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Abstract

In the paper we deal with the Kurzweil-Stieltjes integration of functions hav-
ing value in a Banach space X. We extend results obtained by Stefan Schwabik
in [4], [8] and we complete the theory so that it will be well applicable to prove
results on the continuous dependence of solutions to generalized linear differen-
tial equations in a Banach space. By Schwabik, the integral f; d[F]g exists if
F:la,b] — L(X) has a bounded semi-variation on [a,b] and g: [a,b] — X is reg-
ulated on [a,b]. We prove that this integral has a sense also if F' is regulated on
[a,b] and ¢ has a bounded semi-variation on [a,b]. Furthermore, a general form
of the integration by parts theorem proposed by S. Schwabik in [8] is presented
under the assumption not covered by [8] and the substitution formula is proved.

2000 Mathematics Subject Classification: 26A39, 28B05.
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1 Introduction

It is known that integration processes based on Riemann type sums, such as Kurzweil
and McShane integrals, can be extended to Banach space-valued functions. Among
other contributions it is worth to highlight the monograph by Schwabik and Ye [10],
which studies these type of integrals and their connections e.g. with the classicals due
to Bochner and Pettis.

Concerning integrals of Stieltjes type, Honig presented a quite complete study in
[3] dealing with the interior integral. In [5] and [8] Schwabik investigated some funda-
mental properties of the Kurzweil-Stieltjes integral.

*Universidade de Sao Paulo, Instituto de Ciéncias Matematicas e Computagao, ICMC-USP, Sao
Carlos, SP, Brasil, gam@icmc.usp.br. Supported by CAPES BEX 5320/09-7
fSupported by the Institutional Research Plan No. AV0Z10190503
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The concepts of generalized (nonlinear) Kurzweil or Kurzweil-Stieltjes integrals in
a Banach space have been the background of several papers related to generalized
differential equations like e.g [1], [2], [6] and [7].

In this paper we are dealing with the Kurzweil-Stieltjes integral. Our aim is to
supplement the existing knowledge by results needed for treating generalized linear dif-
ferential equations. In particular, we prove that if F':[a,b] — L(X) and ¢g:[a,b] — X,

b
then the integral / d[F] g exists provided F' is regulated on [a,b] and g has a bounded

b
semi-variation on [a,b], and the integral F dlg] exist provided F' has a bounded

semi-variation and ¢ is regulated. Furtherrﬁore, a general form of the integration by
parts theorem proposed by S. Schwabik in [8] will be presented under the assumptions
not covered by those from [8]. Finally, the substitution formula is proved.

2 Preliminaries

Throughout these notes X is a Banach space and L(X) is the Banach space of bounded
linear operators on X. By || - || x we denote the norm in X. Similarly, || - [|z(x) denotes
the usual operator norm in L(X).

Assume that —oo < a <b< 400 and [a, b] denotes the corresponding closed interval.
A set D={ap,a1,...,a,} C [a,b] is said to be a division of [a, b] if

a=og<a;< ... <a,=Db.

The set of all divisions of [a, b] is denoted by Dla, b].

A function f:[a,b] — X is called a finite step function on [a,b] if there exists
a division D ={ag, a1, ..., a,} of [a,b] such that f is constant on every open interval
(Ozj_l, Ozj), j = ]_, 27 oo,

For an arbitrary function f:[a,b] — X we set

[flloo = sup I1F @)l x

t€[a,b

and

var’ f = sup Z [f () = flay—1)lx

DeDlab] i

is the variation of f over [a,b]. If var f < oo we say that f is a function of bounded
variation on [a,b]. BV ([a,b], X) denotes the Banach space of functions f:[a,b] — X
of bounded variation on [a,b] equipped with the norm || f||gv = || f(a)||x + var® f.
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For F [a,b] — L(X) and a division D ={ag, aq,...,ay} of the interval [a,b], let
V2 (F,D) = sup {H > [F(ag) = Flaj-1)] yij}v
j=1

where the supremum is taken over all possible choices of y; € X, 7 = 1,2,...,m, with
llyjllx < 1. Then
(B)var’ (F) = sup{V’(x, D); D € D[a,b]} .

is said to be a semi-variation of F on [a,b], cf. e.g. [3]. Sometimes it is called also
a B-variation of F on [a,b] (with respect to the bilinear triple B = (L(X), X, X),

cf. e.g. [5]). Analogously, we can define the B-variation of a function f : [a,b] — X

using

V(. D) =sup {|| 3 F fle) — oyl }

where the supremum is taken over all possible choices of operators F; € L(X) with
||-Fj||L(X) S 1, j:1,2,...,m.

