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Abstract

We investigate the complexity of the Boolean clone membership problem (CMP): given a

set of Boolean functions F and a Boolean function f , determine if f is in the clone generated

by F , i.e., if it can be expressed by a circuit with F -gates. Here, f and elements of F are

given as circuits or formulas over the usual De Morgan basis. Böhler and Schnoor [7] proved

that for any fixed F , the problem is coNP-complete, with a few exceptions where it is in P.

Vollmer [30] incorrectly claimed that the full problem CMP is also coNP-complete. We

prove that CMP is in fact ΘP
2 -complete, and we complement Böhler and Schnoor’s results

by showing that for fixed f , the problem is NP-complete unless f is a projection.

More generally, we study the problem B-CMP where F and f are given by circuits

using gates from B. For most choices of B, we classify the complexity of B-CMP as being

ΘP
2 -complete (possibly under randomized reductions), coDP-complete, or in P.

1 Introduction

The fundamental concept of a clone originated in universal algebra as an abstraction of the no-

tion of an algebra—a clone consists of operations term-definable in a given algebra; it reappears

in logic in the form of a collection of truth functions (in a possibly multi-valued logic) defin-

able by formulas over a given set of connectives, and in computer science as a set of functions

computable by circuits over a given basis of gates. Clones have many applications in theoreti-

cal computer science in classification of the complexity of CSPs [27, 8, 33] or satisfiability and

related problems [19, 24], including various nonclassical logics [2, 6, 12, 22]. The most basic

computational problem associated with clones is the clone membership problem, asking if a

given function is expressible (definable by a term, formula, or circuit) from a given set of initial

functions. This problem has computer science applications in the context of formal algebraic

specifications [26].

From the point of view of computational complexity, several variants of the clone membership

problem were studied in the literature. The most straightforward representation of the input

functions is by tables of values. In this setting, Kozen [15] proved that the membership problem

for clones of unary functions on arbitrary finite domains is PSPACE-complete. The general

clone membership problem for arbitrary functions on finite domains is EXP-complete. This
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result is credited in [5] to an unpublished manuscript of H. Friedman, but the first published

proof is due to Bergman, Juedes, and Slutzki [4]; a mistake in their paper was corrected by

Mašulović [21]. As shown by Kozik [16], there even exists a fixed finitely generated clone on a

finite domain whose membership problem is EXP-complete.

The high complexity of the problem on arbitrary finite domains is related to the complicated

structure of clones on domains of size ≥ 3. In contrast, the lattice of clones on the Boolean

(two-element) domain is quite simple, and it has been explicitly described by Post [23]. As a

result, the Boolean clone membership problem is computationally much easier than the general

case: it was shown to be in NL by Bergman and Slutzki [5], while Vollmer [30] proved that it

was in quasipolynomial AC0, which implies it is not NL-hard (or even AC0[2]-hard).

The representation of functions by tables is quite inefficient, as it always has size exponential

in the number of variables. A viable alternative, especially in the Boolean case, is to represent

functions by expressions (circuits or formulas) over some canonically chosen functionally com-

plete basis, say, the De Morgan basis {∧,∨,¬}. In this setting, Böhler and Schnoor [7] studied

the complexity of membership problems for fixed Boolean clones C: they proved that all such

problems are coNP-complete with a few exceptions that are in P. More generally, they studied

variants of the problem where f is not given by a circuit over a functionally complete basis, but

over an arbitrary (but fixed) basis. They classified most such problems as being coNP-complete

or in P.

The full Boolean clone membership problem in the circuit representation (denoted CMP in

this paper) was considered by Vollmer [30], who claimed it was also coNP-complete. However,

he did not provide much in the way of proof for the coNP upper bound (see Remark 3.5 below),

and as we will see, this claim is wrong.

A characterization of clone membership in terms of preservation of relational invariants easily

implies that CMP is computable in PNP—more precisely, in the class ΘP
2 = PNP[log] = P‖NP.

The main goal of this paper is to prove that CMP is in fact ΘP
2 -complete. As a warm-up, we

consider a restriction of CMP dual to Böhler and Schnoor’s results: we prove that for a fixed

target Boolean function f , the clone membership problem is NP-complete in all nontrivial cases

(i.e., unless f is a projection function, or a nullary function if we allow them). This already

shows that CMP cannot be coNP-complete unless NP = coNP. We then go on to prove

that CMP is ΘP
2 -complete; our main technical tool is a characterization of clones generated by

threshold functions. We also discuss some variants of our results, such as using formulas instead

of circuits for representation of functions, or allowing nullary functions.

In the second part of the paper, we investigate the complexity of restricted versions of CMP,

denoted B-CMP, where the input functions are given by circuits or formulas over an arbitrary

(but fixed) finite basis B instead of the De Morgan basis. We show that B-CMP remains ΘP
2 -

complete, albeit using randomized reductions, when the clone [B] generated by B has infinitely

many subclones, and includes some non-monotone functions; we rely on a randomized construc-

tion of formulas for threshold functions using fixed threshold functions as gates, following the

method of Valiant [29]. On the other hand, if [B] has only finitely many subclones, we clas-

sify the complexity of B-CMP as either coDP-complete or in P. The complexity of B-CMP

remains open when [B] has infinitely many subclones, but consists of monotone functions only.
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2 Preliminaries

2.1 Boolean functions and clones

We will assume basic familiarity with the theory of Boolean clones; this is described in many

places, for example Lau [18]. We will summarize the most important points below to fix our

terminology and notation.

Let 2 = {0, 1}. An n-ary Boolean function (or operation) is a mapping f : 2n → 2. We

denote the set of n-ary Boolean functions by Opn, and the set of all Boolean functions by

Op =
⋃
n≥1 Opn. (Following the tradition in literature on Boolean clones, we disallow nullary

functions; we will comment later on how this affects our results.)

We will use common connectives such as ∧,∨,→,¬ to denote specific Boolean functions;

by abuse of notation, 0 and 1 denote the constant functions of arbitrary arity. If 0 ≤ i < n,

the projection function πni ∈ Opn is defined by πni (x0, . . . , xn−1) = xi. For any n > 0 and

0 ≤ t ≤ n+ 1, the threshold function θnt ∈ Opn is defined by

θnt (x0, . . . , xn−1) = 1 ⇐⇒
∣∣{i < n : xi = 1}

∣∣ ≥ t.
Notice that θn0 = 1, θnn+1 = 0, θ21 = ∨, θ22 = ∧, and θ11 = π11 is the identity function.

Given functions f ∈ Opn and g0, . . . , gn−1 ∈ Opm, their composition is the function h ∈ Opm
defined by

h(~x) = f
(
g0(~x), . . . , gn−1(~x)

)
.

A set of Boolean functions C ⊆ Op is a clone if it contains all projections and is closed under

composition. The intersection of an arbitrary collection of clones is again a clone (where the

empty intersection is understood as Op), thus the poset of clones under inclusion forms a

complete lattice, and it yields an (algebraic) closure operator [−] : P(Op)→ P(Op); that is, for

any F ⊆ Op, [F ] denotes the clone generated by F .

The dual of a Boolean function f is the function fd(x0, . . . , xn−1) = ¬f(¬x0, . . . ,¬xn−1).
The dual of a clone C is the clone {fd : f ∈ C}.

A k-ary Boolean relation is r ⊆ 2k. The set of k-ary Boolean relations is denoted by Relk,

and the set of all relations by Rel =
⋃
k Relk. (Here, it will not make any difference if we

allow nullary relations or not; the reader is welcome to make the choice.) A function f ∈ Opn
preserves a relation r ∈ Relk, written as f . r, if f , considered as a mapping of the relational

structures 〈2, r〉 × · · · × 〈2, r〉 → 〈2, r〉, is a homomorphism. Explicitly, f . r iff the following

implication holds for every matrix (aji )
j<k
i<n ∈ 2k×n: a00

...

ak−10

 ∈ r, . . . ,
a

0
n−1
...

ak−1n−1

 ∈ r =⇒

 f(a00, . . . , a
0
n−1)

...

f(ak−10 , . . . , ak−1n−1)

 ∈ r.
For example, the relation r = {〈x, y〉 : x∨y = 1} is not preserved by the function f(x, y, z) =

x ∧ (y ∨ z), as witnessed by the matrix
(
1 0 0
0 1 1

)
: every column is in r, but applying f row-wise

gives the vector
(
0
0

)
/∈ r. On the other hand, θ32 preserves r (and all other 2-ary relations for
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that matter): for any (aji )
j<2
i<3 and each j < 2, θ32(aj0, a

j
1, a

j
2) 6= aji for at most one i < 3, hence

there exists i < 3 such that (
θ32(a

0
0,a

0
1,a

0
2)

θ32(a
1
0,a

1
1,a

1
2)

)
=
(
a0i
a1i

)
.

If F ⊆ Op and R ⊆ Rel, we write F .R if f .r for all f ∈ F and r ∈ R. The set of invariants

of F ⊆ Op and the set of polymorphisms of R ⊆ Rel are defined by

Inv(F ) = {r ∈ Rel : F . r},
Pol(R) = {f ∈ Op : f . R}.

We will use the following fundamental properties of the Inv and Pol operators (see [18, Thms.

2.6.1, 2.9.1]):

Fact 2.1 The mappings Inv : P(Op) → P(Rel) and Pol : P(Rel) → P(Op) form an antitone

Galois connection: R ⊆ Inv(F ) ⇐⇒ F ⊆ Pol(R).

The Galois-closed subsets of Op are exactly the clones: i.e., Pol(R) is a clone for every

R ⊆ Rel, every clone is of the form Pol(R) for some R ⊆ Rel, and [F ] = Pol(Inv(F )) for all

F ⊆ Op.

