can obtain various consequences for a vertex algebra and its space of
characters, and vice-versa, one can study geometrical property of a manifold by using
algebraic nature of a vertex algebra attached.

For purposes [11] of construction of cohomological invariants of vertex algebras it
is important to define product of elements of chain-cochain double complex spaces.
In that direction, an extremely difficult question of composability with vertex op-
erators occur. The composability of a map with vertex operators represents by it
own a convergence problem. For vertex operator operator algebras and modules, the
convergence is a consequence of Jacobi identity. For the cohomology theory of vertex
algebras, one has to assume that the chain-cochains are composable with vertex oper-
ators which assumes the convergence. Especially when we want to compute calculate
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complexes.
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the cohomology of a vertex algebra, we have to deal with the convergence problem
first. In case of grading-restricted vertex algebras [6], the difficulty is that chain-
cochains are not represented by vertex or intertwining operators. The techniques for
vertex operators or intertwining operators in general do not work. The aim of this
paper is to Thus we have to develop such new techniques.

For products of spaces of chain-cochains, we propose to involve the geometrical pro-
cedure [13] of sewing of Riemann surfaces as auxiliary model spaces in a geometrical
interpretation of algebraic products of spaces associated to vertex algebras. Simi-
lar to various other structures in the theory of vertex operator algebras, this is not
be usual associative product. The product that occur is parametrized by a nonzero
complex number € identified to the complex parameter of the sewing procedure we
involve. More generally, the product is constructed from two Riemann spheres with
a collection of marked points, and local coordinates vanishing at these points. The
same scheme works, for example, for tensor products of modules which are in fact
parametrized by such geometric objects. Because of this, the existence of such prod-
ucts involves the convergence. In addition to that, a vertex operator algebra must
satisfy some conditions in order for such convergence to hold.

In this paper we introduce the product of W-spaces of rational differential forms
for a grading-restricted vertex algebra [6] For the construction of double complexes
(cf. Sectionapplication, [6]) we make use of linear maps from tensor powers of V' to
the space W,, .. .. to define cochains in vertex algebra cohomology theory. For that
purpose, in particular, to define the coboundary operator, we have to compose chain-
cochains with vertex operators. However, as mentioned in [6], the images of vertex
operator maps in general do not belong to algebras or their modules. Such objects
belong to corresponding algebraic completions which constitute one of the most subtle
features of the theory of vertex algebras. Because of this, we might not be able to
compose vertex operators directly. In order to overcome this problem,one we first
writes a series by projecting an element of the algebraic completion of an algebra
or a module to its homogeneous components. Then we compose these homogeneous
components with vertex operators, and take formal sums. If such formal sums are
absolutely convergent, then these operators can be composed and can be used in
constructions.

The plan of the paper is the following. In Section 2 we recall [6,10] the definition
of the space of W-valued rational forms for a grading-restricted vertex algebras, and
remind properties of their elements. In Section 3 we introduce a product for elements
of two W, .. ..-spaces. In Section 4 we study properties of the resulting product.
In Section 5 we recall the definition and properties [6] of spaces CI(V, W) for the
chain-cochain double complex for a grading-restricted vertex algebra. In Section 6
we define the product for C?,(V,W)-spaces and study its properties. In Section 7
we consider the particular case of a short exceptional complex associated to certain
Cn (V, W) subspaces. In Appendixes we provide the material needed for construction
of the product for W-spaces. In Appendix 8 we recall the notion of a quasi-conformal
grading-restricted vertex algebra and its modules. In Appendix 9 we describe the
geometric procedure of forming a Riemann sphere by sewing two initial Riemann
spheres. Finally, Appendix 10 contains the proof of Proposition 10.
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2. SPACES OF W-VALUED RATIONAL FORMS

2.1. W-valued rational functions. We define the configuration spaces:
F,C= {(Zla"'azn) ecC” ‘ Zi #ZWZ%]}a

forn € Z,. Let V be a grading-restricted vertex algebra, and W a a grading-restricted
generalized V-module. By W we denote the algebraic completion of W,

W= ][] Wa = W)
neC
Let w’ € W’ be an arbitrary element of W’ dual to W with respect to a non-degenerate
bilinear form (.,.) on W.
Definition 1. A W-valued rational function in (z1,...,2,) with the only possible
poles at z; = z;, 1 # j, is a map

f:F,C — W,

(z1,.-y2n) = flz1,...,20),
such that for any w’ € W/,
R(z1,. o y2n) = R((W, f(21,--,20))) s (2.1)
is a rational function in (21,...,2,) with the only possible poles at z; = z;, i # j.
In this paper, such a map is called W-valued rational function in (z1,...,2,) with

possible other poles. The space of W-valued rational functions is denoted by W, e

Here R(.) denotes the following (cf. [6]). Namely, if a meromorphic function
f(z1,...,2,) on aregion in C™ can be analytically extended to a rational function in
(#1, ..., 2n), then the notation R(f(z1,...,2,)) is used to denote such rational func-
tion. Note that the set of a grading-restricted vertex algebra elements (vy,...,v,)
associated with corresponding (z1, ..., z,) play the role of non-commutative parame-
ters for a function f in (2.1). Let us introduce the definition of a W,, . -space:

Definition 2. We define the space W,, .. of Wzl,m’zn—valued rational forms F
with each vertex algebra element entry v;, 1 < i < n of a quasi-conformal grading-
restricted vertex algebra V' tensored with power wt (v;)-differential of corresponding
formal parameter z;, i.e.,

F(v1, 2150, 2n)
= (dzfvt 1) & V1,215 .5 dszt n) @ vy, zn) EW., . (22)
The reason why vertex algebra elements (v1, . .., v,) are supplied in (2.2) by powers

of differentials of corresponding formal parameters is explained in Appendix 10 where
we recall a part of the proof given in [11]. We have

Proposition 1. The form (2.2) is invariant with respect to elements
(pl(zla sy ZTL)7 see 7pn(zla ey Zn)) B
of the group Autzh,_,zn(’)("), i.e., under the changes

zi = 2 = pi(21,. -y 2n),
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of formal parameters (z1,...,2n). O

2.2. Properties of rational functions for JW-valued elements. Let V' be a
grading-restricted vertex algebra and W a grading-restricted generalized V-module
(cf. Appendix 8). Let us recall some definitions and facts about matrix elements for
a grading-restricted vertex algebra [6]. If a meromorphic function f(z1,...,2,) on
a domain in C™ is analytically extendable to a rational function in (z1,...,2,), we
denote this rational function by R(f(z1,...,2s)).

Definition 3. For n € Z,, a linear map
F(v1,215 3 0n, 20) = V" =W,
is said to have the Ly (—1)-derivative property if
(4) 0y, F(01, 215 5Un, 2n) = F(v1, 215 s Ly (= 1)vs, 245 . . .5 Un, 2n), (2.3)
fori=1,...,n, (v1,...,v,) €V, w € W, and

(i) Zazi]:(vl,zl; -+ 3Un, 2n) = Lw (=1).F (v1, 215 . - - 5 Un, Zn), (2.4)
i=1
with some action ”.” of Ly (—1) on F(v1, 215 .. .;0n, 2n)-

Note that since Ly (—1) is a weight-one operator on W, for any z € C, e*fw (=1
is a well-defined linear operator on W,, . . . In [6] we find the following

.....

Proposition 2. Let F be a linear map having the Ly (—1)-derivative property. Then
for (vi,...,v,) €V, (21,...,2n) € F,C, z € C such that (z1 + z,...,2n + 2) € F,,C,

eZLW(fl)]:(vl, 2153 Un, 2n) = F(v1,21+ 2. .3 U, 20 + 2), (2.5)
and and 1 < i <n such that
(21, Zic1, Zi + 2, Zit1, - - -, 2n) € F,C,
the power series expansion of
F(v1, 215+« -3 Vie1, Zie1; Uiy Zi + 25 Vg1, Zig 1 - - - Unsy Zn),s (2.6)
in z s equal to the power series

sz(—l)

}—(0121;~-;Uz‘7172i—1;6 Ui72i§vi+172i+1§~-~§Un7zn)» (2.7)

in z. In particular, the power series (2.7) in z is absolutely convergent to (2.6) in the
disk |z| < min;z;{|z; — z;|}.

One states

Definition 4. A linear map
F: Vo Wiz

has the Ly (0)-conjugation property if for (vq,...,v,) € V, (21,...,2,) € F,C, and
z € C*, such that (zz1,...,22,) € F,,C,

ZLW(O)]-'(vl7 215 i Uny 2n) = F (zLV(O)vl, zz1;.. . 20 Oy, zzn) . (2.8)



THE PRODUCT OF W-SPACES 5

One defines the action of S, on the space Hom(V®" W., ...z, ) of linear maps from
VO™ to W,,...., by

o(F)(v1, 215+ 5Un, 2n) = F(Va(1)s Zo(1)} - - - Vo(n)s Zo(n))s (2.9)

for 0 € Sy, and (v1,...,v,) € V. We will use the notation o;, __;
the permutation given by o, ;. (j) =14;, for j=1,...,n.
Finally, the following result was proved in [2]:

€ S,, to denote

n

Proposition 3. For (v1,...,v,) €V, w e W and w' € W/,
(W', Yw (v1, 21) .. Y (v, 20)w),
is absolutely convergent in the region |z1] > ... > |z,| > 0 to a rational function
R((w', Y (v1,21) - .. Yiv (0n, 20 )w)),

in (21,...,2n) with the only possible poles at z; = zj, i # j, and z; = 0. The following
commutativity holds: for o € S,,

R((w', Yiy (v1,21) - .. Yiv (v, 20 )w))
= R((w’, YW (Ua(1)7 20(1)) e YW (Ua(n)v za(n))w>)

3. PRODUCT OF SPACES OF W-VALUED FORMS

3.1. Motivation and geometrical interpretation. The structure of W,, . . -
spaces is quite complicated and it is difficult to introduce algebraically a product
of its elements. In order to define an appropriate product of two W, . . -spaces we
first have to interpret them geometrically. Basically, a W, ... . -space must be associ-
ated with a certain model space, the algebraic W-language should be transferred to a
geometrical one, two model spaces should be ”connected” appropriately, and, finally,
a product should be defined.

For two Wy, ... z,.- and W, ., -spaces we first associate formal complex param-
eters in the sets (x1,...,2x) and (y1,...,yn) to parameters of two auxiliary spaces.
Then we describe a geometric procedure to form a resulting model space by combining
two original model spaces. Formal parameters of W,, . should be then identified
with parameters of the resulting space.

Note that according to our assumption, (z1,...,2zr) € FxC, and (y1,...,yn) €
F,C. As it follows from th definition of the configuration space F,,C in Subsection
2.1, in the case of coincidence of two formal parameters they are excluded from F,,C.
In general, it may happen that some number r of formal parameters of Wy, . .
coincide with some r formal parameters of W,, . .. Thus, we require that the set
of formal parameters (21, ..., 2Zk+n—2-) for the resulting model space would belong to
Fiin—2rC. This leads to the fall off of the total number of formal parameters for
the resulting model space W, ... 2. ,_,,.- In what follows we consider the case when
all formal parameters (z1, ..., zy) differ from formal parameters of (y1,...,yn). This
singular case is then can be treated similar to the ordinary one in lower dimension.

Zk+n
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3.2. Definition of the product for JV-valued rational forms. Recall the defini-
tion (8.15) of the intertwining operator given in Appendix 8. We then formulate

Definition 5. For an arbitrary set of a grading-restricted vertex algebra V' elements

(Uh o ,Un), (’Uiv e 7”47,) S Vv andf(vlvxl; ey ’Ukuxk) S Wazl ..... Tk F(vllﬂyl; e ;’U';wyn)ﬂ
€ Wy,....,yn» introduce the e-product
e Wlh---ﬂck X Wy17~--1yn - W7017<--77«'k;y17---,yn7 (3'1)

for (x1,...,2k;Y1,---,Yn) € FxynC. For arbitrary w’ € W', the product is associated
to the form

R(T1y- s Tk YLy - oy Yni €)
=> D> W Yy (F(on, 21550k, 2), G1) )

leZ u€eV)
(W', YWy (F(, 415500, 40), G2) W), (3.2)
via (2.1), parametrized by (i, (o € C. The sum is taken over any V;-basis {u}, where

7 is the dual of u with respect to a non-degenerate bilinear form (. ,.)x, (8.28) over
V', (see Appendix 8).