The set of all functions F':[a,b] — L(X) with (B)var’(F) < oo is denoted by
(B) BV ([a,b], L(X)). Similarly as in the case of bounded variation functions, the set
(B) BV (Ja,b], L(X)) is a Banach space with respect to the norm

F e (B) BV ([a,b], L(X)) — | Fllsv = [IF(a)llzx) + (B) vargF

(cf. [9])
A function f:[a,b] — X, is said to be regulated on [a,b] if for each ¢ € [a, ) there
is f(t+) € X such that

lim [[f(s) = f(t+)llx =0

s—1+

and for each t € (a,b] there is f(t—) € X such that
I [1765) ~ £(6)llx =0.

By G([a,b], X) we denote the set of all regulated functions f:[a,b] — X. For ¢ € [a, ),
s€ (a,b] we put AT f(t)=f(t+)—f(t) and A~ f(s)=f(s)—f(s—). Recall that

BV ([a,b], X) € G(la,b], X) N (B)BV ([a, b], X),

while (B)BV ([a,b],X) € G([a,b],X) (cf. e.g. [6, 1.5]). Moreover, it is known that
regulated function are uniform limits of finite step functions (see [3, Theorem 1.3.1]).

Now, let us recall the definition and some crucial properties of the Kurzweil-Stieltjes
integral.
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As usual, tagged systems P = (D, &) € D]a,b]|x[a,b]™ where D ={ag,a,...,n},
E=(&,%,...,&n), are called partitions of [a,b] if
Oéj_lgijOéj for j:1,2,...,m.

The set of all partitions of [a,b] is denoted by Pla,b].

Furthermore, functions d:[a, b]—(0, co) are said to be gaugeson [a, b]. Given a gauge
J, the partition P = (D,§) with D={ag,a1,...,an}, E=(&1,8, -, &n), is 0-fine if

laj-1,05] C (& —6(§),&+6(8) for j=1,2,....m.

We remark that for an arbitrary gauge 6 on [a, b] there always exists a 0-fine partition
of [a,b]. This is stated by the Cousin lemma (see [4, Lemma 1.4]).

For given functions F':[a,b] — L(X) and ¢:[a,b] — X and a partition P = (D, ¢)
of [a,b], where D = {ap, a1, ...,an}, E= (&1, ..., &n), we define

S(F,dg, P) = Z F(&) lg(ay) — gla;-1)]

and
m

S(dF,g,P) =Y [F(ay) = F(a;-1)] 9(&) -

j=1
We say that I € X is the Kurzweil-Stieltjes integral (or shortly KS-integral) of F' with
respect to g on [a,b] and denote
b
I= [ Fag

if for every £ > 0 there exists a gauge ¢ on [a,b] such that
HS(F, dg, P) — [H < e forall §— fine partitions P of [a,b].
X

Similarly, J € X is the KS-integral of g with respect to F' on [a,b] if for every € >0
there exists a gauge § on [a, b] such that

HS(dF,g, P) — JHX < e forall §— fine partitions P of [a,b].

b
In this case we write J = / d[F]g.

b
Analogously, if H:[a,b] — L(X), we define the integral / H d[F]g using sums

of the form .

S(H,dF,g,P) => H(&)[F(ag) = F(aj1)] g(&)).

j=1
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The KS-integral is linear and additive with respect to intervals. Basic results con-
cerning KS-integral can be found in [5] and [12]. Obviously, if the Riemann-Stieltjes

b
integral (RS) / F d[g] exists, then the KS-integral / F d[g] also exists and

a

[ Fau=ms) [ Faig

Some of the further results needed later are summarized in the following assertions:
2.1.Proposition. Let F':[a,b] — L(X) and g:[a,b] — X.
(i) [5, Proposition 10| Let F € (B) BV ([a,b], L(X)) and g:[a,b] — X be such that
/b d[F) g exists. Then

|

(i) [5, Proposition 11] Let F € (B) BV ([a,b], L(X)) and g,:[a,b] — X be such that
b
/ d[F) g exists for alln € N and lim,,_. ||gn — g|lco =0. Then

a

/ab diF] gHX < (B) (vargF) [|glloc -

b b b
/ d[F)g exists and / d[F]g = lim d[F] gn -

n—oo
a

(iii) [5, Proposition 15]If F'€ (B)BV (|a,b], L(X)) and g € G(|a,b], X) then /bd[F] g
exists.