If we allowed nullary functions, then Galois-closed subsets of Rel would be exactly the

coclones: subsets R ⊆ Rel that are closed under definitions by primitive positive formulas, i.e.,

first-order formulas ϕ(~x) of the form ∃~y
∧
i<k ψi(~x, ~y), where each ψi is an atomic formula (an

instance of a relation r ∈ R, or of equality). Under our restriction to non-nullary functions,

Galois-closed subsets of Rel are only the coclones that contain the empty relation ∅ ∈ Rel1.

(See Behrisch [3] for a detailed discussion.)

The lattice of Boolean clones was completely described by Post [23]. In particular, we will

make use of the following characterization (which follows from [28, pp. 36ff] or [18, Thm. 3.1.1]),

fixing our naming of basic clones and their invariants along the way. Here, for any f ∈ Opn,

gr(f) = {〈~x, y〉 ∈ 2n+1 : y = f(~x)} ∈ Reln+1 denotes the graph of f . Recall that an element a

of a lattice L is meet-irreducible if a =
⋂
S implies a ∈ S for any finite S ⊆ L, where

⋂
denotes

the lattice meet operation; if this holds also for infinite S ⊆ L, it is completely meet-irreducible.

Fact 2.2 Every Boolean clone is an intersection of a family of completely meet-irreducible

clones, which are:

• The clone M = [∧,∨, 0, 1] = Pol(≤) of monotone functions, where ≤ denotes the relation

{〈0, 0〉, 〈0, 1〉, 〈1, 1〉} ∈ Rel2.

• The clone A = [+, 1] = Pol(rA) of affine functions, where + denotes addition in the

two-element field F2 (i.e., XOR), and rA = {〈x, y, z, w〉 : x+ y + z + w = 0} ∈ Rel4.

• The clone D = [θ32,¬] = Pol
(
gr(¬)

)
of self-dual functions (i.e., functions f such that

f = fd).

• The clone
∧

= [∧, 0, 1] = Pol
(
gr(∧)

)
of conjunctive functions.

• The clone
∨

= [∨, 0, 1] = Pol
(
gr(∨)

)
of disjunctive functions.
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Figure 1: The lattice of Boolean clones (Post’s lattice).

• The clone U = [¬, 0] = Pol(rU ) of essentially unary functions (i.e., functions that depend

on at most one variable), where rU =
{
〈x, y, z〉 : z ∈ {x, y}

}
∈ Rel3.

• For each m ≥ 1, the clones Tm
1 = [θm+1

2 ,→] = Pol(rm1 ) and Tm
0 = [θm+1

m ,9] = Pol(rm0 ),

where x9 y = ¬(x→ y) = x ∧ ¬y, and the relations rmα ∈ Relm are defined by

rm1 = {~x ∈ 2m : x0 ∨ · · · ∨ xm−1 = 1},
rm0 = {~x ∈ 2m : x0 ∧ · · · ∧ xm−1 = 0}.

Since r1α = {α}, this includes as a special case the clones P1 = [∧,→] = T1
1 and P0 =

[∨,9] = T1
0 of 1-preserving and 0-preserving functions (respectively).

We will denote intersections of named clones by juxtaposition, so that, e.g., AD = A ∩ D. For

convenience, we also put P = P0P1 and T∞α =
⋂
m Tm

α . We have T∞1 = [→] and T∞0 = [9].

We will denote the top and bottom of the lattice of clones by > and ⊥, i.e., > = Op, and

⊥ = {πni : i < n} = UP. We define

Rn = {≤, rA, gr(¬), gr(∧), gr(∨), rU} ∪ {rmα : 0 < m ≤ n, α ∈ 2} ⊆ Rel

for each n ≥ 0, and R∞ =
⋃
nRn.

The Hasse diagram of the lattice of Boolean clones (called Post’s lattice) is depicted in

Fig. 1. (In fact, Post [23] did not work with the modern definition of clones, but with a slightly
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weaker concept of iterative classes, which do not necessarily contain all projections. Thus, his

original lattice has four more classes.)

2.2 Computational complexity

We assume the reader is familiar with basic notions of complexity theory, including the classes

P, NP, and coNP, and logspace functions.

If C is a complexity class, we say that a language L is C-hard if for every L′ ∈ C, there

exists a logspace many-one reduction from L′ to L; if, moreover, L ∈ C, then L is C-complete.

A reader familiar with uniform TC0 functions (see e.g. [1]) may easily find that all our results

below actually hold with TC0 many-one reductions in place of logspace reductions. (We believe

that the bulk of our results actually hold under even more restricted notions of reductions

such as dlogtime or AC0, but this might require extra effort, or possibly a relaxed syntactic

representation of circuits and formulas allowing for insertion of padding.)

Let B ⊆ Op be finite. A (Boolean) circuit over a basis B (or B-circuit for short) in

n variables is a labelled directed acyclic graph C (possibly with multiple edges) with exactly

one node of out-degree 0 (the output node), such that each node of C is either labelled with one

of the variables xi, i < n, in which case it has in-degree 0, or it is labelled with a k-ary function

f ∈ B, in which case it has in-degree k, and it comes with an explicit numbering of the incoming

edges (such a node is called an f -gate). A circuit computes a function 2n → 2 in the usual

way. A function f ∈ Op is computable by a B-circuit iff f ∈ [B]. Given a B-circuit C : 2n → 2

and an assignment a ∈ 2n, we can evaluate C(a) in polynomial time; moreover, evaluation of

circuits over the De Morgan basis {∧,∨,¬} is P-complete (Ladner [17]). The depth of a circuit

is the maximal length of a path from a leaf to the output node.

A B-formula is a B-circuit such that all nodes have out-degree at most 1. Formulas are

usually represented as strings in a more economical way than directed graphs: the prefix (Polish)

notation can be defined inductively such that each variable xi is a B-formula, and if f ∈ B is

k-ary, and ϕ0, . . . , ϕk−1 are B-formulas, then fϕ0 . . . ϕk−1 is a B-formula. If all f ∈ B have

arity at most 2, we may also use the common infix notation where (ϕ0 f ϕ1) is employed instead

of fϕ0ϕ1 for f of arity 2. Evaluation of formulas over any finite basis is in NC1, and over

the De Morgan basis it is NC1-complete under dlogtime reductions (Buss [9]). Here, NC1 is

the class of languages computable in time O(log n) on an alternating Turing machine (with

random-access input); equivalently, it consists of languages computable by a dlogtime-uniform

(more precisely, UE-uniform) sequence of De Morgan circuits of depth O(log n), see Ruzzo [25]

for details. We have NC1 ⊆ L.

By duplicating nodes as needed, we can unravel any B-circuit of depth d into a B-formula

of depth d, and therefore of size 2O(d); in particular, any circuit of depth O(log n) can be

transformed into a polynomial-size formula. One consequence of this is that we can efficiently

convert formulas of depth O(log n) to a different basis (the corresponding result for circuits

being trivial), which will be useful in Section 4:

Lemma 2.3 Let B,B′ ⊆ Op be finite sets such that B ⊆ [B′].

(i) Given a B-circuit, we can construct in logspace an equivalent B′-circuit.
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(ii) Given a B-formula of depth O(log n), we can construct in logspace an equivalent B′-

formula.

Proof:

(i): For each f ∈ B, we fix an expression of f in terms of B′, and replace with it all f -gates

in the circuit.

(ii): Starting from a B-formula of depth O(log n), the construction above produces a B′-

circuit of depth O(log n), which can be unravelled into a B′-formula of depth O(log n), and

consequently of size nO(1). 2

The Boolean clone membership problem CMP is the following decision problem:

Input: A finite set of functions F ⊆ Op and a function f ∈ Op, all given by Boolean

circuits over the De Morgan basis.

Output: YES if f ∈ [F ], otherwise NO.

For any clone C = [C], the membership problem CMPC is the special case of CMP where F

is fixed:

Input: A function f ∈ Op, given by a Boolean circuit over the De Morgan basis.

Output: YES if f ∈ C, otherwise NO.

Dually, for a fixed function f ∈ Op, CMPf denotes the following special case of CMP:

Input: A finite set of functions F ⊆ Op, given by Boolean circuits over the De Mor-

gan basis.

Output: YES if f ∈ [F ], otherwise NO.

Notice that CMPf = CMPg whenever [f ] = [g], as the output condition can be stated as

[f ] ⊆ [F ].

For any class C and q : N→ N, PC[q] denotes the class of languages computable in polynomial

time using at most q(n) queries to an oracle A ∈ C; similarly for a set of such functions q. The

class P‖C consists of languages computable in polynomial time with non-adaptive (parallel)

access to an oracle A ∈ C; we also write P‖C[q] if the number of oracle queries is bounded

by q(n).

The class ΘP
2 , introduced by Wagner [31], is defined as PNP[O(logn)]. It has several other

equivalent characterizations, see Buss and Hay [10]: in particular, ΘP
2 = P‖NP.

The Boolean hierarchy BH is defined as the smallest class that includes NP, and is closed

under (finitary) intersections, unions, and complements; alternatively, it can be characterized

as BH = PNP[O(1)]. The Boolean hierarchy is stratified into levels: the bottom level consists

of NP and coNP, and the next level of the classes

DP = {L0 ∩ L1 : L0 ∈ NP, L1 ∈ coNP},
coDP = {L0 ∪ L1 : L0 ∈ NP, L1 ∈ coNP}.
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We will use the observation that for any NP-complete language L0 and a coNP-complete

language L1, the language

L = {〈x, y〉 : x ∈ L0 or y ∈ L1}

is coDP-complete: given a coDP language L′ = L′0 ∪L′1, where L′0 ∈ NP and L′1 ∈ coNP, we

may fix reductions fi of L′i to Li for i = 0, 1; then w 7→ 〈f0(w), f1(w)〉 is a reduction of L′ to L.