By the standard reasoning [2,14], (3.2) does not depend on the choice of a basis of
u €V, I € Z. In the case when multiplied forms F do not contain V-elements, i.e.,
for &, U € W, (3.2) defines the product ® - ¥ associated to a rational function:

R(e) = e > (' ity (9,¢) u)w', iy (¥,¢) 1), (3-3)
l€eZ ueV;
which defines F(e) € W via R(e) = (w’, F(e)). As we will see in Section 5, Definition
5 is also supported by Proposition (8).

Remark 1. Note that due to (8.15), in Definition 5, and in (3.2) in particular, it
is assumed that F(vy,z1;...;vk,2%) and F(v],y1;...;v),Yn) are composable with
the V-module W vertex operators Yy (u, —(1) and Y (@, —(2) correspondingly (see
Section 5 for the definition of composability). The product (3.2) is actually defined by
sum of products of matrix elements of ordinary V-module W vertex operators acting
on W,, .. .. elements. In what follows we will see that, since v € V and @ € V'
are connected by (8.29), {; and (5 appear in a relation to each other. The form of
the product defined above is natural in terms of the theory of chacaters for vertex
operator algebras [3,12,14].

3.3. Convergence of the e-product and existence of corresponding rational
form. In order to prove convergence of a product of elements of two spaces Wy, ... a,
and Wy, ... of rational WW-valued forms, we have to use a geometrical interpretation
[8,13]. Recall that a W,, . . -space is defined by means of matrix elements of the form
(2.1). For a vertex algebra V, this corresponds [2] to a matrix element of a number
of V-vertex operators with formal parameters identified with local coordinates on
a Riemann sphere. Geometrically, each space W,, . . can be also associated to a
Riemann sphere with a few marked points, and local coordinates vanishing at these
points [8]. An extra point can be associated to a center of an annulus used in order
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to sew the sphere with another sphere. The product (3.2) has then a geometric
interpretation. The resulting model space would also be associated to a Riemann
sphere formed as a result of sewing procedure. In Appendix 9 we describe explicitly
the geometrical procedure of sewing of two spheres [13].

Let us identify (as in [1,3,8,12-14]) two sets (x1, ..., xx) and (y1,. .., yn) of complex
formal parameters, with local coordinates of two sets of points on the first and the
second Riemann spheres correspondingly. Identify complex parameters (3, (2 of (3.2)
with coordinates (9.1) of the annuluses (9.3). After identification of annuluses A, and
Ag, r coinciding coordinates may occur. This takes into account case of coinciding
formal parameters. In this way, we construct the map (3.1).

As we will see in the next subsection, the product is defined by a sum of products
of matrix elements [2] associated to each of two spheres. Such sum is supposed to
describe a W-valued rational differential form defined on a sphere formed as a result
of geometrical sewing [13] of two initial spheres. Since two initial spaces Wy, ... 4, and
Was.,....yn are defined through rational-valued forms expressed by matrix elements of
the form (2.1), it is then proved (Proposition 4), that the resulting product defines
a Wy, zniun,....yn-valued rational form by means of an absolute convergent matrix
element on the resulting sphere. In the next subsections we prove the existence
of such rational form, and absolute convergence of corresponding matrix element.
The complex sewing parameter, parametrizing the module space of sewin spheres,
parametrizes also the product of WW-spaces.

In this subsection and the next section we formulate the results of this paper for
the e-product of W-spaces.

Proposition 4. The product (3.2) of elements of the spaces Way, ..z, and Wy, 4.
corresponds to an absolutely converging in € rational form with only possible poles at
=5, Yy =Yy, and z; =y, 1 <i,9 <k, 1<j,7 <n.

Proof. In order to prove this proposition we use the geometrical interpretation of
the product (3.2) in terms of Riemann spheres with marked points (see Appendix
9). We consider two sets of vertex algebra elements (v1,...,vx) and (vf,...,v}), and

two sets of formal complex parameters (z1,...,%k), (y1,---,Yyn). Formal parameters

are identified with local coordinates of k points on the Riemann sphere §§°>

points on f);o), with excised annuluses A, (see definitions and notations in Appendix
9). Recall the sewing parameter condition (1¢s = € (9.4) of the sewing procedure.

Then, for (3.2) we obtain

,and n

(W', F(01, 215 5 Uy Thi V1, Y15 - - -3 Uy, Yns €))
= Zﬁl Z(wl7yv‘[}/vv (F(vr, 215508, 2k),C1) w)
l€Z uev;
<w/7YVIV/VV (‘F(ULyl;---;U;»yn),Cz) ﬂ> (34)

= ZGl Z (W', e PO Yy (u, =) F(or, 2155 0k, )

l€Z uev;
<wl>€<2 Lw(=1) YW (ﬂ7 _CQ) ‘F(vi7y1; e 71);7,7yn)>
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Recall from (9.1) (see Appendix 9) that in two sphere e-sewing formulation, the
complex parameters (,, a = 1, 2 are coordinates inside identified annuluses A,, and
|Ca| < 74. Therefore, due to Proposition 3 the matrix elements

ﬁ(xlw"yxk;cl) = <w/7eC1 Lw(=1) YW (U, _Cl) F(Ul,lfl;...;’l]k,xk)>, (35)

R(yh"wyn;CQ) = <wl7e<2 LW(_l) YW (ﬂ7 _CZ) f(vivyhvuiwyn)% (36)

are absolutely convergent in powers of ¢ with some radia of convergence R, < r,,
with |(4| < R,. The dependence of (3.5) and (3.6) on € is expressed via (4, a =1, 2.
Let us rewrite the product (3.2) as

(W', F(01, 2155 Uy Th V1, Y1 - - -3 Uy, Yns €))
= e (W', For, 15 0k, a3 V], Y15 -3 Vs Yn)) )
lez

= Z Z Z €l7m71 7’\ém(xla sy Tk Cl) 7Aé"m(yla sy Yng C2)a (37)

l€Z ueV; meC

as a formal series in € for |(,| < R,, where and |e| < r for r < ryry. Then we apply
Cauchy’s inequality to coefficient forms (3.5) and (3.6) to find

’ﬁm(xla"ka;<1)‘ SMlRl_ma (38)
with
M1: sup R(xlaaxlmcl)‘
[C1|<Ru1,|e|<r
Similarly,
Ry, s )| < MaR5™, (3.9)
for
M; = sup R(y1,---7yn;C2)‘~

[C2|<Ry,le|<r
Using (3.8) and (3.9) we obtain for (3.7)

[((w', Fv1, @155 Uk Th3 V1, Y15 -+ 500, Un) )il
< ﬁm($17--~717k§41)‘ ﬁm(ylw"ayn;CQ)’
< My My (RiRg)™™ . (3.10)
Thus, for M = min {M;, M2} and R = max {R;, Ry}, such that
IRi(z1;. . sy, Y G, Go)| < MR™HMAL (3.11)

Thus, we see that (3.2) is absolute convergent as a formal series in € is defined for
|Ca] < 74, and |e] < r for r < ryre, with extra poles only at z; = y;, 1 < i <k,
1<5<n. U

Now we show the existence of appropriate Wy, . 4, :y......y,-Valued rational form
corresponding to the absolute convergent rational form R(z1,...,Tk;Y1s--.,Yn;€)
defining the e-product of elements of the spaces W, .. », and Wy, . ...
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Lemma 1. For all choices of elements of the spaces Wy, .. . and Wy, . . .. there
exists an element F(vi,Z1;...; Uk, Tk V1, Y155V, Un; €) € Way apiyn,yn SUCh
that the product (3.2) converges to

R(@1, . Trs Y1,y yns€) = (W', F(v1, @15 .o 05 U, T V1, Y15 -3 Uy Y €).

Proof. In the proof of Proposition 4 we proved the absolute convergence of the product
(3.2) to a rational form R(z1,...,2k; Y1, --,Yn;€). The lemma follows from complete-
ness of Wa, 2.1,y and density of the space of rational differential forms. ([

As we see, the e-product is parametrized by a non-zero complex parameter €, and
a collection of points on auxiliary spheres with formal parameters vanishing at these
points. We then have

Definition 6. For fixed sets (v1,...,v5), (v],...,v) €V, (x1,...,2x) €C, (Y1,--,Yn)
€ C, we call the set of all Wy, ... ay:u1,...,y,,-Valued rational forms F(vy, @15 .. Uk, T

5 UL, Y153 U, Uns€) defined by (3.2) with the parameter e exhausting all possible
values, the complete product of the spaces Wy, .. », and Wy, ...

4. PROPERTIES OF THE W-PRODUCT

In this section we study properties of the product F(vy, z1; .. .; Uk, Tk; V1, Y1; .-
vl Yn; €) of (3.2). Since we assume that (x1,..., 2541, -, Yn) € Fr4nC, i.e., coinci-
dences of x; and y; are excluded by the definition of Fj,C. We have

Definition 7. We define the action of 9, = 9., = 9/0.,, 1 <1 < k + n, the differ-

entiation of F(v1,Z1;...;Vk, Tk; V], Y15 .. ;Vh, Yn; €) with respect to the I-th entry of
(1, -, Tk;Y1,- -, Yn) as follows
(W', O F (V1,215 -5 Uk, Tk V1, Y15 -+ -5 Vg Y3 €))

= Z 67” Z <w/762’l7yi}[//vv (]:(Ul;xl;"';vk7xk)7<1) ’LL>

meZ u€EVy,
oy .
(w', 5'y;‘JYV1{yV (F(01, 915300, Yn), C2) ). (4.1)

Proposition 5. The product (3.2) satisfies the Ly (—1)-derivative (2.3) and Ly (0)-
conjugation (2.8) properties.
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Proof. By using (2.3) for F(v1,21;...; vk, xr) and F(vi,y1;...;0,,yn), we consider

(W', O F (01, @15 .. .3 Uk, T3 V1, Y15 - - -5 Upyy Y €))

= Z e Z <wl78§2)iYV{VYV (-7:(017551;-~~§Uk»$k)7C1) U’>

MmeZ ueV,
515 _
(w', 0y Yy (F(01, 15 -3V} Un), C2) W)
= Z € Z (w’,@ii’iYW (u, —Cl)]‘"(vhﬂh; .. -;Uk,l’k)) u)

meZL UEVy,
<wlaa?(/sz'yjYW (ﬂa _CQ) f(viayﬂ v ;U;myn»
= Z e Z (W', Y, (agi’if(vl,xl; .. .;Uk,l‘k),<1) u)

mEZ u€ Vi,

<w’,YVI[//VV (851 J}‘(vl,yl, 3 Uns Yn), CQ) )
= Z €m Z (w', Yy, (]—"(vl,xl;...;(Lv(—l))al‘i vi7xi;-~.;vk7$k),C1) u)

meZ ueEV,

(! Yy (F4 i (L (1) g0 ) o) )

= (W', Fvr, 2155 (Lv(=1));3 - 305, Uni€)), (4.2)
where (Ly(—1)), acts on the [-th entry of (vy,...;vk;0],...,v;,). Summing over [ we
obtain

k+n

> OF(vr, @15 0k, TRV YL 5V Y E))
k+n
= Z Fvy, x5 (Lv(=1) 5. 5vp, Ynie))
= <w s L (= 1) F (01,2105 Uk T V1, Y15 - -5 U Y €))- (4.3)
Due to (2.8), (8.5), (8.29), (8.30), and (8.13), we have

. Lv(0 ., Lv(0),,/ . Ly (0),,/
(w', F(z* Do,z 5. 28 Oup 2 2y 25V 0 )vl,zyl,..., v )v V2 Yn3 €))

= Z e Z (w', Y, (]-'(ZLV(O)vl z T1; V(O)Uk,zxk)7C1> u)

meZ ueVy,

W' Yty (FEE Oz g2 O, 2 9,),6) @)

= Z em Z (W', Yy, (ZLV(O)f(Ul,$1;~--;Uk,ﬂfk),Cl) u)

meZ ueVy,

<w/7 YI}[/‘//V (ZLV(O)‘F(U17 Yii- .- ;’U;,“ yn)7 CQ) ﬂ>
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= Z e Z (W', e P DYy (u, =) 2PV O F(on, 205 o, 7))
meZ uEVm

<’LU/, e€2LW(_1) YW (Ua _C2> zLV(O)]:<UIIa Y1343 U;La yn)>

= Z e Z (w', e tw (=1 Lv Oy, (z_LV(O)u, —z (1) Fvr, 2155k, k)
meZ UE Vi,

(w', eS2Lw (1) HLw (O) yy, (z_LV(O)E —2 Cz) F(Ul, 915500, Un))

= Z e Z (w', S Ew (1) L Lw ©) p=wtu y (4 2 () F(uy, ;.. 25 0k, 1))
meZ UEVm,

(w', eCLw(=1) L Lw(0) ,—wtd y- (W, —z ) F(vl, y15- 500, Yn))

=3 e > W PO WYY (u, —2G) F(on, 215 vk, 3))
meEZ uEVn,

(w', 2Ew O eClw (EDyy (@, —2G) F(0h, 915+ 300, Yn), )

= Z € Z (w', 2P O YW (Floy, 215 .o, ), 2C1) )
meZ UEVm,

(W', 2P O YW (F (i, 15500, yn), 2C2) T)

= Z € Z <w/1ZLW(O) YVI[/I//V (-F(vlaxl;"';vkvxk)agi) u>

meZ u€EVy,

(w', 22 O YW (Fol, yis. 500, yn), ) T)

= (w', (ZLW(O)) F (U115 3V, TR VL Y5V Y €)).
With (9.4), we obtain (2.8) for (3.2). O
Remark 2. As we see in the last expressions, the Ly (0)-conjugation property (2.8)

for the product (3.2) includes the action of 2Iv(O)_operator on complex parameters
Caya=1,2.