(iv) [8, Theorem 13]If F € G([a,b], L(X))ﬂ(
then both the integrals / bF dlg] and

a a

Y ATF(r)Atg(r) - > ATF(r) A g(7)

a<t<b a<t<b

)BV ([a,b], L(X)) and g € BV ([a,b], X)
d[F | g exist, the sum

converges in X and the equality

[ ra+ [ iy

= F(b) g(0) ~ Fa) gla)~ Y ATF() Atg()+ 3 A F(t) A g(t)

a<t<b a<t<b

1S true.
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3 Main results

In this section we will present our main results. First, we will prove two auxiliary
properties of the KS-integral which, in the case that X # R”, are not available in the
literature.

3.1.Lemma. (i) Let Fe(B)BV ([a,b], L(X)), geG([a,b], X) be such that /;7 d[g]

exists. Then ¢

1S(F, dg, P)llx < 2[[Fllsv llglles,  for each P € Pla,b] (3.1)

(ii) Let Fe€G([a,b],L(X)), g€ (B)BV([a,b], X) be such that /b d[F) g exists. Then

and

b
[ F ]| <207y gl (3.2

1S(dF, g, P)lx < 2| Fll llgllsv  for each P € Pla,b]. (3.3)

| [ ate1o] <208 ol B4

PrROOF. It is easy to check that, for an arbitrary partition P=(D,) of [a,b] with
D={ap,a1,...,an} and £=(&1,82,...,&m), we have
S(F,dg, P)
= F(&) [g(on) —g(a)]l + F(&) [9(az) — glan)] + ... + F(&m) [9(b) — g(am—1)]
= F(b) g(b) — F(a)g (a)

and

— [F(&) = F(a)] g(a)= [F(&2) —g(&)] = .. = [F(b) = F(&m)] 9(b)
= F(b) g(b) = F(a) g(a) = Y [F(&1) = F(&)] g(ay),
j=0

where £y = a and £,,+1 = b. Consequently

IS(F, dg, P)|Ix < (IF(a)llrex) + 1F®)zx)) lgllee

ey e ()

glan)lx|

< (F<a>L<X>+F<b>L<X)+Z[F(fjm FE&) ”XH ) 9l
j=0

< (I1F(@) 1) + IF®) 1) + (B)varkF) glloe < 201 Fllsv llgllo
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ie. (3.1) is true.
Now, let an arbitrary € >0 be given. By our assumptions there is a gauge 0 on [a, b] such
that

b
HS(F, dg, P) — / Fd[g]HX <¢e whenever P is § — fine.

Let Py be an arbitrary d-fine partition of [a,b]. Then by (3.1) we have

b
| [ pa], < |stra0m - [ pat]+ 15t ag Rl
T e 21Blsy lol

Since € >0 can be arbitrary, it follows that inequality (3.2) is true.

The proof of (3.3) and (3.4) can be obtained in a similar way. O

3.2.Lemma. Let g: [a,b] — X be a finite step function. Then for any F : [a,b] — L(X)
b
the integml/ F dlg] ewists.

a

PROOF. One can check that g:[a,b] — L(X) is a finite step function if and only if it is a
finite linear combination of the functions of the form

X[a,] (t) E7 Xo,b] (t) §7 Xla) (t) E’ Xb] (t) 7:67

where 7, o are some points from (a,b) and 7, y, z, w may be arbitrary elements of X. Hence,
by the linearity of the integral, it is sufficient to prove the formula (3.8) for functions ¢ of the
form:

X[a,’r} i? X[T,b}%7 X[a] z, X[b] z,

where 7 € (a,b) and 7 € X.
Let 7€ (a,b), 7€ X and g = T X[q,;)- Given £ > 0 define

5(6) € it t=r.
£ —
slr—t| if t#7

Then, for any J-fine partition P of [a,b], 7 is the tag and S(F, dg, P) = —F(7) z. Hence