3 The complexity of CMP

In this section, we will investigate the complexity of CMP and its subproblems CMPC and

CMPf . We will start with upper bounds (CMP ∈ ΘP
2 , CMPC ∈ coNP, CMPf ∈ NP)

in the first subsection. The corresponding lower bounds will follow in Section 3.2 for CMPC
and CMPf , and in Section 3.3 for CMP (the ΘP

2 -completeness of CMP will be the main result

of this section). We discuss how these results are affected if we vary the definition of CMP and

its subproblems in Section 3.4.

3.1 Upper bounds

Similarly to [5, 7, 30], we will extract an algorithm for CMP from Fact 2.1, which implies

(1) f ∈ [F ] ⇐⇒ Inv(F ) ⊆ Inv(f) ⇐⇒ ∀r ∈ Rel (F 7 r or f . r).

Using Fact 2.2, we may restrict attention to r ∈ R∞, but this is still an infinite number of

invariants due to the two infinite families rm0 and rm1 , m ∈ N, which correspond to the two

infinite arms of Post’s lattice. In order to turn (1) into an algorithmic criterion, we need to

place an efficient bound on m in terms of F and f , which is the content of the next lemma.

Lemma 3.1 Let n ≥ 1, f ∈ Opn, and α ∈ 2. The following are equivalent:

(i) f ∈ T∞α .

(ii) f ∈ Tn
α.

(iii) There is i < n such that xi ≤α f(~x) for all ~x ∈ 2n, where ≤1 = ≤, ≤0 = ≥.

Proof: (i)→ (ii) is trivial.

(iii) → (i): Assume α = 1 and xi0 ≤ f(~x). If m ∈ N and (aji )
j<m
i<n is such that

∨
j<m a

j
i = 1

for all i < n, then in particular
∨
j<m a

j
i0

= 1, hence
∨
j<m f(aj0, . . . , a

j
n−1) = 1 by assumption.

(ii)→ (iii): If (iii) does not hold, let us fix for each i < n a vector ai = 〈ai0, . . . , ain−1〉 ∈ 2n

such that aii = α and f(ai) = ¬α. Then the matrix (aji )
j<n
i<n witnesses that f 7 rnα: if, say,

α = 1, we have a0i ∨ · · · ∨ a
n−1
i ≥ aii = 1 for each i < n, but f(a0) ∨ · · · ∨ f(an−1) = 0. 2

Corollary 3.2 If F ⊆ Op and f ∈ Opn, then

(2) f ∈ [F ] ⇐⇒ ∀r ∈ Rn (F 7 r or f . r).
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Proof: The left-to-right implication is clear. For the right-to-left implication, if f /∈ [F ], then

one of the completely meet-irreducible clones C as given in Fact 2.2 satisfies F ⊆ C and f /∈ C.

Moreover, if C = Tm
α for some α ∈ 2 and m > n, then also f /∈ Tn

α ⊇ C ⊇ F by Lemma 3.1.

Thus, we may assume C = Pol(r) for some r ∈ Rn, i.e., F . r and f 7 r. 2

Since the criterion in (2) uses the preservation relation ., we need to know its complexity.

Lemma 3.3 If f ∈ Op and r ∈ Rel are given by Boolean circuits over any fixed finite basis, we

can test whether f . r in coNP.

Proof: Given circuits computing f : 2n → 2 and r ⊆ 2k (where we may assume w.l.o.g. that all

variables appear in the circuits), we have straight from the definition that f 7 r iff there exists

a matrix A = (aji )
j<k
i<n ∈ 2k×n such that 〈a0i , . . . , a

k−1
i 〉 ∈ r for each i < n, and

〈f(a00, . . . , a
0
n−1), . . . , f(ak−10 , . . . , ak−1n−1)〉 /∈ r.

Here, A is an object of size polynomial in n and k, which are bounded by the size of the input,

and the stated properties of A can be checked in polynomial time. 2

We can combine Corollary 3.2 and Lemma 3.3 to obtain the desired upper bounds.

Theorem 3.4

(i) CMP ∈ ΘP
2 .

(ii) CMPC ∈ coNP for each clone C ⊆ Op.

(iii) CMPf ∈ NP for each f ∈ Op.

Proof:

(i): Given F ⊆ Op and f ∈ Op of arity n, we can determine if f ∈ [F ] in P‖NP by

evaluating (2): there are 2n + O(1) relations in Rn, and they can be described by efficiently

constructible Boolean circuits. Thus, in view of Lemma 3.3, we can ask the NP oracle if F . r

and if f . r for each r ∈ Rn in parallel, and read the answer off of the oracle responses.

(ii): We use Corollary 3.2 again, but since C is fixed, we can test C . r in deterministic

polynomial time: {r ∈ R0 : C . r} is a finite set, and for each α ∈ 2, {m ∈ N>0 : C . rmα } is a

downward-closed subset of N>0, i.e., either all of N>0, or a finite set. Thus, (2) can be evaluated

in coNP.

(iii) is even simpler: since f (hence n) is fixed, Rn is a fixed finite set, and so is {r ∈ Rn :

f 7 r}. Thus, we can test if F 7 r for each r from this finite set in NP by Lemma 3.3. 2

Remark 3.5 The purported proof of CMP ∈ coNP in Vollmer [30] essentially just states that

it follows from a criterion similar to our Corollary 3.2, despite that it involves both positive and

negative occurrences of the coNP preservation relation.
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3.2 Hardness of CMPC and CMPf

We turn to lower bounds which will show that Theorem 3.4 is mostly optimal, with a few

exceptions in (ii) and (iii). We start with CMPC and CMPf , where we can prove (co)NP-

hardness by simple reductions from Boolean satisfiability.

The case of CMPC was settled by Böhler and Schnoor [7]. For completeness, we include

a self-contained proof, employing a reduction function that we will reuse in the argument

for CMPf below.

Theorem 3.6 (Böhler and Schnoor) Let C be a Boolean clone.

(i) If C ⊇ P, then CMPC ∈ P. More precisely, CMP> is trivial, and CMPC is P-complete

for C = P0,P1,P.

(ii) Otherwise (i.e., if C ⊆ M, D, A, T2
0, or T2

1), CMPC is coNP-complete.

Proof:

(i): We have f ∈ Pα iff f(α, . . . , α) = α, which can be checked in polynomial time. To

show the P-hardness of CMPP and CMPP1 , let a De Morgan circuit C(x0, . . . , xn−1) and an

assignment ~a be given. Put C~a(x) = x ∧ C(xa0 , . . . , xan−1), where x1 = x, x0 = ¬x. Then

C(~a) = 1 iff C~a ∈ P1 iff C~a ∈ P. The case of P0 is dual.

(ii): That C is included in M, D, A, T2
0, or T2

1 follows by inspection of Post’s lattice (Fig. 1).

We have CMPC ∈ coNP by Theorem 3.4. In order to show coNP-hardness, we will provide a

reduction from UnSat; it will even be independent of C.

Given a formula ϕ in variables ~u, let

fϕ(x, y, z, ~u) =
(
(x ∧ ϕ) ∧ y

)
∨
(
¬(x ∧ ϕ) ∧ z

)
.

Then

ϕ ∈ UnSat =⇒ fϕ ≡ z =⇒ fϕ ∈ ⊥ ⊆ C,(3)

ϕ ∈ Sat =⇒ fϕ /∈ M,A,D,T2
0,T

2
1 =⇒ fϕ /∈ C.(4)

Indeed, (3) is obvious. For (4), if ~a is a satisfying assignment to ϕ, we see that

(x ∧ y) ∨ (¬x ∧ z) = fϕ(x, y, z,~a) ∈ [fϕ, 0, 1],

thus fϕ /∈ M,A. Moreover,

fϕ(1, 1, 0,~a) = fϕ(0, 0, 1,¬~a) = 1,

fϕ(1, 0, 1,~a) = fϕ(0, 1, 0,¬~a) = 0,

thus fϕ /∈ D,T2
1,T

2
0. 2

Using a similar construction, we can now determine the complexity of CMPf .
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Theorem 3.7 Let f ∈ Op.

(i) If f is a projection (i.e., f ∈ ⊥), then CMPf is trivial.

(ii) Otherwise, CMPf is NP-complete.

Proof: Let ϕ 7→ fϕ be the reduction from the proof of Theorem 3.6. It follows from the

definition that fϕ ∈ P, while (4) implies that [fϕ] ⊇ P if ϕ is satisfiable. Thus,

ϕ ∈ Sat =⇒ [fϕ] = P,

ϕ ∈ UnSat =⇒ [fϕ] = ⊥,

hence ϕ 7→ {fϕ} is a reduction from Sat to CMPf whenever f ∈ Pr⊥. Likewise, the reduction

ϕ 7→ {fϕ, 0, 1} works whenever f /∈ [0, 1], and ϕ 7→ {fϕ,¬} works whenever f /∈ [¬]. This covers

all cases where f is not a projection. 2

Since CMPf is a special case of CMP, Theorem 3.7 also shows the NP-hardness of CMP,

which (conditionally) refutes Vollmer’s claim CMP ∈ coNP.

Corollary 3.8 CMP /∈ coNP unless NP = coNP. 2

It will take more work to establish the true complexity of CMP, which we will do in the

next subsection.