We also have
Proposition 6. For generic elements v;, v§ eV, 1<i<k,1<j<mn, of a quasi-

conformal grading-restricted vertex algebra, the product (3.2) is canonincal with re-
spect to the action of the group Auty, .z, OF+1) of k4n-dimensional changes

(T1, e TR Y1y ey Un) = (T e T3 YL ey Uh)
= (pr(@1, - TR YL, Un) s Plen (T, TR YL Yn)), (44)
of formal parameters.
Proof. Note that due to Proposition 1
For, 2. vp,xy) = Fvr, @15 .50k, Tk),

]:(Uhylla7vn7y':7,) ‘F(U17y1;"';vn7yn)'
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Thus,
(W', Flug, 24503 0k, Ts 01, U153 V0 Ui €)
=SSl Yy (Flon ), ) )
I€Z  ueV,
<w/7YI/IVyV (}—(vivy/ﬁ cee ;U:’l7y7/’7,)7 C2)ﬂ>
= Zel Z (W', YW (F(ui, 21550k, 1), C1) )
leZ ueV;
(', Yy (F(01, 915500, 9n), G2) W)
= (W', F(V1,T15 oy Vky Tk VL, YL« - -3 Uy Yns €))-
Thus, the product (3.2) is invariant under (4.4). O

In the geometric interpretation in terms of auxiliary spaces, the definition (3.2)
depends on the choice of insertion points p;, 1 < ¢ < k, with local coordinated x; on
Z§0)7 and p}, 1 < j < k, with local coordinates y; on Eg)). Suppose we change the

the distribution of points among two Riemann spheres. We formulate the following

Lemma 2. For a fized set (v1,...,0,) € V, of vertex algebra elements, the e-product
F(01,215. 300, 2n5€) € Way 20

e - Wzl,.“,zk X Wzk+1,...,zn — Wzl,“.,zna (45)
remains the same for elements F(U1,21;. ..Uk, 2k) € Way.... 2 ond F(Vps1, Zkg1; - - -

{UnsZn) € Wapirozn s for any 0 < k < n.

Remark 3. This Lemma is important for the formulation of cohomological invariants
associated to grading-restricted vertex algebras on smooth manifolds [11]. In case
k =0, we obtain from (4.6),

e WXWo e P Wa iz (4.6)
Proof. Let v; € V, 1 < i <k, v; € V,1 < j <k, and 2, z; are correspond-
ing formal parameters. We show that the e-product of F(v1,z1;...;0k,2k) and
F(Ukt1, 2kg1i- -5 Un, 2n), i€, the W, ., -valued differential form
F((01, 215+ 5 Uks 28); (Ut 1, 2k 15+ - -5 Ons 2n); C1,5 o5 €) (4.7)
is independent of the choice of 0 < k < n. Consider
(W', F(01, 2155 Uk, 2k Ok 1y 2kt 15+ - -3 Ony Zn; C1, C23 €))
= Z el Z <w,7YI/IV}/V (‘/T-v(ilv 215 ;5/% Zk)a Cl) ’LL>
l€EZ ueV]
<w/anX/Vv (F (U415 2415 - - -3 On, 20), C2) ). (4.8)

On the other hand, for 0 < m < k, consider
S W ity (F@1, 205 5T 2m), 1) )
l€EZ uweV]
<w/7YVI(/1//V (‘F(gm"rl’ Z;n—',—l; s ;:Eka Z;c;fﬁk-'rly 13- 757“ Zn)7<2) ﬂ>

’ ~ ~ ~ ’ ~ .~ ~
= (W', F(U1, 215 - -3 Ums Zm Ut 1s Zig 15 - - - 5 Uks 25 Ukip 1 215 - - -5 Uny Zn))-
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The last is the e-product (3.2) of F (U1, 215 ... ;Om, Zm) € Way ..z, a0d F (Unng1, 20415

m

3 Uk, 25 Ukt1, 215 -+ Uny2n) € W, e Ly Let us apply the invariance
with respect to a subgroup of Aut., . ... . O™ with (21, 2m) and (Zg+1,- .-, 2n)
remaining unchanged. Then we obtain the same product (4.8). (]

Next, we formulate

Definition 8. We define the action of an element ¢ € Sjy, on the product of
F(oi, w1550, 7)) € Way o ays and F (01,915 505, Yn) € Wy Ly, 88

(W', 0 (F) (01,15 - -3 Uk, T V1, Y15 - - -3 Uy Uni €))
= (W', F(Us(1)s To(1); - - + 3 Vo (k)s Lo (k)i Vir(1)s Yo (1)} - - -3 Vor(n)s Yor(n) €))

= Z <w/, YM"}’V (.F(Ug(l),.ro—(l); ...50 o (k) xo.(k ) Cl) >
ueV

<wl7YV[VyV (‘F(Ulo‘(l)’yﬂ'(l); .- ( ya(n)) CQ) a> (49)
5. DOUBLE COMPLEX SPACES C™ (V, W)

In [6] (see also [10]) a cohomology theory for grading-restricted vertex algebras was
introduced. In particular, spaces C? (V, W), n > 0, m > 0, and differentials 67, for
chain-cochain double complex (CJ(V,W),dr) were introduced. In this section we
recal the definition and properties of C (V, W), [6].

5.1. F-elements. For w € W, the W-valued function given by
E‘(;)(vl, 2153 Un,y 2y w) = Elww (v, 21) . .. ww (Up, 20 )W),

where an element E(¢) is a W-valued rational function, ¢ € W is given by (see
notations for wyy(.,.) in Section 5.3)

E(¢) = R((w', 9))-

One defines
Wi(n) . .. (n) .. .
Eyy (wivg, 215005 0p, 20) = By (V1,215 25U, Zp5 W),
W . —
where Ey, (n )(w;vl,zl;...;vn,zn) is an element of W, . . For (z1,...,2,,() €

F,+1C, (vh...,vn) € V,and w e W, set

EI(/;/Ll)(/Ulu Z13+++3Un, 2n; W, C) =K (YW(Ula Zl) cee YW(vru Zn) YV‘[//VV(wu C)IV) .
One defines
Fo (E‘(,ll)l Q. ®E(l )> LYot W

..... Zm4n)
by
(Fo(BW, @...0 ES))) (01 ® ... ® Umin_1)
= B(F(E{ (11 ®...0u,)® ...
In
®E( )(Ul1+ Al +1 @ - ®vll+“-+ln—1+ln)))7
and

B og F:VE™ R LT,

s Zmgn—1
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is given by
(EI(;,”) 00 F)(11 ® ... ® Vmgn)
=EBE (01 ® ... @ Fms1 @ ... @ Uman))).
Finally,

B o 1 VORE ST,

Em4n—17

is defined by

(Evvgém) Omt1 F)(01 @ ... @ Uppi) = E(Egvvém)(}'(vl ®...®Vn);Vnt1 ® .. @ VUnim))-
Inthecasethat [y =... =11 =l;y1 =1land l; =m—n—1, for some 1 <i < n, we
will use F o, ng)l to denote F o (E‘(/ll)l ®...0 E‘(,l”)l) Note that our notations differ
with that of [6].

5.2. Maps composable with vertex operators. Let us recall the definition of
maps composable with a number of vertex operators [6].

Definition 9. For a V-module
W =[] W),

neC
and m € C, let o
P W = Wiy,
be the projection from W to W(,,). Let
F:VO" W, .,
be a linear map. For m € N, F is called [6,10] composable with m vertex operators

if the following conditions are satisfied:

1) Let ly,...,0, € Zy such that Iy + ...+ 1, = m+n, v1,...,0mn € V, and
w' € W’. Set

v, = E\(/li)(vklazkl = Gis o3 Uk 2h — Gy y), (5.1)
where
ki =li4 Al 41 o himli4 . Al + 1 (5.2)
for i = 1,...,n. Then there exist positive integers N (v;,v;) depending only on v;
and v; for ¢,5 =1,...,k, ¢ # j such that the series
nF) = > (W, FP,01:G;. . P U G)), (5.3)
T1yesTn €L

is absolutely convergent when

|Zl1+--~+lq,—1+P - C7| + |Zl1+--~+lj—1+q - Cl‘ < |<7 - Cj|a (54)
fori,j=1,...,k,i#jandforp=1,...,[;and ¢ =1,...,l;. The sum must be ana-
lytically extended to a rational function in (z1, ..., 2m4n), independent of (1, ..., ),

with the only possible poles at z; = z;, of order less than or equal to N} (v;,v;), for
L,j=1,...,k, i #j.
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2) For v1,...,0m4n € V, and (z1,...,2p+m) € C there exist positive integers
N7 (v;,v;), depending only on v; and vj, for 4,5 = 1,...,k, ¢ # j, such that for
arbitrary w’ € W’ and such that the series

T(F) = Z(w', Ei(,(,n) (vl, 2153 U, Zm Py(F(Um41s Zma15 - - -3 Umgns zm+n))>,(5.5)
qeC

is absolutely convergent when

Zi 7é 255 i 7& j»
|zi| > |2x| > 0, (5.6)
fori=1,...,m,and k=m+1,...,m+n, and the sum can be analytically extended
to a rational function in (z1,...,2p4+m) with the only possible poles at z; = zj, of

orders less than or equal to N, (v, v;), for 4,5 =1,... k, i # j,.
In [6], we the following useful proposition is proven:

Proposition 7. Let F : V&" — W.. ..., be composable with m vertex operators.
Then we have:

(1) For p < m, F is composable with p vertex operators and for p, q € Z
such that p+q < m and ly,...,l, € Zy such that iy + ...+ 1, = p+n,
}"O(E‘(,l;l)l(g). . ®E‘(/l")1) and El(,s) opt+1F are composable with q vertex operators.

(2) Forp, q € Zy suchthatp+q <m,ly,...,l, € Zs suchthatli+...4+1, = p+n
and ki,...,kptn € Z4 such that ki + ...+ kpyn = ¢+ D+ n, we have

l ln k kpin
(Fo (B ®...0 ES1)) o (BY ®...0 ES)

k by
=Fo (E‘(/k;li"--'-ﬁ-k:ll) R...® E‘(/;l%l+.,.+z”71+1+ +hpt ))

(3) Forp, q € Zy such that p+q <m andly,... 1, € Zy such thatli+...+1, =
p+n, we have

1 In I ln
EY o1 (Fo(BYY @...@ E{M))) = (BY oge1 F) o (ES, ®... 0 EYM).
(4) Forp, q € Zy such that p+ q < m, we have
EI(/IZ;) Op+1 (Eég) og+1 F) = EI(/II;Jrq) Optqt1 F

Finally, in [6] we find the proof of the following. Let now P, : W — W, for
n € C be the projection from W to W(,.

