Photosynthetica, 2015 (vol. 53), issue 3

Photosynthetica 2015, 53(3):349-355 | DOI: 10.1007/s11099-015-0132-3

Photosynthetic responses of Jatropha curcas to spider mite injury

M. H. Hsu1, C. C. Chen2, K. H. Lin3, M. Y. Huang3, C. M. Yang4,*, W. D. Huang5,*
1 Refining and Manufacturing Research Institute, CPC Corporation, Chiayi, Taiwan
2 Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Miaoli County, Taiwan
3 Department of Horticulture and Biotechnology, Chinese Culture University, Shilin, Taipei, Taiwan
4 Biodiversity Research Center, Academia Sinica, Nankang, Taipei, Taiwan
5 Department of Agronomy, National Taiwan University, Daan, Taipei, Taiwan

The spider mite Tetranychus urticae Koch is emerging as a major problem in Jatropha curcas cultivation. The goal of this study was to investigate the photosynthetic responses of Jatropha to spider mite infestation. Leaf CO2 assimilation rate, stomatal conductance, transpiration, intracellular CO2 concentration, and instantaneous carboxylation efficiency significantly decreased in mite-infested leaves compared with controls. Lower water content and specific leaf area of the mite-infested leaves were positively related to symptoms of wrinkling and curling. Leaf electrolyte leakage remained unchanged in the mite-infested leaves, revealing no effect on leaf membrane integrity. Leaves exhibited reductions in soluble protein and soluble sugar in association with photosynthetic impairment. Although decreases in photochemical activity and chlorophyll fluorescence parameters suggested damage to the photosynthetic apparatus, although there were no measurable reductions in chlorophyll or carotenoid contents associated with photosynthetic apparatus impairment. The decrease in the leaf CO2 assimilation rate was partially attributed to stomatal and metabolic limitations in the mite-infested leaves.

Keywords: biodiesel; gas exchange; membrane damage; photosynthetic pigments; physiological response

Received: August 21, 2014; Accepted: January 6, 2015; Published: September 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hsu, M.H., Chen, C.C., Lin, K.H., Huang, M.Y., Yang, C.M., & Huang, W.D. (2015). Photosynthetic responses of Jatropha curcas to spider mite injury. Photosynthetica53(3), 349-355. doi: 10.1007/s11099-015-0132-3.
Download citation