3.3 Hardness of CMP

We aim to prove that CMP is ΘP
2 -complete in this subsection. First, if we look at how the ΘP

2

upper bound was derived in the proof of Theorem 3.4, we see that the only way the complexity

of CMP can get as hard as ΘP
2 is by interaction of F and f deep inside one of the infinite

arms of Post’s lattice: otherwise (2) holds with a constant n, in which case the criterion can be

evaluated in PNP[O(1)], i.e., in the Boolean hierarchy (cf. Lemma 4.1). Thus, we need a flexible

supply of functions that generate clones on the infinite arms: we will find a suitable pool of

such functions among the threshold functions θnt . We then consider a suitable ΘP
2 -hard problem

based on counting the number of satisfiable formulas from a given list, which we transform into a

question about the clone generated by a certain formula that combines the list using a threshold

function.

In view of the outline above, our first task is to describe exactly the clones generated by

threshold functions. For completeness, the lemma below is stated including various cases that

we will not actually need.
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Lemma 3.9 Let n ≥ 1 and 0 ≤ t ≤ n+ 1. Then

[θnt ] =



⊥ t = n = 1,

UP1 t = 0,∨
P t = 1, n > 1,

MPT
b(n−1)/(t−1)c
1 1 < t ≤ n

2 ,

DM t = n+1
2 , n > 1,

MPT
dt/(n−t)e
0

n
2 + 1 ≤ t < n,∧

P t = n, n > 1,

UP0 t = n+ 1.

Proof: The cases with t ≤ 1 or t ≥ n are straightforward.

Notice that the dual of θnt is θnn+1−t. Thus, if t = (n + 1)/2 (which implies n is odd), then

θnt ∈ DM. By Fig. 1, DM is a minimal clone, hence [θnt ] = DM unless θnt is a projection, which

only happens when n = 1.

Assume that 1 < t ≤ n/2. Clearly, θnt ∈ MP. Since N<n = {0, . . . , n − 1} has two disjoint

subsets of size bn/2c ≥ t, θnt /∈ Pol(r20) = T2
0. Also, t ≥ 2 implies that θnt is not bounded

below by a variable, i.e., θnt /∈ T∞1 by Lemma 3.1. By inspection of Post’s lattice, it follows that

[θnt ] = MPTk
1 for some k ≥ 1. Now, for any k ≥ 1, we have θnt 7 rk1 iff N<n can be covered by k

subsets of size < t iff n ≤ k(t− 1), thus

θnt ∈ Tk
1 ⇐⇒ n ≥ 1 + k(t− 1) ⇐⇒ k ≤

⌊
n− 1

t− 1

⌋
,

and consequently [θnt ] = MPT
b(n−1)/(t−1)c
1 .

Finally, assume that n
2 + 1 ≤ t < n. The dual of θnt is θnt′ , where t′ = n + 1 − t satisfies

1 < t′ ≤ n
2 . Thus, by the case that we just proved, [θnt′ ] = MPTk

1 with

k =

⌊
n− 1

t′ − 1

⌋
=

⌊
n− 1

n− t

⌋
=

⌊
t+ (n− t− 1)

n− t

⌋
=

⌈
t

n− t

⌉
,

and [θnt ] is its dual, MPTk
0. 2

We will also need a convenient ΘP
2 -complete problem to reduce to CMP. In fact, the

statement below effectively gives a ΘP
2 -complete promise problem rather than a language. The

idea was independently discovered by Wagner [31, Cor. 6.4] and Buss and Hay [10, Thm. 8], but

the formulation below is closer to [20, L. 2.1]. We include a self-contained proof for completeness.

Lemma 3.10 Let L ⊆ Σ∗ be any language such that L ∈ ΘP
2 . Then there exists a logspace

function w 7→ 〈ϕw,i : i < 2nw〉 (where each ϕw,i is a CNF and nw ∈ N) with the following

property: for every w ∈ Σ∗, there exists 0 < j ≤ 2nw such that for all i < 2nw,

ϕw,i ∈ Sat ⇐⇒ i < j,

and we have

w ∈ L ⇐⇒ j is even.
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Proof: L is computable by a polynomial-time Turing machine M(w) that makes |w|c parallel

(non-adaptive) queries to an NP oracle. Given a w ∈ Σ∗, put nw = |w|c + 1; for any i < nw,

let ϕ2i be a CNF whose satisfiability is equivalent to the NP property “at least i queries made

by M(w) have positive answers”, ϕ′2i+1 a CNF expressing “there is an accepting run of M(w)

with i positive answers to queries, all of which are correct”, and ϕ2i+1 a CNF equivalent to

ϕ′2i+1 ∨ ϕ2i+2 (where ϕ2nw is understood as ⊥). If k is the true number of positively answered

queries made by M(w), then ϕi is satisfiable iff i < 2k + 1 or i < 2k + 2 depending on whether

w ∈ L. 2

The following crucial lemma shows how to leverage threshold functions from Lemma 3.9 to

translate the characterization of ΘP
2 from Lemma 3.10 into properties of clones. We recall that

threshold functions have logspace-computable polynomial-size circuits, and even O(log n)-depth

formulas (see e.g. Wegener [32]).

Lemma 3.11 There exists a logspace function 〈ϕi : i < n〉 7→ f~ϕ, and for each n, a sequence

of integers kn,0 > kn,1 > · · · > kn,n ≥ 2, with the following property: whenever 〈ϕi : i < n〉 is a

sequence of formulas, we have [9, f~ϕ] = T
kn,s

0 , where s =
∣∣{i < n : ϕi ∈ Sat}

∣∣.
Proof: For a given n, fix m > n (to be specified later) and t = m−n− 1. We may assume that

the formulas ϕi use pairwise disjoint sets of variables that are also disjoint from {xi : i < m}.
Put

f~ϕ = θmt (x0 ∧ ϕ0, . . . , xn−1 ∧ ϕn−1, xn, . . . , xm−1).

When ϕi is unsatisfiable, we have xi ∧ ϕi ≡ 0. Thus, renumbering w.l.o.g. the ϕis so that

each ϕi, i < s, is satisfiable,

f~ϕ ≡ θm−n+st (x0 ∧ ϕ0, . . . , xs−1 ∧ ϕs−1, xn, . . . , xm−1).

On the one hand, xi ∧ ϕi ∈ T∞0 = [9] by Lemma 3.1, thus f~ϕ ∈ [9, θm−n+st ]. On the

other hand, for each i < s, we may choose a satisfying assignment ai to ϕi, substitute 0 ∈ [9]

for each variable made 0 by ai, and substitute xi for each variable made 1 by ai. (By our

assumptions on variables, we can do this independently for each i < s, and it will not affect

the ~x variables.) Under this substitution, xi ∧ ϕi becomes equivalent to xi, and f~ϕ becomes

θm−n+st (x0, . . . , xs−1, xn, . . . , xm−1). Thus,

[9, f~ϕ] = [9, θm−n+st ] = T
kn,s

0

using Lemma 3.9, where

kn,s =

⌈
t

m− n− t+ s

⌉
=

⌈
t

s+ 1

⌉
,

as long as m/2+1 ≤ t, i.e., m ≥ 2n+4. In order to satisfy the constraint kn,0 > kn,1 > · · · > kn,n,

it suffices to ensure that
t

s+ 1
+ 1 ≤ t

s

for all s ≤ n, i.e., t ≥ n(n+ 1). This holds if we choose m = max{(n+ 1)2, 6}. 2
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We are ready to prove the main result of this section.

Theorem 3.12 CMP is ΘP
2 -complete.

Proof: We have CMP ∈ ΘP
2 by Theorem 3.4. In order to show that it is ΘP

2 -hard, fix L ∈ ΘP
2 .

Given w, compute 〈ϕi : i < 2nw〉 as in Lemma 3.10, and then (abbreviating n = nw)

feven = fϕ0,ϕ2,...,ϕ2n−2 , fodd = fϕ1,ϕ3,...ϕ2n−1 as in Lemma 3.11. If j ≤ 2n is as in Lemma 3.10,

then ∣∣{i < n : ϕ2i ∈ Sat}
∣∣ = dj/2e,∣∣{i < n : ϕ2i+1 ∈ Sat}
∣∣ = bj/2c,

thus

[9, feven] = T
kn,dj/2e
0 ,

[9, fodd] = T
kn,bj/2c
0 ,

where kn,0 > · · · > kn,n ≥ 2 are as in Lemma 3.11. It follows that

feven ∈ [9, fodd] ⇐⇒ bj/2c = dj/2e ⇐⇒ j is even ⇐⇒ w ∈ L.

Thus, w 7→ 〈{9, fodd}, feven〉 is a reduction from L to CMP. 2

3.4 Alternative setups

We followed the tradition in the study of Boolean clones—going back to Post—of considering

only functions of positive arity, even though the general theory of clones and coclones works

more smoothly if nullary functions are also allowed (cf. Behrisch [3]). Let us see now what

changes if we take nullary functions into consideration.

First, the number of Boolean clones increases—namely, each non-nullary clone C that in-

cludes at least one constant function (i.e., C ⊇ UP0 or UP1) splits into two: one consisting only

of non-nullary functions as before, and one that also includes nullary functions corresponding to

all constant functions of C. In Fact 2.2, we understand the given definitions of meet-irreducible

clones so that they include all applicable nullary functions; moreover, there is a new meet-

irreducible clone N = [∧,¬] = Pol(rN ) of all non-nullary functions, where rN = ∅ ∈ Rel1.

Consequently, we include rN in Rn for each n. Note that D ⊆ N and P ⊆ N.

Since the set {∧,∨,¬} is no longer functionally complete, we read the definition of CMP and

derived problems so that the input is given in the form of circuits over the basis {∧,∨,¬, 0, 1},
where 0 and 1 denote nullary constants.

