Photosynthetica, 2015 (vol. 53), issue 2

Photosynthetica 2015, 53(2):187-194 | DOI: 10.1007/s11099-015-0101-x

Photosynthetic response of beech seedlings of different origin to water deficit

E. Pšidová1,*, Ľ. Ditmarová1, G. Jamnická1, D. Kurjak2,3, J. Majerová1, T. Czajkowski4, A. Bolte4
1 Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovak Republic
2 Faculty of Forestry, Technical University Zvolen, Zvolen, Slovak Republic
3 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague 6, Czech Republic
4 Thünen Institute of Forest Ecosystems, Eberswalde, Germany

European beech (Fagus sylvatica L.) seedlings of three different origins were used to evaluate the effect of water deficit and recovery during the most vulnerable phase of forest tree life. Gas-exchange characteristics and fluorescence rapid light curves were studied in the seedlings from a warm region (PV1, 530 m a.s.l.), seedlings from a moderately warm region (PV2, 625 m a.s.l.), optimal for beech, and in seedlings from a cool region (PV3; 1,250 m a.s.l.). Changes in photosynthetic characteristics caused by water deficit were similar, but their intensity was dependent on the origin of the seedlings. Simulation of drought conditions by the interruption of watering led to a decrease in the efficiency of primary photochemistry in PSII, with the most significant decrease in the PV2 seedlings. Conversely, water deficit affected most significantly gas exchange in PV3, where the recovery process was also the worst. The PV1 demonstrated the highest resistance to water deficit. Drought-adaptation of beech seedlings at non-native sites seems to be linked to water availability and to the origin of the beech seedlings.

Keywords: chlorophyll a fluorescence; leaf water potential; net photosynthetic rate; photosynthesis; stomatal conductance; water-use efficiency, provenances, Fagus sylvatica

Received: April 7, 2014; Accepted: October 15, 2014; Published: June 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Pšidová, E., Ditmarová, Ľ., Jamnická, G., Kurjak, D., Majerová, J., Czajkowski, T., & Bolte, A. (2015). Photosynthetic response of beech seedlings of different origin to water deficit. Photosynthetica53(2), 187-194. doi: 10.1007/s11099-015-0101-x.
Download citation