Proposition 8. Fork, l1,...,l,+1 € Z4+ and vgl), e ,vl(ll), . ,v§"+1), cee l(nfll) €
V,weW, and w' € W, the series
Z (w', E(W"’l) (PT1 (E‘(/ll)(v§1), z%l); . ;’Ul(ll), zl(ll); 1y, Zgo))); co

1oy €2, 741 EC
P (ByY 0, 2 ol 2 1y, 2(0))
(B @ A AT e A 0))), ()

R P R P s W 241

P,

Tn41
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converges absolutely to

(w', E(Wn)(vil), z%l) + 250); . ;vl(ll), zl(ll) + 250); o
n4+1 n+1 0 n+1 n+1 0
oA S Y T m )
when 0 < |Zl(;i)\ + |z§j)| < \250) — Z‘EO)| fori, j=1,....n+1,1#j, p=1,...,1,
q = 1, ey lj.

5.3. Definition of C (V,W)-spaces. In this subsection we recall the definition of
spaces C7'(V, W) given in [6] for a grading-restricted vertex algebra V. First, recall
the definition of shuffles. Let S; be the permutation group. Forl € Nand 1 < s <[-1,
let J;.s be the set of elements of S; which preserve the order of the first s numbers
and the order of the last [ — s numbers, that is,

Js={ceS|ol)<...<oa(s), o(s+1)<...<o(l)}.
The elements of J;.; are called shuffles, and we use the notation
Jl;_sl ={o o€ i}

For a set of n elements (vq,...,v,) of a grading-restricted vertex algebra V, we
consider linear maps

JT"('Ul,Zl;...;Un,Zn) : V®n - Wzl7--*7z'lb (58)

(see Section 2 for the definition of a W,, . . space). Note that similar to considera-
tions of [1], (2.2) can be treated as Aut,, . O™ -torsor of the product of groups
of formal parameter transformations. In what follows, according to definitions of Ap-
pendix 2, when we write an element F of the space W., . .., we actually have in
mind corresponding matrix element (w’, F) that absolutely converges (in a certain
domain) to a rational form-valued function R({w’, F)). Quite frequently we will write
(w', F) which would denote a rational W-valued form. In notations, we would keep
tensor products of vertex algebra elements with wt -powers of z-differentials when it
is inevitable only.

Later in the next section we prove, that for arbitrary v; € V, 1 < ¢ < n, with
formal parameters z; an element (2.2) as well as the vertex operators

ww (vi, 2i) = Yw (dzzwt ) ®%‘»Zi)) ; (5.9)

are invariant with respect to the action of the group Aut,, . O™ In (5.9) we
mean the ordinary vertex operator (as defined in Appendix 8) not affecting the tensor
product with corresponding differential.

In [6] one finds:

Proposition 9. The subspace of Hom(VE™ W,, . ) consisting of linear maps hav-
ing the Ly (—1)-derivative property, having the Ly (0)-conjugation property or being
composable with m vertex operators is invariant under the action of Sy,. O

We next have
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Definition 10. For arbitrary set of vertex alebra elements v;, v; € V, and formal
complex parameters z;, z;, 1 < i <n,1 <j<m,n >0 m >0, we denote by
Cn (V, W), the space of all linear maps (5.8)

For,215 300, 20) : VE =W, L (5.10)

composable with a m of vertex operators (5.9) with vertex algebra elements v;, with
formal parameters z;. We assume also that (2.2) satisfy Ly (—1)-derivative (2.3),
Ly (0)-conjugation (2.8) properties, and the symmetry property with respect to action
of the symmetric group Sy,:

Z (_1)|U|].‘ (Ug(l), Zg(l); N ;’Uo(n), za(n)) =0. (5.11)
UEJ;;é
In [11] we prove the following

Proposition 10. For a quasi-conformal grading-restricted vertex algebra V and its
module W, the definition (10) is canonical, i.e., invariant with respect to the group
of n-dimensional transformations

(21, oy 2n) = (21, oy 20) = (p1(21, -y 20)s o+ s (215 - 20)),
of formal parameters z;, 1 <1 <mn.
In Appendix 10 we recall the proof of Proposition 10.

Remark 4. The condition of quasi-conformality is necessary in the proof of invariance
of elements of the space W,, . . with respect to a vertex algebraic representation (cf.
Appendix 8) of the group Aut,, . . O™ In what follows, we will always assume
the quasi-conformality of V' when it concerns the spaces C,(V, W).

5.4. Coboundary operators. In this subsection we recall [6] the definition of the
coboundary operator for the spaces CI (V, W),

n

SF = Y (=1)' F(wv(vi,2i — 2i41) vig1)

i=1
+ ww (v1,21) F(v2, 2253 V0, 2n)
+ (=D ow (Vngts Zng1) F1, 2155 Un, Zn)- (5.12)
Note that it is assumed that the coboundary operator does not affect dzZWt ) _tensor
multipliers in F. In [6] the following proposition is proved
Proposition 11. The operator (5.12) obeis
s (VW) = CREL (V,W), (5.13)
Gy 00, =0, (5.14)
0 S 1 g O
0— C (VW) = C,,_1(VVW) — ... — C"(V, W) — 0, (5.15)

i.e., provides the chain-cochain complex (CI (V, W), 2. O
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6. APPLICATION: THE PRODUCT OF CI (V,W)-SPACES

In this section we consider an application of the material of Section 3 to double
complex spaces C7, (V, W), (Definition 10) described in previous section. We introduce
the product of two double complex spaces with the image in another double complex
space coherent with respect to the original differential (5.12), and the symmetry
property (5.11). We prove the canonicity of the product, and derive an analogue of
Leibniz formula.

Definition 11. For F(vi,z1;...;v,2x) € CE(V,2W), and F(vi,y1;...;0,,yn) €
Cn, (V. W) the product

. . / . <oy . . c oy . c oy .
-F(Uhxlv"‘avkvxk) 'EF(Uhyla"'vvn?yn) '_>-F(fvla‘rh"'7Uk7xkav17y17"'7Un7yna€)7
is a Way,... zesw1 ...,y -valued rational form

(W' F(01, 215+ 5 Uk, Th5 VY, YL+ -3 Vs Yns €))
= (w', F(vi,z1;. .50k, k) -« F(UL, Y15« 500, Yn))
= Z(w’,YVI(,VV (Flor, 2153, k), (1) uw)
uevV
(W', Yy (F(, 5153V Un), G2) W), (6.1)
defined by (3.2).

Remark 5. Let ¢t be the number of common vertex operators the mappings F(vy, x1;
o Vi, o) € CE (VW) and F (v, 15 .. 500, yn) € CP.(V, W), are composable with.
Similar to the case of common formal parameters, this case is separately treated with
a decrease to m + m/ — t of number of composable vertex operators. In what follows,
we exclude this case from considerations.

The action of ¢ € Sk, on the product F (vi,1;. .5 Uk, Th5 Viy 15915 -+ 5 Uy Yns €
(6.1) is given by (2.9). We then have

Proposition 12. For F(vi,z1;...;vk,2k) € CK (V,W) and F(v4,y1;.. .0, yn) €

cr.(V,W), the product F (v1,&1;...;Vk, Tk; V1, Y1} - -3V, Yns €) (6.1) belongs to the
space CFt" (V, W), i.e.,

m-+m’

et CE (VW) x Ci (VW) — CEER (V).

m-+m/

Proof. In Proposition 4 we proved that F (vi,x1;...; 0k, Tk; V1, Y15 .-V, Yni€) €
Wars,.wniyr,..yn- 1t is clear that

: CEV, W) x C™(V, W) — CFF™(V, W),

for some . First, we show that (5.11) for o € Sk,

> (=yllF (va(l)vxa(l);"';va(k’)vxa(k);vtl-;(l)aya(l);-~~;v£r(n)7yo(n)> =0.

-1
o€ S s
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For arbitrary w’ € W', we have

Z (*1)|0‘<wl,f(%(1)»%(1)%~-;Ua(k),%(k);v;(l)ayou);~~-;vfy(n),ya(n)))>
ceJ !

ktnis
- Z (71>|0| Z <w/7YV1[/}'/V (‘F(UU(l)?xO'(l); cee ;va(k)7x0'(k))7<.1) U>
”€]k+1ns ueV
<wl7YV‘I//VV (-7:(”;(1)7%(1); cees a'(n) y Yo n)) 42) >
= Z Z D7l w’, e B D Vi (u, 1) F(Uo(1) To(1)s - -3 Vo (k) To(k))
uevae']ki s

<wlv GCQLW(_l) YW(ﬂ7 _CQ) F(U:;-(l)a ya(l); ey U;—(n)v ya(n))>

=3 @ e Y (u,-G) Y (D F o), Toyi - Ve Ta)
ueV JEJ;;

<UJ/, e<2LW(_1) YW(ﬂv _CQ) f(vzly(l)a Yo(1)5- -5 ’U:;(n)a ya(n))>
+ Z@U" e I D Vi (u, —C1) F(Vo(1)s To(1)i- - - Vo) To(k)))

ueV
(w', ec2bw =1 Yw (@, —(2) Z (_1)‘6‘}—(1};(1)’ Yo(1)i- -5 Ufr(n)v yd(ﬂ))> =0,
UEJ,?@
since, JkJrn .= Jk o X 1 and due to the fact that F(vy,x1;...; vk, %) and F(v], y1;
C U Yn) satisfy (2.9).

Next, we show that F (v1,Z1;...;Vk, Tk; V], Y1;- -3V, Yn; €) (6.1) is composable
with m + m/ vertex operators. Recall that F(vy,x1;...;vg, 2x) IS composable with
m vertex operators, and F(v],y1;...; v, yn) is composable with m’ vertex operators.
For F(vy,x1;...; vk, k) we have:

1) Let ly,...,lg € Zy such that Iy + ...+l =k +m, and vy, ..., 064, € V, and
arbitrary w’ € W’. Set

v, = E\(/li)(vkuxkl _<117’U]€17$kL _Ci;1V)7 (62)
where
ki=L+...+Li1+1, ..., kK=L+...+lL_1+1L, (6.3)
fori=1,...,k. Then the series
TEF) = Y (W F(Py 5GPy Wk, ), (6.4)
T1,e., TR EL

is absolutely convergent when

1Tty 4ttt — Gl 120441 q — Gl <G = Gl (6.5)
fori, j=1,....k i# jandforp=1,...,[; and ¢ = 1,...,l;. There exist positive
integers N,’fl(vi,vj), depending only on v; and v; for 7,5 = 1,...,k, i # j, such that
the sum is analytically extended to a rational function in (21, ..., Zk4m), independent
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of (¢1,...,¢k), with the only possible poles at @; = x;, of order less than or equal to
NE (vi,v;), for i, j=1,...,k, i #j.

For F(vi,y1;...;v),,yn) we have:

1) Let lf,...,l, € Zy such that If + ...+ 1, = n+m/, v],...,0p4m € V and
arbitrary w’ € W’. Set

vo= Ex(/l;/)(%pyk; = Girs -3 Uk, Uiy — Giri Lv), (6.6)
where
k=04 +l_ +1, .., K.=U+.. +l 1+, (6.7)
for i/ =1,...,n. Then the series
W F) = D (W F(Py s Py L G), (6.8)

T4, EL
is absolutely convergent when
ety ot = Gl W, g — Gl < IGr = Gl (6.9)

for 7/, j' = 1,...,n, 7 # j and for p" = 1,...,lj and ¢’ = 1,...,1%. There exist
positive integers N, (v}, v,), depending only on v;, and v}, ford, j =1,...,n, i’ # j,
such that the sum is analytically extended to a rational function in (y1,...,Yntm’),
independent of (({,...,(,), with the only possible poles at y;; = y,, of order less
than or equal to Ny, (vj,,v},), for @', " =1,...,n, @' # j'.