The upper bounds in Theorem 3.4 continue to hold unchanged.

In Theorem 3.6, the main dichotomy still holds: CMPC ∈ P if C ⊇ P, and CMPC is coNP-

complete otherwise. The difference is that now there are more clones C ⊇ P, namely >, N, P0,

NP0, P1, NP1, and P. CMP> is trivial, and CMPC is P-complete for C = Pα,NPα,P. The

problem CMPN amounts to testing if the given Boolean circuit has a nonzero number of input
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variables: the exact mechanics of this test will depend on syntactic details of the representation

of input, but it can be done in AC0 under any reasonable representation.

The statement of Theorem 3.7 changes so that CMPf is NP-complete if f is neither a

projection nor a nullary function. If f is a nullary function, then CMPf is P-complete: if α ∈ 2

is a nullary constant, we have that α ∈ [F ] iff either α ∈ F , or F contains the dual constant

¬α and F * P¬α (the second disjunct is only possible if |F | ≥ 2, thus given a variable-free

circuit C, we have C = α iff {C} ∈ CMPα, showing the P-hardness of CMPf ).

All named clones in Lemmas 3.9 and 3.11 need to be intersected with N, so that, e.g., the

conclusion of Lemma 3.11 reads [9, f~ϕ] = NT
kn,s

0 .

The main Theorem 3.12 still holds.

A different kind of variation of our results concerns the input representation. We defined

CMP and friends so that the input functions are represented by Boolean circuits, which is the

natural thing to do in a computational context. However, in the context of logic or algebra, it

is more natural to represent Boolean functions by Boolean formulas, or equivalently, Boolean

terms.

Fortunately, this has a negligible effect on our results. First, all upper bounds hold also for

the formula representation, because formulas are special cases of circuits. On the other hand,

our main lower bounds continue to hold in this setting as well: we used reductions from Boolean

satisfiability (that already works with formulas), and the most complicated tools we employed

were threshold functions, which can be written with polynomial-size formulas just as well as

circuits.

The only exceptions are problems that were proved P-complete by reductions from evalu-

ation of Boolean circuits: namely, CMPC for P ⊆ C 6= >,N (Theorem 3.6), and CMPf for f

a nullary function (Theorem 3.7 as modified in the first part of this subsection). If we change

the input representation to formulas, then all these problems are computable in NC1.

4 Restricted input bases

The problems CMP, CMPC , and CMPf are defined so that the input functions are given by

circuits over a fixed functionally complete basis. This is reasonable if we consider these circuits

to be just a computing device. However, if we view the problem as “given a circuit over the

De Morgan basis, can we rewrite it as a circuit over a given basis F?”, it makes perfect sense

to also consider the case where the input circuits are expressed in a different basis. That is, for

any finite B ⊆ Op, let B-CMP be the following problem:

Input: A finite set of functions F ⊆ Op and a function f ∈ Op, all given by circuits

over the basis B.

Output: YES if f ∈ [F ], otherwise NO.

Similarly, we define the problems B-CMPC and B-CMPf .

The complexity of B-CMPC was thoroughly investigated by Böhler and Schnoor [7], who

denote the problem as MC(C � B), and its formula version as M(C � B). For most com-
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binations of C and B, they were able to show that M(C � B) and MC(C � B) are both

coNP-complete, or both in P.

We will not make any effort to classify the complexity of the problems B-CMPf , as the

number of cases is prohibitively large, hence we consider it out of scope of this paper. (The

problem has two clone parameters, analogously to B-CMPC , which took Böhler and Schnoor

a whole paper to understand, and even then their classification is incomplete.)

We will not obtain a complete classification of the complexity of B-CMP either, nevertheless

we present a number of partial results, summarized in Corollary 4.14 at the end of the section.

Unless stated otherwise, the complexity results below also hold for variants of B-CMP where

the input functions are represented by formulas (in prefix or infix notation). For simplicity, we

disallow nullary functions in this section, but the results below can be easily adapted to a

setup that includes them. Our results will be stated for arbitrary bases, but we will often

need to express specific functions: to this end, we recall that we can more-or-less freely convert

circuits and formulas to different bases by Lemma 2.3. In particular, Lemma 2.3 (ii) applies to

polynomial-size CNFs and other constant-depth formulas using unbounded fan-in ∧, ∨ gates,

as these can be written as O(log n)-depth bounded fan-in formulas.

For the rest of this section, B is a finite subset of Op.

We start with a simple observation.

Lemma 4.1 If B ⊆ T∞0 , T∞1 ,
∧

,
∨

, A, or D, then B-CMP ∈ BH.

Proof: By inspection of Post’s lattice, we see that there are only finitely many clones below [B].

Thus, if F and f are given by B-circuits, we have

f ∈ [F ] ⇐⇒ ∀r ∈ Rk (F 7 r or f . r)

for some constant k, which gives a BH algorithm in view of Lemma 3.3. 2

This suggests that there is a major difference between the complexity of B-CMP in cases

where [B] has finitely many subclones and in the other cases. We will study the former in

Section 4.1, and the latter in Section 4.2.

4.1 The finite subclone cases

We are going to characterize more precisely the complexity of B-CMP for B as in Lemma 4.1,

i.e., such that [B] has finitely many subclones. Depending on [B], we will classify it as being

either coDP-complete or in P (with the formula version in NC1). We are first going to deal with

the P cases, then show coDP-hardness of the remaining cases using reductions from variants

of the equivalence problem, and finish by establishing they are indeed in coDP.

We start with the tractable cases. The theorem below mostly follows from results of Böhler

and Schnoor [7]: since [B] has only finitely many subclones, we have B-CMP ∈ P iff B-

CMPC ∈ P for all clones C ⊆ [B]. However, we give a self-contained proof, which also confirms

that the complexity drops down to NC1 for formulas; the basic idea is that the clones in question

have so simple structure that we can determine [f ] by evaluating f on a specific polynomial-size

set of assignments.
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Theorem 4.2 If B ⊆ MT∞0 , MT∞1 ,
∧

,
∨

, A, or DM, then B-CMP ∈ P. If we represent the

input by formulas rather than circuits, B-CMP ∈ NC1.

Proof: Assume that B ⊆
∨

. The set of n-ary functions in
∨

is very limited: it consists only

of 1 and the functions fI(x0, . . . , xn−1) =
∨
i∈I xi for I ⊆ {0, . . . , n− 1} (including f∅(~x) = 0).

Given a B-circuit, we can determine which of these functions it computes by evaluating it on

the assignment ~0, which detects the 1 function, and for each i < n, on ei = 〈0, . . . , 0, 1, 0, . . . , 0〉
(with 1 at position i), which detects if i ∈ I.

Once we know the function, it is trivial to determine which of the finitely many subclones

of
∨

it generates, and if we know the clones generated by f and by each element of F , we can

find out if f ∈ [F ]. This gives a polynomial-time algorithm. Moreover, since the algorithm just

evaluates the input functions on polynomially many assignments in parallel, and then does AC0

post-processing, it can be implemented in NC1 if the functions are given by formulas rather

than circuits.

The cases of B ⊆
∧

or B ⊆ A are completely analogous to
∨

. In particular, the n-ary

functions in A are f~α,α(~x) =
∑

i<n αixi + β for some α0, . . . , αn−1, β ∈ 2; given a B-circuit

computing a function f , we can determine ~α and β such that f = f~α,β by evaluating β = f(~0)

and αi = f(ei) + β.

Assume that [B] = DM. Since DM is a minimal clone, a B-circuit either computes a

projection, or it generates DM. Moreover, a self-dual monotone function f ∈ Opn is the

projection πni iff f(ei) = 1. Thus, we can again determine [f ] by evaluating f at n assignments.

Assume that B ⊆ MT∞1 , the case of MT∞0 being dual. Given a B-circuit computing a

function f , either f ∈
∨

, or [f ] = MPT∞1 , MT∞1 . By evaluating f(ei) for all i < n, we find

the only candidate I ⊆ {0, . . . , n − 1} such that f could equal fI . Then we evaluate f at the

assignment a such that ai = 1 iff i /∈ I: if f(a) = 0, then f ≡ fI , otherwise f /∈
∨

. In the latter

case, we can distinguish MT∞1 from MPT∞1 by evaluating f(~0). 2

We remark that while B-CMP is P-complete (or NC1-complete in the formula representa-

tion) for [B] = M(P)T∞α or [B] = DM, it is still easier for other classes from Theorem 4.2: for

example, it is easy to show that if [B] ⊆
∨

, we can evaluate B-circuits in L, and B-formulas

in AC0. We will not go into details.

We now turn to the remaining clones below T∞α and D. We will use the following result for

lower bounds. Here, the equivalence problem B-EQ is to compute if two given Boolean formulas

over basis B are equivalent.

Theorem 4.3 (Reith [24]) If [B] ⊇ MPT∞0 , MPT∞1 , or DM, then B-EQ is coNP-complete.

2

We mention that since the formulas used in Theorem 4.3 are built from DNFs, they can be

taken to have depth O(log n). In particular, this ensures they can be efficiently converted to a

different basis by Lemma 2.3.

The constructions in the next lemma mostly come from Böhler and Schnoor [7], who used

them to prove coNP-completeness of various instances of B-CMPC . We observe that the lower

bound can be improved to coDP if C is allowed to vary.
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Lemma 4.4 If [B] ⊇ PT∞0 , PT∞1 , MPT2
0, MPT2

1, or DP, then B-CMP is coDP-hard.