/Fd _F(r)7

The proofs of the cases g = X[ T, g = X[ T and g = x5 T are analogous. O

Next theorem is the first main result of this paper. It supplements the Schwabik’s exis-
tence result stated in Proposition 2.1 (iii).

b
3.3. Theorem. (i) If FeG(la,b],L(X)), g€ (B)BV([a,b], X), then the integral /d[F] g
erists. ¢
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(ii) If Fe(B)BV([a,b],L(X)), geG([a,b],X), then the integral /de[g] exists.
PRrROOF. (i) Let F,,:]a,b] — L(X), neN, be a sequence of finite step functions such that
nlin;o |Ey — Flloo = 0.
Since F, € BV (]a, b],bL(X)) for each n € N, it follows from Proposition 2.1 (iii) that for each

n € N the integral / d[F,] g exists. Moreover, these integrals define a Cauchy sequence in
a

the Banach space X. Indeed, given € >0 there is ng € N such that || F,, — F||c < €, for n > ng.
Thus, using Lemma 3.1, we obtain

b
H/ d[F, — Fiy) gHX <2||F, — Fulloo llgllsv < 4ellgllsy  for all m,n > ny.
a

b
Therefore there is I € X such that [ = lim d[F,] g. This implies that there exists N € N

n—oo
such that N >ng and

a

| [ atmwig 1], <=

Let 0 be a gauge on [a,b] such that

b
HS(dFN,g,P) —/ d[FN]gHX < e whenever P is ¢ — fine.

Having this in mind and using (3.3), for an arbitrary J-fine partition P of [a,b], we get

HS(dF,g,P) —IHX

< |[$(aF.g.P) ~ S(daFw,g.P)| + |[S(aFw,g.P) - /ab el

£ fd[FMg—lHX

<2||F = Fnll llgllsv + 26 < 2e (llgllsv + 1),

which concludes the proof of the assertion (i).

The assertion (ii) can be proved by the same arguments using Lemma 3.2 instead of
Proposition 2.1. [l

A direct consequence of Lemma 3.1 and Theorem 3.3 is the following assertion.

3.4.Corollary. (i) Let g, gn € G([a,b],X), n€N be such that lim, o ||gn — gljcc = 0.
Then for any F € (B) BV ([a,b], L(X)), the integrals

b b
/Fd[g] and /Fd[gn], neN,

exist and
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b b
lim Fdg, :/ F dg.

—
n—oo a

(ii) Let F, F,, € G([a,b], L(X)), n €N be such that lim,_. ||Fn — F|lcc =0. Then for any
g€ (B)BV([a,b], X), the integrals

b b
/d[F]g and /d[Fn]g,nEN,

exist and
b

b
lim d[F,.]g = / d[F]g.

—
n—oo a

Thanks to Theorem 3.3, we are now also able to extend the integration by parts theorem
by Schwabik (cf. Proposition 2.1 (iv) or [8, Theorem 10]) and the Substitution Theorem
(cf. e.g. [13, Theorem 2.3.19] for X =R") to the form more suitable for applications to gen-
eralized differential equations. This will be the content of the rest of these notes. Whenever
we treat functions of bounded variation, we believe to be able to extend in a close future the
corresponding results to regulated functions having a bounded semi-variation.

3.5.Lemma. (i) IfF € G(la,b],L(X)) and g € BV ([a,b],X), then

S IATFE®ATg)x + D IATFHA g(b)llx < 2[|F |0 varhg. (3.5)
t€la,b) te(a,b]

(i) If F € BV([a,b],L(X)) and g € G([a,b], X), then

S IIATFMATgB)x + D IATFHA g(t)llx < 2 (varhF) |Igllso -
t€la,b) te(a,b]

Proor. (i) Let F € G([a,b],L(X)) and g € BV ([a,b],X). It is known that the points
of discontinuities of a regulated function are at most countable (see [3, Corollary 1.3.2.b]).
Let {sr} be the set of common points of discontinuity of the functions F' and ¢ in (a,b), so
we can write

YIATE@ ATgD)x + D AP ATg(1)]x

te[a,b) t€(a,b]
= [A*F(a) ATg(a)llx + |ATF(b) A™g(b)]| x

+ 7 [IATF(s1) AT g(sp) x + A7 F(s) Ag(s1)llx]
k=1

For n € N, define
Sp = [[ATF(a) A% g(a)|lx + [[ATF(b) Ag(b) | x

+ 3 [IATF(si) A7g(su)llx + | AT F(s) ATg(si)llx] -
k=1
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Let ¢ > 0 and n €N be given and let {t1,%2,...,t,} C (a,b) be such that

{tl,tg,...,tn}:{81,82,...,Sn} and a <t <to<- - <t,<bh.