Now let us consider the first condition of Definition 9 of composability for the

product (6.1) of F(v1,x1;...; vk, xx) and F(vi, y1;. . .; vl, Yn) with a number of vertex
operators. Then we obtain for F (vi,Z1;...; Uk, Tk; V1, Y15« - - ; Uy Un; €) the following.
We redefine the notations for the set
" ", " /i " . ’
(V) VR Vgt Vg V1 -+ Ukt Unb Lo - -+ > Upm)
. o L0 !
= (Vs s Uk Ukgds - s Uk ULy« o Up3 Upy 1 - ooy Upnr ),
(Zlv--~7Zk;zk+la"'7zk+n) = (zlv"'vxk;ylv"'7yn)a
1 " 1 " —
of vertex algebra V' elements. Introduce Iy, ... 1}/, € Zy, such that Iy +...+1l}/, =
k+n+m+m'. Define
" amy, n ", o ",
\Ifi = EV (’Uklll, Zk;’ SRR ’Uk;’,, y Zk;/” - Ci”’ 1\/), (610)
where
T=0+. U+, o KL=+ 1 (6.11)
for i/ =1,...,k+n, and we take

( i/a'“v l/c/+n):(Cla-"ack;éiw'-ad)'

Then we consider
Iﬁ:ﬁnl (]:) = Z (w', ]:(Pri’ /1/; i/; e Pr;/Jr” Z+n, Cl/c/+n)>7 (612)

17 17
T ,.H,rk+n€Z

and prove it is absolutely convergent with some conditions.
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The condition
2ttty — G Loy e — G <G =G (6.13)
of absolute convergence for (6.12) for ¢, 7/ = 1,...,k +n, i # j and for p" =

L...,l{ and ¢" = 1,...,17, follows from the conditions (6.5) and (6.19). The action

of e¢Iw (=D Y (.,), a=1, 2, in
<wl7e<1LW(_1) YW(U7 _C) Z -F(P’M\IJI;CI;"';Prk\:[]k7<k)>7

T1yeees Tk EL
<w17€<2LW(_1) YW(E?_E) Z ]:(PT’I\I//DClyaPTL\II{rmC;z»a
rh,...,rEL

does not affect the absolute convergency of (6.4) and (6.8). We obtain

m-+m/’

- > W F B Py U Gl))

" "
T €L

= Z(w’,Y‘}’VW( Z F(Pri V1555 Py Wi, Gi), Qu)

ueV 1., EL

W, Y ( D F(Py Wil s Py W, (), 0)T)
ri,...,r €L
< |Th ()| 1T (F)I -

Thus, we infer that (6.12) is absolutely convergent. Recall that the maximal orders
of possible poles of (6.12) are N (v;,v;), Np(vi,vh) at @ = x5, yir = yj. From
the last expression we infer that there exist positive integers Niﬁ_’fn, (viir, v} for 4,
J=1..ki#j4, 1, j =1,...,n, i # j, depending only on vjj, and v, for i",
j" =1,...,k+n, i # j” such that the series (6.12) can be analytically extended
to a rational function in (z1,...,Zx;¥1,...,¥s), independent of (¢7,..., ¢, ,), with
extra possible poles at and x; = y;, of order less than or equal to N::;:—?n’ Vi, V5,
for i, " =1,...,n, i # §".

Let us proceed with the second condition of composability. For F (v, z1;...;vk, ) €
Ck(V,W), and (v1,...,04m) €V, (Z1,...,Zprm) € C, we have

2) For arbitrary w’ € W, the series
'-77];:1(]:) = Z<w/a EI(/;/n) (’Ulaxl; oy Umy T Pq(]:(vm+1; Tm+1s- - ;’Uerkzmerk))y

qeC
(6.14)

is absolutely convergent when
Zq 7& Zj, { 7é jv
|l‘l| > |.Z‘k/| > 0, (615)
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fori=1,...,m,and ¥’ =m+1,...,k+m, and the sum can be analytically extended
to a rational function in (x1,...,Zk4m) with the only possible poles at x; = x;, of
orders less than or equal to N (v;,v;), for i,j =1,...,k, i # j.

2’) For F(vi, 91530, Yn) € Ch (VW) (U1, ..., 054 0) € Vyand (Y1, ... Ynym?) €
C, the series

me () = ZW,E&T)(vi,ylam;v’m/,ym/;
qeC

Py(F (U1 Y15+ s Y ) ) (6.16)
is absolutely convergent when

yir i, 7 # 75

lyir| > |yw| >0, (6.17)
for/ =1,...,m, and ¥ = m’ +1,...,n+ m/, and the sum can be analytically
extended to a rational function in (yi,...,Yn+m/) Wwith the only possible poles at
yir = yjr, of orders less than or equal to N, (vj,,v},), for i, " =1,...,n, @' # j'.

2”) Thus, for the product (6.1) we obtain (v, ..., v), i) €V, and (21,...,

Zktn+m+m’) € C, we find positive integers Nﬁ#}n, (vf,v}), depending only on v; and

v;’, for ¢, j” =1,...,k+n, i" # j”, such that for arbitrary w’ € W’. First we note

Lemma 3.

} : r omtm’) (o o .
(w,EW V152155 U/ s m4m’;
qeC

Z . o
P, (]:(Um+m’+1’ ZmA4m/+15 -3 Umpm/ 4 k+tno Zm+m’+k+n))>

} : 1 gp(m) . .
= <7.U 7EW (vk+17xk+1"~'7Uk‘+m7xk+m7
ueV

Pq(YVIS/V (Flor, 21530k, 2), C1) U))>
(w', E(Wm,) (U:z-ua Yn+15-- -3 U;erf, Yn+m/
Pq(YvY/Vv (Fl, 915500, Yn), Co) ﬂ)))
Proof. Consider

1 om(mEm’) (o o .
§ <w7EW (Ulazlv~'~7vm+m’azm+m/a
ueV
w " . o
Pq (YWV (‘F(U’H’L-'r’rn/-‘rl’ Em4m/+15 3 Umgpm/ + ks Zm+m'+k)7 Cl) u))>
1 omtm’y (o o .
<’LU,EW (1)17217...7Um+m/,2m+m/,

w " .
P (wi (F (W e 1 Zmm et 13+

Ut ks Zmtm+h4n);s G2) ﬂ) >>
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_ rogpmAmY (w0 .
—E E (w', By, (vl,zl,...,vm+m/,zm+m/,

qgeCueV
Lw(—1 " . Lo
P, (eCl w(=1) Yw (U, —C1) F(Unmgm 415 Zmam/ 415+« - Unpan/ ko> Zm+m’+k)) )>
1 op(mtm’) (o Lo .
(w', By, (vl,zl,...,vm+m,,zm+m/,

Lo (—1 _ 7 .
P, (ecz WD Vig (0, —Co) F 0 gmr k1 Zmemi 4kt 15 - - -5

U;;L—&-m’-&-k—&-n’ Zm+m/+k+n)) ) )-

The action of exponentials e«w (=1 g = 1, 2, of the differential operator Ly (—1),
and W-module vertex operators Yy (u, —(1), Yw (u, —(2) shifts the grading index ¢
of Wy-subspaces by o € C which can be later rescaled to ¢q. Thus, we can rewrite the
last expression as

_} :2 : rog(mAmy (o o .
- <U) ) EW Vy,215--+3 Um-t,-m’ s Bm—+m/ 3

qeCueV
eSrlw(=1) Yw (Ua _Cl) Pota (}—(Ug@-i-m'-‘rl’ Zm4m/ 4155 U;/rb+m/+k7 Zm+m'+k)> >>
(w', E‘(,:,ner/) (viﬂ 2133 Uyt Zmem;
echW(*l) Yw (ﬂ7 —CQ) Pq+a (]:('U;;L+m’+k+1’ EmA4m/ k4153 v;/q,«‘,»m’«‘rk«‘rn? Zm+m/+k+n)) )>

_ rogp(mtm) (o .
—E E (w', By, VY2153 Upmt s Zmetm?s

qeCueV
YW P F " . o
wv \{q+a (Um+m’+1) BmAm/+15 -+ -5 Umpm/+ k> Zmtm/+k) ), C1 ) w)
r om(mtm’) (o o .
(W', By, (vl,zl,...,vm+m,,zm+m/,
YW P F " . w7 —
wv \ Lg+a (vm+m’+k+1a ZmA4m/+k+15 -3 Umtm/+k+n> Zmtm/+k4n)s —C2) W)

- rop(mAm’) (o . o o
- § E <w7EW (U17Z1a"'7vm+m’7zm+m’7w>>

qeCwew
E : / w " . Lo
<’LU 7YWV ( Pq+a (‘F(Um+m’+17 Zm4m/ 415 .- 7vm+m’+k7 zm+m’+k)> _Cl) U) )>
ueV
~; (mAm') [ . /] L~
(w', By, (vl,zl,...,vm+m,,zm+m/,w)>

/ w " . /i _
(W', Yy (Pq+a (‘F(Um—&-m’-&-k-&-l’ Zmm/ k415 -+ 3 U/ A kpns Zmem +k4n)y —C2) U) >>
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1 pmAm’) (o . oo .
= E (w', By, (vl,zl,...,vm+m/,zm+m/,
qeC
Pyta (‘F(U;:’L+m/+l7 Zm+m/+135 -+ ?U;;H-m’-&-ka ZmA4m/+k>
" . o
Umtm/ +k+15 FPm+m/+k+15 -+ -5 Umam/ L k4no Zm+m’+lc+n) >
Now note that, according to Proposition 6, as an element of W21>~~«7zk+n+m+m/
1 o(mAm’) (o . o .
(w', By, (01,21,-~-,Um+mr72m+m',
Pq+a (‘F(v;:v,—i-m/—i-h Zm4m/+15 - - ;U;T/'l—‘rm/—‘rk? Zm+4m’+k;
" Pl 6.18
Umm/ +k+1 Fmtm/+k+15 - -5 Umipm/ L ltns Zmtm/+k+n) ), (6.18)

is invariant with respect to the action of ¢ € Skin4+m+m’. Thus we are able to use
this invariance to show that (6.18) is reduced to

1 p(mAm’) (o . / Lo . /i .
<’LU 7EW (Uk+1a k4155 Ukt 14mr Rk+1+ms Uy 15 Ent1s - - -5 Unpl4m/s Bntl4m/;
" " 1" "

Pq+a(}_(v1721;~~~§vk,2k;vk+1,2k+1;~~;Uk+n,2k+n)))>
(! B L o oy .
- <w y Ly Vk+15 Lh+15 - - 5 Vk+14ms Tht14+m; Upp1s Yn+15 - - - 5 Ungpi4m/ s Yn+1+m/ 3

. . oy . ooy
Pq+a (]:<'U17xla ey Uk Tl U, Y15 - - 45 Un7yn))>

Similarly, since

1 o(m) (o . o .
(w', By, (vl,zl, o3 Uty Zmtm?
w " . o
Pq (YWV (}—(vm+m’+1a EmA4m/415 -5 U/ ks Zm+m’+k)7 Cl) u) ) >a
/ E(m') " . oo .
(W', By (0], 2155 Uy s 2
w " . R/ —
by (YWV (‘F(vm+m’+k+1’ ZmAtm/+k+15 -+ 5 Umgm/ L k+4ns Zm+m’+k+n)v CZ) U) ) >
ch()frespond Fo elements .of th___7zm+m,+k and Wszrm,JrkH7“,721”“",%“, we use Propo-
sition 6 again and obtain
/ E(m) . . -P YW F . .
<w; w Vk+1yTk+15 -+« 3 Vk4+m, Lh4+ms Lyq WV( (Ulaxlv"'7vk7$k)7C1) U >

(w'7E§§7)(v;+1,yn+1;--~;v;+m/,yn+m/;Pq<YVVVVv (FL,y15- 300, 9n), C2) ﬂ)))
correspondingly. Thus, the assertion of Lemma follows. O

Under conditions

Zit! 7& 21ty i// 7& .j”a
|Zi//| > ‘ka| > 0, (619)
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fori’ =1,....m+m/,and k" =m+m'+1,...,m+m’ + k + n, let us introduce
k+n _ } : roppmtmy (g .
jmjtm’(]:) - <w 7EW Ul?zl,'-~avm+m'azm+m’7
qeC
" . R/ .
P, (]:(Um+m’+l7 EmA4m/+15 -3 Umpm/ 4 k+no Zmetm/+h+n); 6))> (6.20)

Using Lemma 3 we obtain

[T (P

_ }: ropmAm) (o .
- <waEW V152153 U/ s Bm4m/ ;3
qeC
1 "
Py (f(vm+m'+17 ZmAm/+15 - -+ Umpan/ 4+ kns Zmem’ +h4n ) 5)) >’

E § 1 gp(m) . )
= <w 7EW <’Uk+17:ck+1’"';vk+maxk+m,
qgeCueV

P, (YV‘{/VV (F(v1, 21550k, xk), (1) u))}
<w/ﬂ El(/;/n ) <’U;l+1ayn+1; B U;H-m/vyn-&-m’;