Proof: Assume first [B] ⊇ DP. If f, g are DM-formulas (i.e., formulas over a fixed basis of DM),

let hf,g(~x, y0, y1, y2) = f(~x)+g(~x)+θ32(~y); this can be expressed by a DP-formula as the ternary

function x+ y + z is in DP. In view of f, g ∈ P, we have θ32(~y) = hf,g(x, . . . , x, ~y) ∈ [hf,g], thus

DM ⊆ [hf,g]. If f ≡ g, then hf,g(~x, ~y) ≡ θ32(~y). If f 6≡ g, let ~a be an assignment such that

f(~a) 6= g(~a). Then hf,g(~0,~1) = 1 (using f, g ∈ P) and hf,g(~a,~1) = 0, hence hf,g is not monotone.

Since DM ⊆ [hf,g] ⊆ DP, this implies [hf,g] = DP. Thus,

f ≡ g =⇒ [hf,g] = DM,(5)

f 6≡ g =⇒ [hf,g] = DP.(6)

Now, since DM-EQ is coNP-complete by Theorem 4.3, the language

L =
{
〈f, g, f ′, g′〉 : 〈f, g〉 ∈ DM-EQ or 〈f ′, g′〉 /∈ DM-EQ

}
is coDP-complete. Using (5) and (6),

〈f, g, f ′, g′〉 ∈ L ⇐⇒ [hf,g] ⊆ [hf ′,g′ ],

which gives a reduction of L to B-CMP.

If [B] ⊇ MPT2
1 (the case of MPT2

0 is dual), we can use in a similar way the MPT2
1-formula

h(~x, y, z) = θ32
(
f(~x) ∨ g(~x), y, z

)
.

The dual of h is θ32
(
f(~x) ∧ g(~x), y, z

)
, hence h is self-dual if and only if f ≡ g. Moreover,

f(x, . . . , x) ≡ g(x, . . . , x) ≡ x, hence in any case θ32 ∈ [h]. Thus,

f ≡ g =⇒ [h] = DM,

f 6≡ g =⇒ [h] = MPT2
1.

This gives a reduction of L to B-CMP in the same way as above.

Finally, assume [B] ⊇ PT∞1 (the case of PT∞0 is dual). Given MPT∞1 -formulas f and g, we

put h(~x, y) = y ∨
(
f(~x) + g(~x)

)
, which can be expressed by a PT∞1 -formula. If f ≡ g, then

h ≡ y; otherwise, we check easily that h is not monotone. Thus,

f ≡ g =⇒ [h] = ⊥,
f 6≡ g =⇒ [h] = PT∞1 ,

which yields a reduction of the coDP-complete problem{
〈f, g, f ′, g′〉 : 〈f, g〉 ∈ MPT∞1 -EQ or 〈f ′, g′〉 /∈ MPT∞1 -EQ

}
to B-CMP. 2
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Incidentally, the argument we gave for MPT2
α also resolves one of the problems left open by

Böhler and Schnoor [7]:

Corollary 4.5 If [B] ⊇ MPT2
0 or MPT2

1, then B-CMPDM is coNP-complete. 2

It remains to prove coDP upper bounds for the B-CMP problems in question. We obtain

this by optimizing the number of NP oracle calls in the algorithm from Lemma 4.1, exploiting

the fact that we can distinguish between most proper subclones of [B] in polynomial time by

Theorem 4.2.

Theorem 4.6 If [B] is T∞0 , PT∞0 , T∞1 , PT∞1 , D, or DP, then B-CMP is coDP-complete.

Proof: coDP-hardness was proved in Lemma 4.4. Assume that B ⊆ T∞1 , we will refine

Lemma 4.1 to show that B-CMP ∈ coDP.

First, given a set of B-circuits F , we can determine [F ] in polynomial time using a single

coNP oracle query, namely F
?
⊆ M: indeed, if F * M, then [F ] is PT∞1 or T∞1 , and we can

distinguish these two cases by testing if F ⊆ P (or equivalently, P0), which we can do by

evaluating g(~0) for each g ∈ F . On the other hand, if F ⊆ M, i.e., F ⊆ MT∞1 , we can compute

[F ] using the algorithm in Theorem 4.2 (which again proceeds by evaluation of F at various

assignments, hence it does not matter that the circuits are given in a larger basis).

This already shows that B-CMP ∈ P‖NP[2]: we can test if f ∈ [F ] using two parallel coNP

queries, F
?
⊆ M and f

?
∈ M.

In order to improve this to coDP, we modify the algorithm so that it speculatively explores

all computation branches with all possible oracle answers, and only makes the oracle queries

needed at the end.

In this way, the algorithm computes two candidate clones C0 ⊆ MT∞1 and C1 ⊇ PT∞1
for [F ]. We have C0 ⊆ C1: the choice of C1 as PT∞1 or T∞1 is made according to if F ⊆ P, and

this information is taken into account also when computing C0. In fact, this means that C1 is

the join C0 ∨ PT∞1 in the lattice of clones.

(Actually, the algorithm may fail to compute C0 because it runs into an inconsistency that

already shows F * M. In this case, we may pick C0 in an arbitrary way such that the properties

C0 ⊆ M and C1 = C0∨PT∞1 hold, say, C0 = ⊥ or C0 = UP1: if the choice of C0 became relevant

in subsequent computation, it would be dismissed by the oracle as F * M.)

Likewise, we obtain two candidate clones C ′0, C
′
1 for [f ], with C ′0 ⊆ MT∞1 and C ′1 = C ′0∨PT∞1 .

Notice that C ′1 * C0 as C0 ⊆ M, and that C ′0 ⊆ C1 implies C ′1 = C ′0 ∨ PT∞1 ⊆ C1. Thus,

there are only the following possibilities:

• C ′0 ⊆ C0 (whence C ′1 ⊆ C1): then f ∈ [F ] if and only if F * M or f ∈ M.

• C ′1 ⊆ C1 and C ′0 * C0: then f ∈ [F ] if and only if F * M.

• C ′0 * C1: then f /∈ [F ].

Consequently, the whole algorithm can be implemented in coDP: we have

f ∈ [F ] ⇐⇒ 〈F, f〉 ∈ L0 or 〈F, f〉 ∈ L1
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with

L0 =
{
〈F, f〉 : C ′1 ⊆ C1 and F * M

}
∈ NP,

L1 =
{
〈F, f〉 : C ′0 ⊆ C0 and f ∈ M

}
∈ coNP,

where C0, C1, C
′
0, C

′
1 are computed from 〈F, f〉 in deterministic polynomial time as described

above.

The case of B ⊆ T∞0 is dual.

The argument for B ⊆ D uses the same overall strategy: given F , we compute in polynomial

time two candidates C0 and C1 = C0 ∨ DP for [F ], where C0 ⊆ DM or C0 ⊆ AD. Thus, [F ]

is C0 if F ⊆ M or F ⊆ A, and it is C1 otherwise. Likewise, given f , we compute candidates

C ′0 and C ′1 = C ′0 ∨ DP for [f ] satisfying C ′0 ⊆ DM or C ′0 ⊆ AD. Then as above, f ∈ [F ] iff

〈F, f〉 ∈ L0 or 〈F, f〉 ∈ L1, with

L0 =
{
〈F, f〉 : C ′1 ⊆ C1 and F * M and F * A

}
∈ NP,

L1 =
{
〈F, f〉 : C ′0 ⊆ C0 and (f ∈ M or f ∈ A)

}
∈ coNP.

The candidates are determined as follows. If g(~0) = 1 for some g ∈ F , we put C1 = D, and

C0 is AD or UD depending on whether there exists g ∈ F such that |{i : g(ei) 6= g(~0)}| > 1.

If g(~0) = 0 for all g ∈ F , then C1 = DP. Putting m(g) = |{i : g(ei) = 1}|, the argument in

the proof of Theorem 4.2 shows that if F ⊆ DM, then m(g) ∈ {0, 1} for all g ∈ F , whereas if

F ⊆ AP, then m(g) is odd for all g ∈ F ; in both cases, m(g) = 1 iff g is a projection. Thus, we

may define C0 = DM if m(g) = 0 for some g ∈ F , C0 = AP if m(g) > 1 for some g ∈ F , and

C0 = ⊥ otherwise. 2

4.2 The hard cases

The question we are mainly interested in is for which bases B is B-CMP a ΘP
2 -complete prob-

lem. We first adapt Theorem 3.12 easily to P-CMP using simple transformations to eliminate

constants. Next, we generalize it further to the clones PTk
α by expressing the threshold functions

used in the proof of Lemma 3.11 in a {θk+1
k } basis; we only manage to do so with a random-

ized construction, leading to a ΘP
2 -completeness result under a suitable notion of randomized

reductions.

In order to get the result for P-CMP, we use the following translation (for completeness,

we formulate it more generally than what we need):

Lemma 4.7 Let B,B′ ⊆ Op be finite. Assume that ∧ ∈ [B′] and B ⊆ [B′, 0], or ∨ ∈ [B′] and

B ⊆ [B′, 1], or ∧,∨ ∈ [B′] and B ⊆ [B′, 0, 1].

(i) Given a B-circuit that computes a B′-function f , we can construct in logspace a B′-circuit

that computes f .

(ii) Given a B-formula of depth O(log n) that computes a B′-function f , we can construct in

logspace a B′-formula that computes f .
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In particular, this applies to arbitrary B if [B′] ⊇ P.

Proof: Assume first ∧ ∈ [B′] and B ⊆ [B′, 0]. Without loss of generality, 0 /∈ [B′], hence

B′ ⊆ P1.

Since B ⊆ [B′, 0], Lemma 2.3 implies that we can find a B′-circuit g (or even an O(log n)-

depth B′-formula) such that f(~x) ≡ g(~x, 0). Then f(~x) ≡ g
(
~x,
∧
i xi
)
: the two expressions agree

when ~x 6= ~1 as
∧
i xi = 0; they also agree for ~x = ~1 as f(~1) = 1 = g(~1, 1) on account of f, g ∈ P1.