References

  1. Agestam E., Ekö P.M., Nilsson U. et al.: The effects of shelterwood density and site preparation on natural regenaration of Fagus sylvatica in southern Sweden. - Forest Ecol. Manag. 176: 61-73, 2003. Go to original source...
  2. Allen C.D., Macalady A.K., Chenchouni H. et al.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. - Forest Ecol. Manag. 259: 660-684, 2010. Go to original source...
  3. Barbour M.M., Tcherkez G., Bickford C.P. et al.: δ13C of leafrespired CO2 reflects intrinsic water-use efficiency in barley. - Plant Cell Environ. 34: 792-799, 2011. Go to original source...
  4. Barna M.: Natural regeneration of Fagus sylvatica L.: a Review. - Austrian J. For. Sci. 128:71-91, 2011.
  5. Barna M., Jarčuška B.: Natural regeneration of beech. - In: Barna M., Kulfan J., Bublinec E. (ed.): Beech and Beech Ecosystems of Slovakia. Pp. 227-248. VEDA, Bratislava 2011.
  6. Bolte A., Czajkowski T., Kompa T.: The north-eastern distribution range of European beech - a review. - Forestry 80: 413-429, 2007. Go to original source...
  7. Bolte A., Ammer C., Löf M. et al.: Adaptive forest management in Central Europe: Climate change impacts, strategies and integrative concept. - Scand. J. Forest Res. 24: 473-482, 2009. Go to original source...
  8. Chaves M.M., Flaxas J., Pinheiro C.: Photosynthasis under drought and salt stress: regulation mechanoisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  9. Czajkowski T., Kühling M., Bolte A.: [Influence of the summer drought in 2003 on the growth of natural regeneration of beech (Fagus sylvatica L.) in north-eastern Central Europe.] - Allg. Forst. Jagdztg. 176: 133-143, 2005. [In German]
  10. Czajkowski T., Bolte A.: [Different response of German and Polish beech (Fagus sylvatica L.) to drought.] - Allg. Forst. Jagdztg. 177: 30-40, 2006. [In German]
  11. Gallé A., Feller U.: Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. - Physiol. Plantarum 131: 412-421, 2007. Go to original source...
  12. García-Plazaola J.I., Becerril J.M.: Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. - Trees 14: 485-490, 2000. Go to original source...
  13. Geßler A., Keitel C., Kreuzwieser J. et al.: Potential risk for European beech (Fagus sylvatica L.) in a changing climate. - Trees 21: 1-11, 2007.
  14. Goisser M., Zang U., Matzner E. et al.: Growth of juvenile beech (Fagus sylvatica L.) upon transplant into a wind-opened spruce stand of heterogeneous light and water conditions. - Forest Ecol. Manag. 310: 110-119, 2013. Go to original source...
  15. Gömöry D., Paule L., Longauer R. et al.: Assesment of mechanisms forming adaptive genetic variation in Norway spruce and common beech. - Acta Facult. Forient. Zvolen 52: 7-20, 2010.
  16. Gullo M., Nardini A., Salleo S. et al.: Cahnges in root hydraulic conductance (K R) of Olea Oleaster seedlings following drought stress and irrigation. - New Phytol. 140: 25-31, 1998. Go to original source...
  17. Hampe A., Petit R.J.: Conserving biodiversity under climate change: the rear edge matters. - Ecol. Lett. 8: 461-467, 2005. Go to original source...
  18. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  19. Millar C.I., Stephenson N.L., Stephens S.L.: Climate change and forests of future: managing in the face of uncertainty. - Ecol. Appl. 17: 2145-2151, 2007. Go to original source...
  20. Mittal S., Kumari N., Sharma V.: Differential responses of seven contrasting species to high light using pigment and chlorophyll a fluorescence. - J. Stress Physiol. Biochem. 7: 20-33, 2011.
  21. Müller-Stark G.: [Genetic criteria for the conservation of forest genetic resources.]. - NNA-Berichte 2: 21-25, 1997. [In German]
  22. Niinemets Ü.: Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. - Forest Ecol. Manag. 260: 1623-1639, 2010. Go to original source...
  23. Ögren E.: Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves. - Plant Physiol. 93: 1280-1285, 1990. Go to original source...
  24. Padilla F.M., Miranda J.D., Pugnaire F.I.: Early root growth plasticity in seedlings of three Mediterranean woody species. - Plant Soil 296: 103-113, 2007. Go to original source...
  25. Ralph P.J., Gademann R.: Rapid light curves: Apoverful tool to assess photosynthetic activity. - Aquat. Bot. 82: 222-237, 2005. Go to original source...
  26. Rascher U., Liebig M., Lüttge U.: Evaluation of instant light-response curve of chlorphyll fluorescence parameters obtained with a portable chlorophyll flurometer on site in the field. - Plant Cell Environ. 23: 1397-1405, 2000. Go to original source...
  27. Repáč I., Tučeková A., Sarvašová I. et al.: Survival and growth of outplanted seedlings of selected tree species on the High Tatra Mts. windthrow area after the first growing season. - J. For. Sci. 57: 349-358, 2011.
  28. Ritchie G.A.: Chlorophyll fluorescence: What is it and what do the numbers mean? - In: Riley L.E., Dumroese R.K., Landis T.D. (ed.): National Proceedings: Forest and Conservation Nursery Associations - 2005. USDA Forest Service Proceedings. Pp. 34-42. Rocky Mountain Research Station, Fort Collins 2006.
  29. Roostaei M., Mohammadi S.A., Amri A. et al.: Chlorophyll fluorescence parameters and drought tolerance in a mapping population of winter bread wheat in the highlands of Iran. - Russ. J. Plant Physiol+. 58: 351-358, 2011.
  30. Rose L., Leuschner C., Köckemann B. et al.: Are marginal beech (Fagus sylvatica L.) Provenances a source for drought tolerant ecotypes? - Eur. J. Forest Res. 128: 335-343, 2009.
  31. Sánchez-Gómez D., Robson T.M., Gascó A. et al.: Differences in the leaf functional traits of six beech (Fagus sylvatica L) populations are reflected in their response to water limitation. - Environ. Exp. Bot. 87: 110-119, 2013. Go to original source...
  32. Schreiber U., Gademann R., Ralph P.J. et al.: Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. - Plant Cell Physiol. 38: 945-951, 1997. Go to original source...
  33. Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 279-319. Springer, Dordrecht 2004.
  34. Silva D.E., Mazzella P.R., Legay M. et al.: Does natural regeneration determine the limit of European beech distribution under climatic stress? - Forest Ecol. Manag. 226: 263-272, 2012. Go to original source...
  35. Szwagrzyk J., Szewczyk J., Bodziarczyk J: Dynamics of seedling banks in beech forest: results of a 10-year study on germination, growth and survival. - Forest Ecol. Manag. 141: 237-250, 2001. Go to original source...
  36. Thiel D., Kreyling J., Backhaus S. et al.: Different reaction of central and marginal provenances of Fagus sylvatica to experimental drought. - Eur. J. Forest Res. 133: 247-260, 2014.
  37. Tognetti R., Johnson J.D., Michelozzi M.: The response of European beech (Fagus sylvatica L.) seedlings from two Italian populations to drought and recovery. - Trees 9: 348-354, 1995. Go to original source...
  38. Valladares F., Chico J.M., Aranda I. et al.: The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. - Trees 16: 395-403, 2002. Go to original source...
  39. Welp LR., Randerson J.T., Liu H.P.: The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. - Agr. Forest Meteorol. 147: 172-185, 2007. Go to original source...
  40. Yin C.Y., Peng Y.H., Zang R.G. et al.: Adaptive responses of Populus kangdingensis to drought stress. - Physiol. Plantarum 123: 445-451, 2005. Go to original source...
  41. Zivcak M., Brestic M., Balatova Z. et al.: Photosynthetic electron transport and specific photoprotective response in wheat leaves under drought stress. - Photosynth. Res. 117: 529-546, 2013. Go to original source...