PVt (Fohoi - 30mm). ) @) )|
< I NI (PN

where we have used the invariance of (6.1) with respect to 0 € Sy, 4m/+k+n. According
to Proposition 8 JX (F) and J" (F) in the last expression are absolute convergent.
Thus, we infer that jﬂii?’n/ (F) is absolutely convergent, and the sum (6.12) is analyt-
ically extendable to a rational function in (21, ..., Zk+n+m-+m/) With the only possible
poles at x; = x;, yy = y;s, and at x; = y;, i.e., the only possible poles at z;» = z;,
of orders less than or equal to N:fﬁn, (vih, ), for 4", §" =1,... K", i" # j". This

finishes the proof of the proposition. O

Now we prove the following

Corollary 1. For F(vi,x1;...; vk, 2) € CE (VW) and F(v}, y1;. .. 500, yn) € C.(V,
W), the product

F (01,8155 Uk, T3 V1, Y15 - - -5 Upyy Y €)
= F(v1, 215+ 30k, k) -« F(U1L, Y15+ -3 Vs Un),s (6.21)
is canonical with respect to the action
(wl)"'7xk;y17""yn) H (xll?"')x;c;yi)"'7y7/’7,>
= (p1(T1, o T YLy Un)s e e s Phtn(T1y e o TR YLy o5 Yn)),  (6.22)

of elements the group Auty, . zy.yn..yn OFT.
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Proof. In Subsection 4 we have proved that the product (3.2) belongsto Wa, . a1, uns
and is invariant with respect to the group Auty, .. a.ivr,..u. Ok+n) - Similar as in
the proof of Proposition 10, vertex operators wy (v;, z;), 1 < i < m, composable with

F(v1,@1;...; vk, @k), and vertex operators wy (v;,y;), 1 < j < m/, composable with
F(vi,y1;.. .30, yn), are also invariant with respect to (p1(z1,. .., Tr; Y1y Yn)y- -
Prgn(T1, - T3 Y1, - Un)) € AUtay  2pign, o ym Ok+n), ]

Since the product of F(vy,x1; .. .; vk, zx) € CF (V,W) and F (v}, y1;...;0,,Yyn) €

Cr.(V,W) results in an element of Ck+™ (V, W), then, similar to Proposition 9 [6],

m+m’
the following corollary follows directly from Proposition (12) and Definition 8:
Corollary 2. For the spaces Wy, . o, and Wy, ., with the product (3.2) F €
Waro wriynsyn s the subspace of Hom(VE™ Wy, o0 o) consisting of linear maps
having the Ly (—1)-derivative property, having the Ly (0)-conjugation property or be-
ing composable with m vertex operators is invariant under the action of Skin.

Finally, we have the following

Corollary 3. For a fized set (v1,...Uk;Vk41,---,Vk+n) € V of vertex algebra ele-
ments, and fived k + n, and m + m/’, the e-product F(v1,21;...; Uk, 2k} Vk1s Zk41; - - -
5 Vk4ns Yk+ns 6)7

1 CE (VW) x CL(V, W) — ORI (V, W),

m—+m/
of the spaces CE (VW) and C",(V,W), for all choices of k, n, m, m’ > 0, is the
same element of C*T™ (V. W) for all possible k > 0.

m~+m/’
Proof. In Proposition 4 we have proved that the result of the maps belongs to
War,ozmsyrseyns for all k, n >0, and fixed k + n. As in proof of Proposition 12,
by checking conditions for the forms (6.4) and (6.8), we see by Proposition 7, the
product F(v1,Z1;. ..} Uk, Tk; V], Y1; - - - ; Uhs Yn) is composable with fixed m +m/. O

6.1. Coboundary operator acting on the product space. In Proposition 12 we
proved that the product (6.1) of elements of spaces C¥ (V, W) and C,(V, W) belongs
to C,’;j%,(v, W). Thus, the product admits the action ot the differential operator
57’;1”7”, defined in (5.12). The co-boundary operator (5.12) possesses a variation of

Leibniz law with respect to the product (6.1). Indeed, we state here

Proposition 13. For F(vi,z1;...;vk,2k) € CF (V,W) and F(vi, y1;... ;0 yn) €
cr.(V,W), the action of 575;:_7;”, on their product (6.1) is given by
St (Fur, @153k, @) e FVL Y1330, Un)

= (65 F(v1, 2153 vk, @) e F(U1, Y152 300, Yn)

H(DEF (o, 155k, @) e O F(0L, 015500, 9)) - (6.23)
Remark 6. Checking (5.12) we see that an extra arbitrary vertex algebra element
Unt1 € V, as well as corresponding extra arbitrary formal parameter z,,1 appear
as a result of the action of 67, on F € C7(V,W) mapping it to C™*L(V,W). In
application to the e-product (6.1) these extra arbitrary elements are involved in the

definition of the action of 57kntnm, on F(vy, @1} 0k, k) ¢ F (UL, Y15+ 500, Yn)-
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Proof. According to (5.12), the action of 6*1" , on F(vy, 1. . .5 vk, 23 ), 915 . . . Uy Un; €)

m-+m/’
is given by
1 sk+n . . <oy . < .
<w75m+m/ ‘F(Ulvxla"'7Uk7$k7vlﬂyla"'7Un7yn7€)>
k
, )
= <w7 § (_1)1 ‘7:(1)1,1'1;...;’[)7;71,331‘71; WV(Ui7.Ti _xi+1)vi+17$i+1; Vi42, Ti4-2;
i=1
. ooy . e .
"’avkwrlmq}l?ylv'"avn7yn76)>
n
E % / . . coy . ey .
+ (71) <waf(vlaxlw--1Uk7xkvvl7yl7"'1Uz'—17y1—15
=1
4 . / oy . « oy .
wy (Uz'ayi - yi—i—la) vi+17yi+1avi+27yi+25 .. -avn7yn7€)>
/ . . e . e .
+<U),WW (vhxl) ]:(’Uan27"'avk7xk7vlay17"'avn7yn76)>

+(w, (= 1) o (Ul 41 Yn1) F01, 15+« 5 ks Th3 VL, Y15 - - -3V, Y €))

(_1)i Y\}/VW(]:(Uhxl; sy Vi1, %51, wv(vz‘,$z‘ - xi+1)”i+17xi+1§

I
]
\.S\
M _

Vi42, Tj425 -« - ;vkvxk)v Cl)u><wlvy\¥vW(‘F(U/17y1; v ;v;wyn)v <2>ﬂ>

+ Z Z(—l)i (W', YW (F (v1, 215+« 5 v, k), C1 )

ueV i=1
"W AT )
<w7YVW(-F(U17y17"'7vi717yi717

wy (U{wyi — Yit13) U§+1, yi+1§U2+27yi+2; e ;U;uyn)v Co)u)

+ Z<w'7Y\¥VW(WW (v1,21) F(v2, @25 .30k, Tk), (1))
ueV

<w/7Y\}/VW(]:(UI17yl;---;U;,yn),@)ﬂ)

+Z<w/7Y\¥VW((*1)kHwW (Vk+1, Th41) F(v1, 215 50k), C)w)
ueV

<w/7Y\}/VW(]:(xk§UI1a Y1y -3 ’U;myn)a CQ)H>
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— Z k+1 w ,YX}/VW(QJW (’Uk+1,$k+1) f(vlaxl; .- ~;Uk7xk)aC1)u>
ueV

<w/7Y\¥VW(]:(vi7y1§ v ;U;-uyn)7 <2)ﬂ>

+ Z(w’,YJVW(F(vl,xl; e Uk T, G
ueV

<U}/7 Y\}/I/W(ww(vllvyl) 'F(’Uéa Y2545 ’U;Lvyn)a CQ)E>
> (! Yy (Fur, a1 vk, 2x),G1))

ueV
(w', Yoy (ww (0], 41) F(vh, y2; - 507, Yn) G2))
=Y (W, YW (05 F (o1, 215 -5 vk, k), G )

ueV
<wlvy“/{VW(‘F(vllay1;'~';v;7yn)vc2)ﬂ>
+(_1)k Z<w/,Y‘}/VW(]:(U1,.’I}1;...;Uk7$k),<1)u>

ueV
<'LU,, Y\‘/{VW((sZL’f(vlla Yi5--+5 U;myn)a CQ)E>
= (w’,dﬁq]—"(vl,xl; e Uk, Tg) e (W F (0], Y1550, Yn))
(=DM, F (o1, @15 30k, k) v O F(V, 915 -2V, Un)),s
since,

> @ (DY (ww (e, Trrn) Fon, @i 050k, 2x), G )w)
ueV

<w/a Y\}'/VW(‘F(vlhyl; cee Uq/myn)a CZ)E>

= Z@/a (=) e Ew DYy (u, =) ww (Vk1s Tagr) F(vr, @155 0, Tk))

ueV
<U)’, Y\}/VW(]:(U/D Yty - ;’U:w yn)v C2)ﬂ>
=Y (W, (=) EV Dy (o1, wga) Yiv (w, —G) Flvr, @155 0k, 21))
ueV

<w/7y\}/VW(]:(U/17y1;~'v nayn) <2) >

=D (@ (=) ww ok, @i + ) IOV (u,=G) Flon s o o)

<U}/7 Y\}/‘/W(f(vllvyl; e ;v;w yn)v <2)ﬂ>

=D > WL D wow Uk B + G w)

vEV uev
(w', e EW DY (u, —¢1) Flon, ;. .0, 28))

<wlaY\XVW(]‘-(UI17yl§---;U;ﬂyn),@)@
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= Z<w/,6glLW(71)YW(U7 —C1) F(vr, 2150k, Tk))
ueV

D WL (DM ww (Okg1, g+ ) w) (W, YN (F 01, s -5 00, 0m), G)T)

veV

= Z(wlay\}/‘/w<]:(vlaxl; .. ~;’Uk7xk)a<—1>u >
ucV

(W, (=1 ww (Upg1, @egr + G) Yo (F05 y1s - <500, yn), (2)0)

= Z<w/aYX}/VW(]:(U17$1;-~-§Ukaxk)7§1)u>
ueV

(w', (—1)k+1 ww (Vk41, Tht1 + C1) €C2LW(_1)YW(E, —C2) F(01, 4155005 Un))

= Z<w/7yyw(]:(vl>$1;-~-;Uk,$k)7C1)u>
ucV

(w', (—1)FH eEw (D Y (@, —Co) ww (Vkat, Trer + G — C2) FUL 15+ 300, Un))

= Z <’LU/, Y‘YVW(]:(Uh T1s5..- ;'Uk,.’L'k),C1)U>
ueV

<w/7Y\}/VW(wW(U/15 yl) .7('1/2, Yas...3 v;wyn)a CQ)E>7

due to locality (8.7) of vertex opertors, and arbitrarness of vgy1 € V and z41, we
can always put

ww (Vg1 Thg1 + G — C2) = ww (V] 11),

for vgp1 = v}, Tpr1 =y1 + G — G g
Finally, we have the following

Corollary 4. The multiplication (6.1) extends the chain-cochain complex (5.13)-
(5.15) structure to all products C¥ (V,W) x C™,(V,W), k, n >0, m, m’' > 0. O

Corollary 5. The product (6.1) and the product operator (5.12) endow the space
CE(V,W) x Cn(V,W), k, n > 0, m, m' > 0, with the structure of a bi-graded
differential algebra G(V,W, -, dI). O

y 9 Um

7. EXAMPLE: EXCEPTIONAL COMPLEX

In addition to the double complex (CJ (V, W), §7 ) provided by (5.13)—(5.15), there
exists an exceptional short double complex (C2,(V,W),§2,). In [6] we have

Lemma 4. For n =2, there exists a subspace C2, (V, W)
Co(V,W) C C2,(V, W) C C3(V, W),

for all m > 1, with the action of coboundary operator 62, defined. O
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Let us recall some facts about the exceptional complex [6]. Consider the space
C23(V,W). It consist of W,, ,,-elements with zero vertex operators composable. The
space CZ(V, W) contains elements of W,, ., so that the action of §3 is zero. Never-
theless, as for J(®) in (5.5), Definition 9, let us consider sum of projections