Since
∧
i xi has an O(log n)-depth formula over the basis {∧} ⊆ [B′], it can be written by an

O(log n)-depth B′-formula using Lemma 2.3 again.

The case ∨ ∈ [B′] and B ⊆ [B′, 1] is dual.

Let ∧,∨ ∈ [B′] and B ⊆ [B′, 0, 1]. If 0 ∈ [B′] or 1 ∈ [B′], we are done by one of the previous

cases, hence we may assume 0, 1 /∈ [B′], which implies B′ ⊆ P. Then we proceed as before: we

find a B′-circuit g such that f(~x) ≡ g(~x, 0, 1), and we observe that f(~x) ≡ g
(
~x,
∧
i xi,

∨
i xi
)

because of f, g ∈ P. 2

Theorem 4.8 If [B] ⊇ P, then B-CMP is ΘP
2 -complete.

Proof: The formulas we constructed in the proof of Theorem 3.12 (or rather, Lemma 3.11)

compute functions in P0, and have depth O(log n) (being build from CNFs and threshold

functions), hence we can convert them to P0-formulas by Lemma 4.7. Thus, in the setting of

Lemma 3.11, we map a sequence of formulas 〈ϕi : i < n〉 to a P0-formula f~ϕ(~x) such that

[9, f~ϕ] = Tk
0, where k ≥ 2 is as specified in the lemma.

Using the idea of Lemma 4.7, we can construct a P-formula g~ϕ(~x, y) (and therefore a B-

formula, using Lemma 2.3) such that f~ϕ(~x) ≡ g~ϕ(~x, 0). By replacing g~ϕ with g~ϕ
(
~x, y ∧

∧
i xi
)

if

necessary, we ensure that

(7) g~ϕ(~x, y) ≡ f~ϕ(~x) ∨
(
y ∧

∧
i

xi

)
.

We claim that

(8) [x ∧ (y → z), g~ϕ] = PTk
0,

hence we can use [x ∧ (y → z), g~ϕ] in place of [9, f~ϕ] in the proof of Theorem 3.12 to get a

reduction from any ΘP
2 language to B-CMP.

In order to prove (8), observe that [x ∧ (y → z)] = PT∞0 : clearly x ∧ (y → z) ∈ P, and

x ∧ (y → z) ∈ T∞0 by Lemma 3.1, while x ∧ (y → z) /∈ M. Thus, PT∞0 ⊆ [x ∧ (y → z), g~ϕ] ⊆ P

and [x ∧ (y → z), g~ϕ, 0] ⊇ [9, f~ϕ] = Tk
0, which implies

[x ∧ (y → z), g~ϕ] = PTl
0

for some 1 ≤ l ≤ k. It now suffices to show that g~ϕ ∈ Tk
0 = Pol(rk0).

Assume for contradiction that there are assignments ~a0, . . . , ~ak−1 such that ~a0∧· · ·∧~ak−1 = ~0,

but g~ϕ(~a0) = · · · = g~ϕ(~ak−1) = 1. Notice that if ~ai = ~1 for some i, we may leave it out (or

rather, replace it with another assignment from g−1~ϕ [1]), as still
∧
j 6=i~a

j = ~0. Thus, we may

assume that none of the ~ai is ~1. But then f~ϕ(~ai) = g~ϕ(~ai) = 1 for each i < k by (7) (more

precisely, this holds for the truncation of ~ai leaving out the last coordinate). This contradicts

f~ϕ ∈ Tk
0. 2
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Now we would like to extend Theorem 4.8 to the clones PTk
α, and for that we need efficient

constructions of threshold functions in a PTk
α basis. This in fact appears to be quite a challenging

task. The best deterministic result we found is a construction by Cohen et al. [11], whose special

case for the {θk+1
2 } basis is as follows:

Theorem 4.9 (Cohen et al. [11]) Let k ≥ 2. There exists a constant c and a polynomial-

time algorithm that, given a sufficiently large N , constructs in time NO(1) an O(logN)-depth

{θk+1
2 }-formula ψN (x0, . . . , xN−1) such that

θNbN(k−1+ε)c ≤ ψN ≤ θ
N
dN(k−1−ε)e,

where ε = c/
√

logN . 2

Since the formula ψN can only reliably distinguish inputs whose Hamming weights differ by

Ω(N/
√

logN), it cannot be used to tell apart more than O(
√

logN) different cases. Thus, in

order to distinguish n possible outcomes as in Lemma 3.11, we would need N = exp(Ω(n2)),

which makes it useless for our purposes. For the special case k = 2, they give a better construc-

tion that reduces the error of approximation to 2−O(
√
logN), which means we might get away

with N = nO(logn), but this is still insufficient.

In absence of a better idea, we resort to probabilistic constructions following the method of

Valiant [29], who used it to prove the existence of short {∧,∨}-formulas for majority; Gupta

and Mahajan [13] modified his construction to produce {θ32}-formulas. We will use a similar

idea to express suitable threshold functions by short formulas over the {θk+1
k } basis.

Theorem 4.10 Let k ≥ 3. There exist constants 1
2 < σk < 1 and c ≥ 1, and a logspace

function T with the following properties. The input of T consists of numbers n, t, and e in unary,

and r ∈ {0, 1}∗; the output is a {θk+1
k }-formula Tn,t,e,r(x0, . . . , xn−1) of depth O(log n + log e).

If n is sufficiently large and σkn < t ≤ n, then

Pr|r|=(n+e)c [Tn,t,e,r ≡ θnt ] ≥ 1− 2−e.

Proof: Given n and d, let Fn,d be a random formula consisting of a complete (k + 1)-ary tree

of θk+1
k -gates of depth d, where each leaf is a propositional variable independently uniformly

chosen from {xi : i < n}. If a ∈ 2n is an assignment of weight w = pn, p ∈ [0, 1], then Fn,d(a)

is a Bernoulli random variable that takes value 1 with certain probability pd. We can describe

Fn,d(a) as the value of a complete (k+1)-ary tree of depth d of θk+1
k -gates, where each leaf is an

independently drawn random element of 2 with the probability of 1 being p (which also makes

it manifest that—as suggested by the notation—pd only depends on p and d, not on a). Since

the k + 1 input subformulas of any gate are independent, this gives a recurrence for pd:

p0 = p,

pd+1 = f(pd),

where

f(x) = xk+1 + (k + 1)xk(1− x) = (k + 1)xk − kxk+1.

22



Clearly, f maps [0, 1] to [0, 1]. In order to analyze the behaviour of pd, we need to locate the

fixed points of f in [0, 1], i.e., the roots of the polynomial g(x) = f(x) − x. The end-points 0

and 1 are roots. Moreover, the derivative

g′(x) = (k + 1)kxk−1(1− x)− 1

satisfies g′(0) = g′(1) = −1 < 0, hence there must be another root in (0, 1). On the other hand,

Descartes’s rule of signs implies that g has at most two positive roots. Thus, g has a unique

root σk = σ ∈ (0, 1); g is negative on (0, σ), and positive on (σ, 1). That is, σ is the unique

fixed point of f in (0, 1), and we have

0 < x < σ =⇒ f(x) < x,

σ < x < 1 =⇒ x < f(x).

Consequently, for any p, the sequence pd is monotone (decreasing for 0 < p < σ, and increasing

for σ < p < 1), and as such it has a limit, which must be a fixed point of f . Thus,

0 ≤ p < σ =⇒ lim
d→∞

pd = 0,

σ < p ≤ 1 =⇒ lim
d→∞

pd = 1.

We claim that σ is irrational, hence p 6= σ: since σ is a root of 1− (k+ 1)xk−1 + kxk, σ−1 is

a root of the monic polynomial h(x) = xk − (k+ 1)x+ k, and as such, it is an algebraic integer.

Thus, if it were rational, it would be an actual integer; however, it is easy to see that h(x) > 0

for all x ≥ 2, hence 1 < σ−1 < 2.

Next, we need to analyze the rate of convergence of pd. In the vicinity of σ, we have

f(x) = x+ (x− σ)g′(σ) +O
(
(x− σ)2

)
,

where g′(σ) > 0: since g(0) = g(σ) = g(1) = 0, g′ has a root in (0, σ) and another in (σ, 1),

while it has at most two positive roots altogether by the rule of signs, hence g′(σ) 6= 0. We

cannot have g′(σ) < 0 as g is negative on (0, σ) and positive on (σ, 1).

Thus, we may fix constants ε0 > 0 and γ0 > 1 such that

|x− σ| ≤ ε0 =⇒ |f(x)− σ| ≥ γ0 |x− σ| ,

hence

|pd − σ| ≥ min
{
ε0, γ

d
0 |p− σ|

}
.

By Roth’s theorem, σ has irrationality measure 2, i.e., for any δ > 0, all but finitely many pairs

of integers a, b > 0 satisfy ∣∣∣a
b
− σ

∣∣∣ ≥ b−(2+δ).
(The weaker theorem of Liouville, bounding the irrationality measure by k−1, would also work

for our purposes.) Applying this to p = w/n, we obtain

log |p− σ|−1 ≤ (2 + o(1)) log n,
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thus there exists a constant c0 such that

(9) d ≥ c0 log n =⇒ |pd − σ| ≥ ε0

for any sufficiently large n and p = w/n.