Then,
Sp = [|ATF(a) A%g(a)||x + [|ATF(b) A g(b)|Ix
+ > [IATF(t) A g(ta)llx + |ATF(te) AT g(t)llx] -
k=1
Furthermore, for each k = 1,2,...,n, choose d; > 0 in such a way that
€
lg(tk +0k) — gt t)lx < T
8 (n+1) | Fll
€
lg(tk = 0k) —g(te=)llx < g —
8 (n+1) | Fll
and

[tk — g, tg +5k] N {tl,tg, . ,tn} = {tk} .

Analogously, let §g > 0 be such that

a8y <t and (ot do) = glat)llx < g
and
9
b—0dg >ty and |[lg(b—)—g(b—0o)||x < ——=—.
817

Now, noting that

IATF@)|rx) < 2||Flloe  for t € [a,b)
and
IATF#)|lx) < 2[|Flloc for t € (a,b],

we can see that

S < 2|1F s (lgla+) = gla+0)lx + llgla+ o) — g(a)1x)

+2(1F o0 Y llgltat) — g(tr + 60)llx
k=1

+2[|Fllos Y llg(t + 1) — g(te) |1 x
k=1

+201F o0 Y llgltn—) — g(tr — 61)llx
k=1

+2[1Flloo Y llg(ts — 0k) — g(te)llx
k=1
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+2||Fllos (Jl9(8) = 96— 80) x + (b= 80) = 9(6=)]lx)

9
< 7+ 2|[Flle llgla+do) —g(a)llx

4

Pl S gt ) — gl
4 (n+1) —

- a||F in (t) — gt — 1)

9
+2[[Flloc llg(0) = g(b—do)llx + 7 -

To summarize, we have

S < e+2|Flloe (llgla+d0) — g(@)llx + Y llglt+ ) — g(ti)llx)
k=1

+2|F (Z lg(te) = gt = 0)llx + Il () — 9(b— 80)llx )

This implies that S, <e+2||F| s (varlg) holds for any n € N. Moreover, as ¢ > 0 can be
arbitrarily small, we finally deduce that

Sy < 2||F||so (varlg) for any neN,

wherefrom the desired estimate (3.5) follows.
(i) Similarly, we could proceed if F'€ BV ([a,b], L(X)) and g € G([a,b], X). O

3.6. Corollary. (INTEGRATION BY PARTS.) Let F € BV([a,b],L(X)) and g€ G([a,b],X)
(or FeG([a,b],L(X)) and g€ BV ([a,b], X)). Then both the integrals

/ade[g] and /abd[F]g

exist and

(3.6)
F(b) b)F) = Y ATF()ATg(t) + Y ATF() A g(t)

a<t<b a<t<b
holds.
PRrOOF. a) Let F € BV([a,b],L(X)), g€ G([a,b],X) and let {g,} be a sequence of finite

step functions on [a, b] which tends uniformly to g on [a,b]. Then by Proposition 2.1 (iv) we
have

b b
/ F diga] + / d[F] go — F(6) gn(b) + F() gn(a)
= Y AFA gut)- S ATF(#) A (1)

a<t<b a<t<b

(3.7)
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for any n € N. Thus, by Corollary 3.4, the relation

n—oo

hm(LZ%®A+L%HMW<N®%@+FMMA®)

b b
= [Pag+ [ airlg - F0)60) + Fo) g(a)
holds. Further, by Lemma 3.5 (ii) the estimate

Y IATFO A*(g(t) = gn(@)x + Y IAF () A (g(t) = ga(0)lx

a<t<b a<t<b
<2 (VargF) g — gnlloo

is true. Consequently,

lim | Y ATF(t)Atga(t)— Y ATF(t) Aga(t)

n—00
a<t<b a<t<b

= Y ATF{t)Atg(t)— Y ATF(t) A g(t).

a<t<b a<t<b
To summarize, letting n — oo in (3.7), we obtain (3.6) .

b) Similarly, we could proceed if F € G([a,b], L(X)) and g € BV ([a,b], X). O

Now, notice that using arguments analogous to those from the proofs of the assertions (i)
and (ii) in Proposition 2.1 we can justify the following proposition.