P W, .o — W,
for r € C, and (i,5) = (1,2),(2,3), so that the condition (5.5) is satisfied for some
elements similar to the action (5.5) of 62. Separating the first two and the second two

summands in (5.12), we find that for a subspace of C2(V,W) (which we denote as
C2.(V,W)), for vy, va, v3 € V, and arbitrary w’ € W/, ¢ € C, the following elements

G1(z1, 22, 23)

= 3 (W B (01203 P (F (1220 — G, 20 = Q)
reC

+{w', F (vl,zl;PT (E‘(/Q) (v2,22 — (33,23 — C; 1y) »C)>>

= Z (<w/)WW (v1,21) P (F (v2,22 — (v3,23 — ()))

reC
+(w', F (v1, 215 Py (wy (v, 22 — Qwy (v3,23 — ) 1), (),

(7.1)
and
Ga(21, 22, 23)
= Z ((w’,}" (Pr (E‘(f) (v1,21 — (,v2, 29 — C;lv)> ,C;Ug,z'g,))
reC
+Huw', By (Pr (F (v1,21 = G ug, 22 — C)aC§U3723)>)
= (W, F(Prwy (v1,21 = Q) wy (v2, 22 — )1y, ()); 03, 23))
reC
+<w/7wV (’03, Z3) P, (‘F (Ulv 21 — (502,22 — C)»)v (72)

are absolutely convergent in the regions

|21 = ¢ > |22 — ¢,

|Z2 _C| > 07
¢ — 23] > |21 — I,
|22 _C| > 07

where z;, 1 < i < 3. These functions can be analytically extended to rational form-
valued functions in z; and z3 with the only possible poles at z1, zo = 0, and 2z; = 25.
Note that (7.1) and (7.2) constitute the first two and the last two terms of (5.12)
correspondingly. According to Proposition 7 (cf. Appendix 5.2), C2 (V,W) is a
subspace of C2,(V,W), for m > 0, and F € C2(V,W) are composable with m vertex
operators. Then we have
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Definition 12. The coboundary operator

0s : CL(V,W) = GGV, W), (7.3)
is defined by

52, F = (w',ww (vi,21) F (v2, 225 v3, 23))
(w', F (wy (v1,21) wy(ve,22)1y;v3,23))
+{w', F(v1, 215 wy(va, 22) wy (v3, 23)1v))
+(w', ww (v3, 23) F (01, 21502, 22)), (7.4)
for arbitrary w’ € W', F € C2,(V,W), (v1,va,v3) € V and (21, 22, 23) € F3C.
In [6] we also find
Proposition 14. The operator (7.4) provides the chain-cochain complex
62, 0604 =0,

0 1 2
0 — COV,W) 25 CLv, W) 22 C2 (v, W) 25 3 (V. W) — 0. (7.5)

Since
83 C3(V,W) € CR(V, W) € CZ(V. W),
the second formula follows from the first one, and
52 06} = 82081 — 0.
For elements of the spaces C2,(V, W) we have the following

Corollary 6. The product of elements of the spaces C%,(V,W) and C"(V,W) is
giwen by (6.1),

e : CL (VW) x CR (VW) — G2 (V, W), (7.6)
and, in particular,

1 C2V,W) x C2(V, W) = Co(V, W).

Proof. The fact that the number of formal parameters is n + 2 in the product (6.1)
follows from Proposition (4). Consider the product (6.1) for C2,(V, W) and C" (V, W).
It is clear that, similar to considerations of the proof of Proposition 12, the total
number m of vertex operators the product F is composable to remains the same. [
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8. APPENDIX: GRADING-RESTRICTED VERTEX ALGEBRAS AND THEIR MODULES

In this section, following [6] we recall basic properties of grading-restricted vertex
algebras and their grading-restricted generalized modules, useful for our purposes in
later sections. We work over the base field C of complex numbers.

Definition 13. A vertex algebra (V, Yy, 1v), (cf. [9]), consists of a Z-graded complex
vector space
V=]] Vin, dimV, <o,
nez
for each n € Z, and linear map

Yy : V — End (V)[[z,27']],

for a formal parameter z and a distinguished vector 1y € V. The evaluation of Yy
on v € V is the vertex operator

Yy(v) =Yv(v,2) =Y wv(n)z ", (8.1)
nez
with components (Yy (v)), = v(n) € End (V), where Yy (v, 2)1y = v + O(2).
Definition 14. A grading-restricted vertex algebra satisfies the following conditions:

(1) Grading-restriction condition: V) is finite dimensional for all n € Z, and
Viny = 0 for n < 0;

(2) Lower-truncation condition: For u, v € V', Yy (u,z)v contains only finitely
many negative power terms, that is,

Yy (u, z)v € V((2)),

(the space of formal Laurent series in z with coefficients in V');
(3) Identity property: Let Idy be the identity operator on V. Then

va(].v7 Z) = Idv;
(4) Creation property: For u € V,
Yv(u,2)ly € V([[z]],
and
lim Yy (u, 2)1y = u;
z—0
(5) Duality: For uy,us,v €V,
VeV =T Vi,
nez
where V(’:L) denotes the dual vector space to Vi, and (.,.) the evaluation
pairing V' ® V' — C, the series
(W', Yy (u1, 21)Yv (uz, 22)0), (8.2)
(', Yy (ug, 22)Yv (u1, 21)v), (8.3)
(W', Yo (Yy (ur, 21 — 22)us, 22)v), (8.4)
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are absolutely convergent in the regions

|21| > |2’2| > O,
|ZQ| > |21| > 0,

‘Z2| > |Zl —Z2| > 0,

respectively, to a common rational function in z; and z, with the only possible
poles at z; = 0 = z9 and z; = 29;
(6) Ly (0)-bracket formula: Let Ly (0) : V — V|, be defined by

Ly (0)v = no, n=wt (v),
for v € V(). Then
d
[LV(O)a YV(”: Z)] = YV(LV(O)Uv Z) + Z%YV(’Uv Z)z (85)

forveV.
(7) Ly (—1)-derivative property: Let

Lv(—l) V=V,
be the operator given by
Ly(=1)v = Res.z *Yy (v, 2)1y = Y(_g)(v)1y,

for v € V. Then for v € V,

d

@YV(U, Z) = Yv<Lv(—1)u, Z) = [Lv(—l), Yv(’u, Z)] (86)
In addition to that, we recall here the following definition (cf. [1]):

Definition 15. A grading-restricted vertex algebra V is called conformal of central

charge ¢ € C, if there exists a non-zero conformal vector (Virasoro vector) w € Vg
such that the corresponding vertex operator

Vo(w,2) = 3 Ly(n)z"2,
neZ

is determined by modes of Virasoro algebra Ly (n) : V — V satisfying
c
[Lv(m), Lv(n)] = (m — ’I’L)Lv(m + n) + E( 3_ m)5m+b’0 Idy.

Definition 16. A vector A which belongs to a module W of a quasi-conformal
grading-restricted vertex algebra V is called primary of conformal dimension A(A) €
7, if

Lw(k)A = 0, k>0,

Lw(0)A = A(A)A.
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8.1. Grading-restricted generalized V-module.

Definition 17. A grading-restricted generalized V-module is a vector space W equipped
with a vertex operator map

Yw :VeWw — Wzz Y,
uw — Yw(u,w)=Yw(u, z)w= Z(Yw)n(u,w)z_"_l,
nez
and linear operators Ly (0) and Ly (—1) on W satisfying the following conditions:
(1) Grading-restriction condition: The vector space W is C-graded, that is,
W= ][] Ww.
acC

such that W(,) = 0 when the real part of « is sufficiently negative;
(2) Lower-truncation condition: For u € V and w € W, Y (u, z)w contains only

finitely many negative power terms, that is, Yy (u, 2)w € W((2));
(3) Identity property: Let Idy be the identity operator on W. Then

Yw (v, 2) = Idw;
(4) Duality: For uj,us € V, we W,
U)/ € W/ = H W(*n)’
ne”Z

W’ denotes the dual V-module to W and (.,.) their evaluation pairing, the

series
(W', Y (u1, 21) Yy (ug, z2)w), (8.7)
(w', Yw (ug, 20) Y (u1, z1)w), (8.8)
(W', Yw (Yy (u1, 21 — 22)ug, 22)w), (8.9)

are absolutely convergent in the regions
|z1| > |22 > 0,
|za| > |z1| > 0,
|zo| > |21 — 22| > 0,
respectively, to a common rational function in z; and z, with the only possible

poles at z; =0 = 25 and 21 = 2.
(5) Lw (0)-bracket formula: For v € V,

[Lw (0), Yw (v, 2)] = Y (Ly(0)v, 2) + ZO%YW(U7 2);

w (0)-grading property: For w € «); there exists NV € such that
6) Lw (0 di F Wia), th ists N € Zy h th

(Lw (0) — a)Nw = 0; (8.10)
(7) Lw (—1)-derivative property: For v € V,

Lo (u,2) = Yiw (Ly (-~ 2) = (L (1), Yir(u, 2)]). (8.11)
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The translation property of vertex operators
Yiv (u, z) = e 2 Ew DY (0, 2 + 27)e? Fw (D), (8.12)

for 2’ € C, follows from (8.11). For a € C, the conjugation property with respect to
the grading operator Ly, (0) is given by

PO vy (v, 2) aEW O = Vi (P Oy, az). (8.13)

For v € V, and w € W, the intertwining operator

YWy V= W,
v Y (w, 2)v, (8.14)
is defined by
Yl (w, 2)v = 2w CHD Y (v, —2)w. (8.15)

8.2. Group of automorphisms of formal parameters. Let us recall some further
facts from [1] relating generators of Virasoro algebra with the group of automorphisms
in complex dimension one. Let us represent an element of Aut, @) by the map

z > p=p(z), (8.16)

given by the power series

p(z) = Zakzk, (8.17)

k>1
p(z) can be represented in an exponential form

f(z) = exp < > B zk“@) (Bo)*%* .2, (8.18)

k>—1
where we express f; € C, k > 0, through combinations of ay, k > 1. A representation
of Virasoro algebra modes in terms of differential operators is given by [9]
L (m) > ¢, (8.19)

for m € Z. By expanding (8.18) and comparing to (10.1) we obtain a system of
equations which, can be solved recursively for all 8. In [1], v € V, they derive the
formula

1

m+1)! (a;n+12m+1) Yw (Ly(m)v, z), (8.20)

[LW(n)vyVV(’U’ Z)] = Z

m>—1
of a Virasoro generator commutation with a vertex operator. Given a vector field
B(2)0. = Y Buz"t0., (8.21)
n>-1
which belongs to local Lie algebra of Aut O™, one introduces the operator
B==>" BuLlw(n).
n>—1

We conlclude from (8.21) with the following
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Lemma 5.

B, Yw(v,2)] = Y ﬁ(aﬁlﬁ(z)) Y (Ly(m)v,z).  (8.22)

The formula (8.22) is used in [1] in order to prove invariance of vertex operators
multiplied by conformal weight differentials in case of primary states, and in generic
case.

Let us give some further definitions:

Definition 18. A conformal grading-restricted vertex algebra is a conformal vertex
algebra V| such that it module W is equipped with an action of the Virasoro algebra
and hence its Lie subalgebra Derg O(™) given by the Lie algebra of Aut O,

Definition 19. A grading-restricted vertex algebra V-module W is called quasi-
conformal if it carries an action of local Lie algebra of Aut O such that commutation
formula (8.22) holds for any v € V, the element Ly (—1) = —3,, as the translation
operator T,

Lw(O) = —z@z,

acts semi-simply with integral eigenvalues, and the Lie subalgebra of the positive part
of local Lie algebra of Aut O™ acts locally nilpotently.

Recall [1] the exponential form f({) (8.18) of the coordinate transformation (8.16)
p(z) € Aut O, A quasi-conformal vertex algebra posseses the formula (8.22),
thus it is possible by using the identification (8.19), to introduce the linear operator

.....

P (f(¢)) = exp (Z (m+1) B Lv<m>> By, (8.23)

m>0

(note that we have a different normalization in it). In [1] it was shown that the action
of an operator similar to (8.23) on a vertex algebra element v € V,, contains finitely
many terms, and subspaces

ng = é Vn7
n>K

are stable under all operators P(f), f € Aut OM). In [1] they proved the following

Lemma 6. The assignment

f = P(f),
defines a representation of Aut O on V,

P(f1* f2) = P(f1) P(f2),

which is the inductive limit of the representations V<,,, m > K.