In the vicinity of the end-points, we have

f(x) = (k + 1)xk +O(xk+1),(10)

f(1− x) = 1−
(
k + 1

2

)
x2 +O(x3).(11)

Thus, we may fix ε1 > 0 and γ1 > 0 such that

0 ≤ x ≤ ε1 =⇒ f(x) ≤ γ1x2 and f(1− x) ≥ 1− γ1x2,

hence

0 ≤ pd ≤ ε1 =⇒ pd+d′ ≤ γ−11 (γ1p)
2d
′
,(12)

1− ε1 ≤ pd ≤ 1 =⇒ pd+d′ ≥ 1− γ−11

(
γ1(1− p)

)2d′
.(13)

We may assume γ1ε1 < 1. There is a constant d0 such that

(14) |pd − σ| ≥ ε0 =⇒ pd+d0 ≤ ε1 or 1− pd+d0 ≤ ε1.

Putting (9), (12), (13) and (14) together, there is a constant c1 such that

d ≥ c1(log n+ log e) =⇒ pd ≤ 2−n−e or 1− pd ≤ 2−n−e

for sufficiently large n; that is, for any assignment a ∈ 2n of weight w,

d ≥ c1(log n+ log e) =⇒

{
Pr[Fn,d(a) 6= 0] ≤ 2−n−e, w < σn,

Pr[Fn,d(a) 6= 1] ≤ 2−n−e, w > σn.

Using the union bound over all assignments a ∈ 2n, we obtain

d ≥ c1(log n+ log e) =⇒ Pr[Fn,d ≡ θndσne] ≥ 1− 2−e.

Now, given n and t such that σn < t ≤ n, put N = bσ−1tc ≥ n. Then dσNe = t, thus

θnt (~x) ≡ θNdσNe(~x, 0, . . . , 0) ≡ θNdσNe
(
~x,
∧
i xi, . . . ,

∧
i xi
)
,

and consequently

d ≥ c2(log n+ log e) =⇒ Pr
[
FN,d

(
~x,
∧
i xi, . . . ,

∧
i xi
)
≡ θnt

]
≥ 1− 2−e

for some constant c2. We thus define

Tn,t,e,r = Fbσ−1tc,c2(logn+log e)

(
~x,
∧
i xi, . . . ,

∧
i xi
)
,
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where r is the sequence of random coin tosses that determines the leaves of the formula. Notice

that ∧ ∈ MPTk
0 = [θk+1

k ], hence
∧
i xi can be easily expressed by a logspace-computable sequence

of O(log n)-depth {θk+1
k }-formulas. It is also straightforward to compute FN,d in logspace given

N , d, and the random sequence r.

Finally, to compute N = bσ−1tc, the algebraic number σ−1 can be approximated by a

TC0 function (hence a logspace function) by [14], but since we actually need it only withO(log n)

bits of precision, even a brute force approach is sufficient: we can evaluate the polynomial

xk − (k + 1)tk−1x+ ktk (which is tkh(xt−1)) in parallel for each x = n, n+ 1, . . . , 2t, and let N

be the argument where it switches sign from negative to positive. Thus, Tn,t,e,r is computable

by a logspace function. 2

Remark 4.11 The expansion (11) easily implies that for large k, the constant σk from Theo-

rem 4.10 is 1− 2k−2 +O(k−3).

Theorem 4.12 If [B] ⊇ PTk
α for some k ∈ N and α ∈ 2, then B-CMP is ΘP

2 -complete

under randomized logspace reductions. More precisely, for any language L ∈ ΘP
2 , there exists a

constant c and a logspace function R(w, e, r) with e given in unary such that for all strings w

of length n, and for all e,

w ∈ L =⇒ Pr|r|=(n+e)c [R(w, e, r) ∈ B-CMP] = 1,(15)

w /∈ L =⇒ Pr|r|=(n+e)c [R(w, e, r) ∈ B-CMP] ≤ 2−e.(16)

Proof: We will assume [B] ⊇ Tk
0: we may pass from Tk

0 to PTk
0 in the same way as in the proof

of Theorem 4.8, and the case of [B] ⊇ PTk
1 is dual. Without loss of generality, k ≥ 3.

We use the reduction from Lemma 3.11 and Theorem 3.12 with the following two modifica-

tions:

(i) We express the formulas xi ∧ ϕi by B-formulas.

(ii) In place of the threshold function θmt , we use the randomly generated formula Tm,t,e,r from

Theorem 4.10.

As for (i), recall that the formulas ϕi supplied by Lemma 3.10 are CNFs, hence they may be

arranged to have depth O(log n). We may assume them to be written in the {∧,¬} basis. We

then write xi ∧ ϕi in the basis {∧,9} ⊆ T∞0 by replacing each subformula ¬ψ with xi ∧ ¬ψ.

Since T∞0 ⊆ [B], we may rewrite the formulas as B-formulas by Lemma 2.3.

Concerning (ii), notice first that in Lemma 3.11, we may assume n to be sufficiently large,

and the parameters we take are m ≈ n2, m − t ≈ n, thus t > σkm, justifying the use of

Theorem 4.10. We again rewrite the formulas as B-formulas using Lemma 2.3. Crucially, we

have to use the same Tm,t,e,r formula for constructing both feven and fodd.

It is clear from the construction that (16) holds, but we need more work to establish (15), as it

is not obvious that it holds with no error. If w ∈ L, let 〈ϕi : i < 2n〉 and j be as in Theorem 3.12,

so that j is even, and put s = j/2. Then in the definition of both feven = fϕ0,ϕ2,...,ϕ2n−2 and

fodd = fϕ1,ϕ3,...ϕ2n−1 , the first s of the ϕi formulas are satisfiable, and the rest are unsatisfiable.

25



Going back to Lemma 3.11, let us abbreviate by T (x0, . . . , xm−1) the formula Tm,t,e,r we use in

place of θmt . Then

feven ≡ T (x0 ∧ ϕ0, x1 ∧ ϕ2, . . . , xs−1 ∧ ϕ2s−2, 0, . . . , 0︸ ︷︷ ︸
n−s

, xn, . . . , xm−1)

and

[9, feven] = [9, T (x0, . . . , xs−1, 0, . . . , 0, xn, . . . , xm−1)]

by the argument in Lemma 3.11 (avoiding renumbering of variables or permuting the arguments

of T ). Since the same T was also used to construct fodd, we obtain likewise

[9, fodd] = [9, T (x0, . . . , xs−1, 0, . . . , 0, xn, . . . , xm−1)],

hence [9, feven] = [9, fodd]. 2

Notice that if the language L we are reducing to B-CMP is in BH, the number n in the

proof of Theorem 3.12 can be taken as constant, hence also m and t in Lemma 3.11 are constant,

and we may just fix a representation of θmt by a B-formula in advance, avoiding the complicated

randomized construction from Theorem 4.10.

Corollary 4.13 If [B] ⊇ PTk
α for some k ∈ N and α ∈ 2, then B-CMP is BH-hard. 2

Let us summarize the results of Section 4 (see Fig. 2):

Corollary 4.14 Let B ⊆ Op be finite.

(i) If B ⊆ MT∞0 , MT∞1 ,
∧

,
∨

, A, or DM, then B-CMP ∈ P.

(ii) If [B] is T∞0 , PT∞0 , T∞1 , PT∞1 , D, or DP, then B-CMP is coDP-complete.

(iii) If [B] ⊇ PTk
α for some k ∈ N and α ∈ 2, then B-CMP is ΘP

2 -complete under randomized

reductions, and even under deterministic reductions if [B] ⊇ P. Also, B-CMP is BH-

hard.

(iv) If MPTk
α ⊆ [B] ⊆ M for some k ∈ N and α ∈ 2, then B-CMP is in ΘP

2 . If [B] ⊇ MPT2
α,

B-CMP is coDP-hard. 2

While randomized reductions are a nuisance, the real problem is the last item of Corol-

lary 4.14, where the upper and lower bounds (if any) are far from each other. Notice that since

any non-constant monotone function is both 0- and 1-preserving, M-CMP is logspace-equivalent

to MP-CMP, and (using also duality) for any k ≥ 1, the problems MTk
0-CMP, MPTk

0-CMP,

MTk
1-CMP, and MPTk

1-CMP are logspace-equivalent.

Problem 4.15 What is the complexity of B-CMP for MPTk
α ⊆ [B] ⊆ M?

Our first hunch is that all these problems should be ΘP
2 -complete just like their non-

monotone versions, but on second thought, it is conceivable that, for example, we can learn

some properties of monotone functions by a randomized process such as in the proof of Theo-

rem 4.10, hence the expected answer is not as clear-cut.

We note that Böhler and Schnoor [7] left open a similar problem about the complexity of

certain cases of B-CMPC .
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Figure 2: The complexity of B-CMP ( : in P; : coDP-complete; : ΘP
2 -complete;

: ΘP
2 -complete under randomized reductions; : in ΘP

2 ; : in ΘP
2 , coDP-hard).

5 Conclusion

We have undertaken a thorough investigation of the complexity of the Boolean clone membership

problem CMP and its variants. Most importantly, we proved that CMP is ΘP
2 -complete, and

in particular, strictly harder than any of the fixed-clone problems CMPC or CMPf , barring

collapse of the polynomial hierarchy.

Moreover, we obtained a representative (even if incomplete) picture of how the complexity

depends on the basis B of gates allowed in the input. As expected, it shows a major dividing

line depending on whether [B] has finitely many subclones: in the latter case the complexity

drops down inside the Boolean hierarchy—in fact, to coDP. However, there seems to be also

a more subtle dividing line based on whether B consists of monotone functions only: in the

finite subclone case, this makes the complexity of B-CMP go further down to P (though this

also happens for some non-monotone cases, namely when B consists of affine functions); in the

infinite subclone case, it separates the area of more-or-less ΘP
2 -complete instances of B-CMP

from a terra incognita.
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