References

  1. Bilger W., Schreiber U.: Energy-dependent quenching of darklevel chlorophyll fluorescence in intact leaves. - Photosynth. Res. 10: 303-308, 1986. Go to original source...
  2. Baker N.R., Horton P.: Chlorophyll fluorescence quenching during photoinhibition. - In: Kyle D.J., Osmond C.B., Arntzen C.J. (ed.): Photoinhibition. Pp. 145-168. Elsevier Science Publishers, Amsterdam 1987.
  3. Berchmans H.J., Hirata S.: Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. - Bioresource Technol. 9: 1716-1721, 2008. Go to original source...
  4. Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  5. Brito R.M., Stern V.M., Sances F.V.: Physiological response of cotton plants to feeding of three Tetranychus spider mite species (Acari: Tetranychidae). - J. Econ. Entomol. 79: 1217-1220, 1986. Go to original source...
  6. Bueno A.d.F., Bueno R.C.O.d.F., Nabity P.D. et al.: [Photosynthetic response of soybean to two spotted spider mite (Acari: Tetranychidae) injury.] - Braz. Arch. Biol. Techn. 52: 825-834, 2009. [In Portuguese] Go to original source...
  7. Demmig B., Björkman O.: Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. - Planta 171: 171-184, 1987. Go to original source...
  8. Evaristo A.B., Venzon M., Matos F.S. et al.: Susceptibility and physiological responses of Jatropha curcas accessions to broad mite infestation. - Exp. Appl. Acarol. 60: 485-496, 2013. Go to original source...
  9. Fairbairn N.J.: A modified anthrone reagent. - Chem. Ind.- London 4: 86-86, 1953.
  10. Ferree D., Hall F.: Effects of soil water stress and twospotted spider mites on net photosynthesis and transpiration of apple leaves. - Photosynth. Res. 1: 189-197, 1980. Go to original source...
  11. Fischer G., Schrattenholzer L.: Global bioenergy potentials through 2050. - Biomass Bioenerg. 20: 151-159, 2001.
  12. Greco N., Pereyra P., Guillade A.: Hostplant acceptance and performance of Tetranychus urticae (Acari, Tetranychidae). - J. Appl. Entomol. 130: 32-36, 2006. Go to original source...
  13. Grinberg M., Perl-Treves R., Palevsky E. et al.: Interaction between cucumber plants and the broad mite, Polyphagotarsonemus latus: from damage to defense gene expression. - Entomol. Exp. Appl. 115: 135-144, 2005. Go to original source...
  14. Haile F.J., Higley L.G.: Changes in soybean gas-exchange after moisture stress and spider mite injury. - Environ. Entomol. 32: 433-440, 2003. Go to original source...
  15. Hislop R., Jeppson L.: Morphology of the mouthparts of several species of phytophagous mites. - Ann. Entomol. Soc. Am. 69: 1125-1135, 1976. Go to original source...
  16. Holm G.: Chlorophyll mutations in barley. - Acta Agr. Scand. 4: 457-471, 1954. Go to original source...
  17. Jeppson L.R., Keifer H.H., Baker E.W.: Mites Injurious to Economic Plants. Pp. 234-237. University of California Press, Berkeley 1975.
  18. Khattab H.: The defense mechanism of cabbage plant against phloem-sucking aphid (Brevicoryne brassicae L.). - Aust. J. Basic Appl. Sci. 1: 56-62, 2007.
  19. Koh M.Y., Mohd Ghazi T.I.: A review of biodiesel production from Jatropha curcas L. oil. - Renew. Sust. Energ. Rev. 15: 2240-2251, 2011. Go to original source...
  20. Kumar A., Sharma S.: An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. - Ind. Crop Prod. 28: 1-10, 2008. Go to original source...
  21. Lakso A.N., Mattii G.B., Nyrop J.P. et al.: Influence of European red mite on leaf and whole-canopy carbon dioxide exchange, yield, fruit size, quality, and return cropping in 'starkrimson Delicious' apple trees. - J. Am. Soc. Hortic. Sci. 121: 954-958, 1996. Go to original source...
  22. Landeros J., Guevara L., Badii M. et al.: Effect of different densities of the twospotted spider mite Tetranychus urticae on CO2 assimilation, transpiration, and stomatal behaviour in rose leaves. - Exp. Appl. Acarol. 32: 187-198, 2004. Go to original source...
  23. Leitner M., Boland W., Mithöfer A.: Direct and indirect defences induced by piercingsucking and chewing herbivores in Medicago truncatula. - New Phytol. 167: 597-606, 2005. Go to original source...
  24. Lopes E.N.: [Bioecology of Polyphagotarsonemus latus in genotypes of physic nut (Jatropha curcas).] - Master Thesis, Universidade Federal de Viçosa, Minas Gerais 2009. [In Portuguese]
  25. Lutts S., Kinet J., Bouharmont J.: Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. - Plant Growth Regul. 19: 207-218, 1996. Go to original source...
  26. Mizell R.F., Andersen P.C., Schiffbauer D.E.: Impact of the twospotted spider mite on some physiological processes of peach. - J. Agr. Entomol. 3: 143-151, 1986.
  27. Openshaw K.: A review of Jatropha curcas: an oil plant of unfulfilled promise. - Biomass Bioenerg. 19: 1-15, 2000. Go to original source...
  28. Öquist G., Anderson J.M., McCaffery S. et al.: Mechanistic differences in photoinhibition of sun and shade plants. - Planta 188: 422-431, 1992. Go to original source...
  29. Pereira W.E., de Siqueira D.L., Martínez C.A. et al.: Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. - J. Plant Physiol. 157: 513-520, 2000. Go to original source...
  30. Porra R.J., Thompson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. - BBA-Bioenergetics 975: 384-394, 1989. Go to original source...
  31. Poskuta J., Kolodziej A., Kropczynska D.: Photosynthesis, photorespiration and respiration of strawberry plants as influenced by the infestation with Tetranychus urticae Koch. - Fruit Sci. Rep. 2: 1-11, 1975.
  32. Pramanik K.: Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. - Renew. Energ. 28: 239-248, 2003. Go to original source...
  33. Reddall A., Sadras V., Wilson L. et al.: Physiological responses of cotton to two-spotted spider mite damage. - Crop Sci. 44: 835-846, 2004. Go to original source...
  34. Reddall A., Wilson L.J., Gregg P. et al.: Photosynthetic response of cotton to spider mite damage: interaction with light and compensatory mechanisms. - Crop Sci. 47: 2047-2057, 2007. Go to original source...
  35. Roháček K., Barták M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. - Photosynthetica 37: 339-363, 1999.
  36. Sadras V.O., Wilson L.J.: Growth analysis of cotton crops infested with spider mites: I. Light interception and radiationuse efficiency. - Crop Sci. 37: 481-491, 1997. Go to original source...
  37. Sances F., Toscano N., Oatman E. et al.: Reductions in plant processes by Tetranychus urticae (Acari: Tetranychidae) feeding on strawberry. - Environ. Entomol. 11: 733-737, 1982. Go to original source...
  38. Sances F., Wyman J., Ting I.: Physiological responses to spider mite infestation on strawberries. - Environ. Entomol. 8: 711-714, 1979. Go to original source...
  39. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. - Ecophys. Photosynth. 100: 49-70, 1995. Go to original source...
  40. Sharma P., Dubey R.S.: Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. - Plant Growth Regul. 46: 209-221, 2005. Go to original source...
  41. Silva E.N., Ferreira-Silva S.L., Fontenele A.d.V. et al.: Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. - J. Plant Physiol. 167: 1157-1164, 2010. Go to original source...
  42. Sivritepe N., Kumral N., Erturk U. et al.: Responses of grapevines to two-spotted spider mite mediated biotic stress. - J. Biol. Sci. 9: 311-318, 2009. Go to original source...
  43. Tan W., Liu J., Dai T. et al.: Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to postanthesis water-logging. - Photosynthetica 46: 21-27, 2008. Go to original source...
  44. Terren M., Mignon J., DeClerck C. et al.: Principal disease and insect pests of Jatropha curcas L. in the lower valley of the Senegal river. - Tropicultura 30: 222-229, 2012.
  45. Tomczyk A.: Physiological and biochemical responses of plants to spider mite feeding. - In: Halliday R.B., Walter D.E., Proctor H.C. et al. (ed.): Acarology: Proc. 10th Int. Cong. Pp. 306-313. CSIRO Publishing, Melbourne 2001.
  46. Wang H., Chen Y., Zhao Y.N. et al.: Effects of replacing soybean meal by detoxified Jatropha curcas kernel meal in the diet of growing pigs on their growth, serum biochemical parameters and visceral organs. - Anim. Feed Sci. Tech. 170: 141-146, 2011. Go to original source...