Similarly, (8.23) provides a representation operator on W,, ., .
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8.3. Non-degenerate invariant bilinear form on V. The subalgebra
{LV(il)a LV(O)v LV(I)} = SL(2’ (C)a

associated with Mobius transformations on z naturally acts on V, (cf., e.g. [9]). In
particular,

0 A A2
’y,\—(/\ 0).2»—>w——Z7 (8.24)

is generated by
Ty = exp ALy (=1)) exp (A Ly (1)) exp (ALy(—1)),

where

T\Y (u, z)TA_l =Y (exp (—%Lv(l)) (—i)izLV(O) u, _/\22) . (8.25)

In our considerations (cf. Appendix 9) of Riemann sphere sewing, we use in particular,
the Md6bius map

22 =€)z,
associated with the sewing condition (9.4) with
A= —Ee?, (8.26)
with & € {-v/=1}. The adjoint vertex operator [2,9] is defined by
Yi(u,2) =Y ul(n)z™""" = ThY (u, 2)T5 . (8.27)
nez
A bilinear form (.,.)» on V is invariant if for all a,b,u € V, if
(Y (u, 2)a,b) s = (a,YT(u, 2)b), (8.28)
ie.
(u(n)a,b)x = (a,ul (n)b).
Thus it follows that
(L (0)a,b)x = {(a, Ly (0)b), (8.29)
so that
(a,b)x =0, (8.30)

if wt(a) # wt(b) for homogeneous a,b. One also finds
(a, b>)\ = <b7 (l>)\.

The form {(.,.}) is unique up to normalization if Ly (1)V; = V5. Given any V basis
{u®} we define the dual V basis {#”} where

<ua,ﬂﬁ>>\ = 5P,
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9. APPENDIX: A SPHERE FORMED FROM SEWING OF TWO SPHERES

The matrix element for a number of vertex operators of a vertex algebra is usually
associated [2,3,12] with a vertex algebra character on a sphere. We extrapolate
this notion to the case of W,, . . spaces. In Section 3 we explained that a space
W., ..., can be associated with a Riemann sphere with marked points, while the
product of two such spaces is then associated with a sewing of such two spheres
with a number of marked points and extra points with local coordinates identified
with formal parameters of Wy, .. o, and W, . 4,.. In order to supply an appropriate
geometric construction for the product, we use the e-sewing procedure (described in
this Appendix) for two initial spheres to obtain a matrix element associated with
(3.1).

Remark 7. In addition to the e-sewing procedure of two initial spheres, one can
alternatively use the self-sewing procedure [13] for the sphere to get, at first, the
torus, and then by sending parameters to appropriate limit by shrinking genus to
zero. As a result, one obtains again the sphere but with a different parameterization.
In the case of spheres, such a procedure consideration of the product of W-spaces so
we focus in this paper on the e-formalizm only.

In our particular case of YWW-values rational functions obtained from matrix elements
(2.1) two initial auxiliary spaces we take Riemann spheres EEP), a =1, 2, and the
resulting space is formed by the sphere %(9) obtained by the procedure of sewing
2. The formal parameters (z1,...,2x) and (y1,...,yn) are identified with local
coordinates of k£ and n points on two initial spheres Z((IO), a =1, 2 correspondingly. In
the e sewing procedure, some r points among (p1,...,pr) may coincide with points
among (pf,...,pl,) when we identify the annuluses (9.3). This corresponds to the
singular case of coincidence of r formal parameters.

Consider the sphere formed by sewing together two initial spheres in the sewing
scheme referred to as the e-formalism in [13]. Let 220)7 a =1, 2 be to initial spheres.
Introduce a complex sewing parameter ¢ where

le| < 7ima,
Consider k distinct points on p; € Ego), i1 =1,...,k, with local coordinates (z1, ..., zk)
F},C, and distinct points p; € Zgo)’ j=1,...,n, with local coordinates (y1,...,yn) €
F,C, with
|| = e[ /r2,
lyil = lel/r1.

Choose a local coordinate z, € C on E((lo) in the neighborhood of points p, € 2((10)7

a =1, 2. Consider the closed disks

Cal < 7,
and excise the disk
{Ca» [Cal < lel/ra} € B, (9.1)
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to form a punctured sphere

SO = 2O {Cas 1ol < lel/ra}-

We use the convention

1=2, 2=1 (9.2)
Define the annulus
Aa = {Ca, el /ra < [Cal < 70} € EO, (9.3)
and identify A; and As as a single region A = A; ~ A, via the sewing relation
GG =e (9.4)

In this way we obtain a genus zero compact Riemann surface
$0) — {ig‘”\Al} U {ig0>\A2} UA.

This sphere form a suitable geometrical model for the construction of a product of
W-valued rational forms in Section 3.

10. APPENDIX: THE PROOF OF PROPOSIITON 10

In this Appendix we recall [11] the proof of Proposiiton 10, namely, we prove that
Definition 3 is independent of the choice of formal parameters. Let us first recall
definitions required for that. Let

Aut,, . oM = Aute[[z1, -, 2n]]s

<n

be the group of formal automorphisms of n-dimensional formal power series algebra

(C[[Zl, ey Zn]]
The Z-grading on W is given by the operator Ly, (0) bounded from below,

W= P Wi,

k>ko

for some ko € Z. Since the vector fields 219, with k € N act on W as the operators
— Ly (k) of degree —F, the action of the Lie subalgebra Der, O™ is locally nilpotent.
Furthermore, 29, acts as the grading operator Ly (0), which is diagonalizable with
integral eigenvalues. Thus, the action of Der O™ on a conformal vertex algebra V
can be exponentiated to an action of Aut,,, . ., om,

We write an element of Aut,, . .. 0O a9

(2”17"'52:”)*}[) = (p17""pn)7
P = pi(zl7"'azn)7
for i =1,...,n, where p; are defined by elements of m € O(")
pi(21,-- - 2n) = Z iy, i) 21 - 215 Gay,in) € C (10.1)
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and the images of p;, i = 1,...,n, in the finite dimensional C-vector space m/m? are
linearly independent. Let us denote

v = (1®...Q0u,),
z = (21,---,2n),
w; = pilz1,...,2n0),
w o= (wi,...,wy).

The natural object that turns to be invariant with respect to the action of the group

Aut,, . .. O™ is given by the matrix element of the n-vector
<w136(v7 z dZ)> = <w/, [(I) (Ula 21 dzi(l); <o+ 3 Un;y Zn dzz(n))])a (102>
containing n F-entries, where i(j) denotes the cyclic permutation of (1,...,n) starting

with 7. In the main text we use (2.2) which is related to (10.4). Due to (2.8), (10.4)
can be written in the form

W, B (dzv) (@) = (), [(dm)L<°>W<I>((<dzw))*”v) <z>]>

<w/7 [(dzi(J))_L(O)W o ((dzi(J))Wt (v7) V) (Z)b,

coherent with the one-dimensional case of [1] and containing wt (v)-differentials. The
idea to use torsors [1] is to represent the action of p (10.1) of the group Aut,, . O™
on formal parameters z in vectors (v, z) to the action by V-operators on vertex algebra
states v. Recall the standard representation of the Virasoro mode [9]

z}"+182j = —L,,, m € Z.

In order to represent the action of the group Aut,, . .. O™ on the variables (21, 2n)
of F (10.4) on (v1,...,v,), we have to transfer (as in n = 1 case of [1]) to an expo-
nential form of (10.1). The coefficients ,6’7({)

of coeflicients ag-il),_“,,«n of (10.1). We introduce the linear operators

€ C are recursivly found [5] in terms

T

R(p1,.. . pn): VO — yen
and define the action

@ (v,wdw) =R(p1,...,pn) ®(v,z dw). (10.3)
Proof. Consider the vector
d = [CD (Ul,wl dwi(1y; - -5V, Wy dwi(n))] . (10.4)

Note that

" 9p; op;
i=1 " v
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(as in [1], we skip the complex conjugated part dz;). By definition (10.3) of the action
of Aut,, .. O™ and due to (10.5) by rewriting dw;, we have

O(v,wdw) =R(p1,...,pn) [<I> (vl, 21 dw;(1y; - - -3 Vn, Zn dwi(n))}
:R(phapn)

D | v, 2 Zajpi(l) dzj; .. .5 Vn, 2n Zajpi(n) dz;

j=1 j=1

By using (2.3) and linearity of the mapping ®, we obtain from the last equation

@ (v,wdw) = [CD (v1,21 dzi(1); -3 Vn;s Zn dzi(n))] , (10.6)
with ~
QJPil(I)
~ d1p;
R(p1, o pn) = |Dapin| = | VP00 (10.7)
5Jﬂin(1)

The index operator J takes the value of index z; of arguments in the vector (10.6),
while the index operator I takes values of index of differentials dz; in each entry
of the vector ® (10.4). Thus, the index operator i(I) = (ir,...,i,(I)) is given by
consequent cycling permutations of I. Taking into account the property (2.3), we
define the operator

5Jpa =exp | — Z Ty ,87("(117)“_,7”” Il R ;J - C.;;" L(W)—l s (108)

(ri..rn), > mi>1
i=1

which contains index operators J as index of a dummy variable (; turning into z;,
j =1,...,n. (10.8) acts on each argument of mappins ® in the vector ® (10.4).
Due to the definition of a grading-restricted vertex algebra, the action of operators
R(p1,...,pn) for i = 1,...,n, on v € V results in a sum of finitely many terms.
Similar to [1], for n = 1, one proves

Lemma 7. The mappings
p(z1y- o yzn) = R(p1,- -y pn),
fori, j=1,...,n, define a representation of Aut,, . .. O on V& by
R(pop)=R(p) R(p),
for p, p' € Aut,, . .. o,
We then conclude with
@(vl,zl dz15. . 3 Uny ey 2p dzn)] . (10.9)
Thus the vector ® (10.4) is invariant, i.e.,

P (v,wdw) = (v,zdz). (10.10)
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Recall that the construction of the double complex spaces C (V, W) assumes that
® € CP(V,W) is composable with m vertex operators. In one-dimensional complex
case, [1] they proved that a vertex operator multiplied to the wt (v;)-power of the

K2

differential Yy (v;, 2; is invariant with respect to the action of the group

Aut,, OM. Here we prove that Yy (vi, zi)dzlwt (vi)
change of the local coordinates z; — w;(z1,. .., 2n).

Let (21,...,2n) be an open ball D;ﬁ)

is invariant with respect to the

of local formal coordinates around a fixed-

value zg of (21,...,2,). Define a wt (v;)-differential on D;Z) with values in End (W),
as follows: identify End (W),, with End W using the formal parameters (21, ..., z,),
and set

Wiz = Yw (vs, %) dzZWt (vi)

Let
(wi,y .. ywn) = (p1(21,- -5 2n)y ooy P21y ooy 20))

be another set of formal parameters on an n-dimensional ball D;g). Let us express
(n),x

the set of wt (v;)-differentials on D,

Yw (vi, w;) duwt )

K3

i=1,...,n, in terms of of the parameters (z1,...,2,). We would like to show that
it coincides with the set of wt (v;)-differentials Yy (v;, w;) dzlWt (i),
Recall the notion of torsors (Section 8). Consider a vector (vi, 21,...,2n) € Wy,

with v; € V. Then the same vector equals

(R;l (pla"'7pn)vi;w17"'awn)7
i.e., it is identified with
Ri_l (ply"'apn)vi S ‘/a
using the formal parameters (ws,...,w,). Here R; (p1,...,pn) is an operator rep-
resenting transformation of z; — w;, as an action on V. Therefore if we have an
operator on W,, which is equal to a Aut O™-torsor S under the identification

End Wy, € End W using the formal parameters (ws,...,w,), then this opera-
tor equals

Ri(p17"'7pn) SR;]- (pla"'apn)a
under the identification End W,, € End W using the combined parameters

(viy 21, ...y 2n). Thus, in terms of (v;, 21, ..., 2,), the differential Yy (v;, w;) dszt (vi)
becomes
t Vi — t Vi
Yir (vi, ) dz" ) = Rilp) Yo (visplens- o 20)) By (o) du™ 7.

According to Definition (10), elements ® are composable with m vertex operators.

Thus we see that (10.4) is a canonical object of CJr (V,W). We have proved that

elements of the spaces CJ, (V, W) are independent on the choice of formal parameters.
O
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