3.7.Proposition. Let F, H:[a,b] — L(X) and g:[a,b] = X

b
(i) If FeBV(la,b],L(X)), H:[a,b] — L(X) and g:[a,b] — X are such that/ Hd[F)g
exists, then ¢

N g(s)|| , < I1H oo (varlF) lgloe -

(ii) LetFEBV([a b],L(X)), Hy:[a,b] = L(X), neN and let g:[a,b] — X be bounded and
such that/ H, d[F]g eists. If hm |H,—H||oo =0, then the mtegml/ Hd[F]g
exists and

b b
lim /Hnd[F]g—/ Hd[F]gHX:
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3.8. Theorem. (SUBSTITUTION THEOREM.) Let F'€ BV ([a,b], L(X)) and let g:[a,b] — X
b
be bounded and such that the integral / d[F] g exists. Then both the integrals

/:H(s)ds[/:dmg] and /:Hd[F]g
/H / [F]g}z/abﬂdmg (3.5)

holds for each H € G([a,b], L

PROOF. Step 1. First, we show that (3.8) holds for each finite step function H : [a,b]—L(X).
By the linearity of the integral and since a finite step function H: [a,b] — L(X) is a finite

linear combination of the functions of the form

exist and the equality

X(a,r () Hy, X[o,b] () Hy, X[a) () H, X (1) Hy,

where 7, o € (a,b) and H; € L(X) i = 1,2,3,4, it is enough to justify (3.8) for functions H of
such a form.

~ _ t
Let 7€ (a,b), H € L(X), H = X[q,7(t) H and K (t) :/ d[F] g for t € [a,b].

/QTHd[F]g:/aTHd[K]:ﬁ/aTd[F]g. (3.9)

Let € >0 be given and let

Obviously,

5(6) € if t=r7.
t) =
r—t| if T<t<b.

Then, for any -fine partition P of [1,b] with D = {ag, a1,..., ap} and € = (£1,&2. .., &m)
we have & = ag =7, a1 <7+¢ and

S(H,dF,g,P) = H[F(ay) — F(7)]g(r) and S(H,dK,P)=H[K(a)— K(7)].

As a result and as a consequence of the Hake theorem for KS-integrals (cf.e.g. [Corollary
24][5]) we get

/Hd g=HAYF(r)g(r) and /Hd = HATK(r)= HAYF(7) g(7),
ie

b b »
/Hd[F]g:/ HA[K]=HATF(1)g(r).

This, together with (3.9) yields (3.8).
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The proofs of the remaining cases H = X7 p] H s H=Xq H and H = Xb] H can be done
in a similar way.

t

Step 2. Let H € G(Ja,b], L(X)). Denote again K (t) = / d[F] g for t € [a,b] and consider the
sequence Hy, : [a,b]—L(X), n €N, of finite step functions such that lim, . ||Hy — H||cc =0.
By Proposition 3.7 (ii) and Step 1 we have
b
lim H, d[K] = lim Hd g—/Hd

Let £ >0 be given. Choose ng € N and a gauge ¢ on [a,b] in such a way that

|Hy, — H||o < g,

/H d[K /Hd H < e hold for n>nyg
and

b
HS(HnO, dK, P) — / Hy, d[K]H < e for all § — fine partitions P on [a,b].
a X

Then, for an arbitrary d-fine partition P = (D,§) of [a,b] with D = {ag, a1,...,an} and
&= (&,x2,...,&m) we have

IS, ) = St P = |50 (006~ ) | |

X

< |[H - Hnouooz | [ aws| < e - Hnouooi [(varks_, F) llgloc]

@j-1 j=1

= [[H = Hpol|oo (varaF)Ilglloo < e (vargF) [|g]|oc-

To summarize, we have

b
a X

4 /abHd[K]—/abHd[F]gHX

for each o-fine partition P of [a,b], i.e., (3.8) is true. O

4 HS(Hno, dK, P) — /ab Hy, d[K]H

e (2+ (vargF) |lgl<)

3.9 . Remark. Notice that, on the contrary to the finite dimensional case, in a case of a
general Banach space X the Substitution Theorem can not be obtained as a corollary of the
Saks-Henstock Lemma.
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