Photosynthetica, 2017 (vol. 55), issue 2

Photosynthetica 2017, 55(2):329-337 | DOI: 10.1007/s11099-016-0242-6

Expression quantitative trait loci analysis of the Rubisco activase gene in maize

Q. Sun1, Y. Zhang1, B. Chen2, B. Jia3, Z. L. Zhang1, M. Cui1, X. Kan1, H. B. Shi1, D. X. Deng1, Z. T. Yin1,*
1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
2 Seed Management Station of Jiangsu Province, Nanjing, China
3 Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, China

Expression quantitative trait loci (eQTL) analyses were applied in order to identify genetic factors that are relevant to the expression of a β-isoform Rubisco activase gene in maize, namely ZmRCAβ, in this study. During two years, a maize recombinant inbred line population was measured for ZmRCAβ expression levels at the grain filling stage. Based on a genetic map containing 916 molecular markers, we detected five eQTLs, namely qRCA2.1 on chromosome 2, and qRCA4.1, qRCA4.2, qRCA4.3, and qRCA4.4 on chromosome 4. These eQTLs explained the phenotypic variation ranging from 6.14% to 7.50% with the logarithm of the odd values ranging from 3.11 to 4.96. Based on the position of the eQTLs and ZmRCAβ on the chromosome, qRCA4.2 was inferred as a cis-eQTL and the remaining as a trans-eQTL, suggesting that a combination of both cis- and trans-acting elements might control ZmRCAβ expression. qRCA4.2, qRCA4.3, and qRCA4.4 were repeatedly detected during two years.

Keywords: gene expression; grain yield; promoter; quantitative trait

Received: February 2, 2016; Accepted: May 5, 2016; Published: June 1, 2017Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sun, Q., Zhang, Y., Chen, B., Jia, B., Zhang, Z.L., Cui, M., ... Yin, Z.T. (2017). Expression quantitative trait loci analysis of the Rubisco activase gene in maize. Photosynthetica55(2), 329-337. doi: 10.1007/s11099-016-0242-6.
Download citation

Supplementary files

Download filephs-201702-0014_S1.pdf

File size: 1.39 MB

Download filephs-201702-0014_S2.pdf

File size: 320.49 kB

Download filephs-201702-0014_S3.pdf

File size: 155.58 kB

Download filephs-201702-0014_S4.pdf

File size: 155.79 kB

References

  1. Ayala-Ochoa A., Vargas-Suárez M., Loza-Tavera H. et al.: In maize, two distinct ribulose 1,5-bisphosphate carboxylase/oxygenase activase transcripts have different day/night patterns of expression. - Biochimie 86: 439-449, 2004. Go to original source...
  2. Chao M., Yin Z., Hao D. et al.: Variation in Rubisco activase (RCA&beta) gene promoters and expression in soybean [Glycine max (L.) Merr.]. - J. Exp. Bot. 65: 47-59, 2014. Go to original source...
  3. DeRidder B.P., Shybut M.E., Dyle M.C. et al.: Changes at the 3'-untranslated region stabilize Rubisco activase transcript levels during heat stress in Arabidopsis. - Planta 236: 463-476, 2012. Go to original source...
  4. Doss S., Schadt E.E., Drake T.A., Lusis A.J.: Cis-acting expression quantitative trait loci in mice. - Genome Res. 15: 681-691, 2005. Go to original source...
  5. Druka A., Potokina E., Luo Z. et al.: Expression quantitative trait loci analysis in plants. - Plant Biotechnol. J. 8: 10-27, 2010. Go to original source...
  6. Jansen R.C., Nap J.P.: Genetical genomics: the added value from segregation. - Trends Genet. 17: 388-391, 2001. Go to original source...
  7. Kumar G.R., Sakthivel K., Sundaram R.M. et al.: Allele mining in crops: prospects and potentials. - Biotechnol. Adv. 28: 451-461, 2010. Go to original source...
  8. Law R.D., Crafts-Brandner S.J.: High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. - Arch. Biochem. Biophys. 386: 261-267, 2001. Go to original source...
  9. Li Q., Yang X., Bai G. et al.: Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. - Theor. Appl. Genet. 120: 753-763, 2010. Go to original source...
  10. Lorimer G.H.: The carboxylation and oxygenation of ribulose 1,5-bisphosphate: The primary events in photosynthesis and photorespiration. - Annu. Rev. Plant Physio. 32: 349-382, 1981. Go to original source...
  11. Martínez-Barajas E., Molina-Galán J., Sánchez-de-Jiménez E.: Regulation of Rubisco activity during grain-fill in maize: possible role of Rubisco activase. - J. Agr. Sci. 128: 155-161, 1997. Go to original source...
  12. Morales A., Ortega-Delgado M., Molina-Galán J., Sánchez-de-Jiménez E.S.: Importance of Rubisco activase in maize productivity based on mass selection procedure. - J. Exp. Bot. 50: 823-829, 1999. Go to original source...
  13. Morley M., Molony C.M., Weber T.M. et al.: Genetic analysis of genome-wide variation in human gene expression. - Nature 430: 743-747, 2004. Go to original source...
  14. Murray M., Thompson W.F.: Rapid isolation of high molecular weight plant DNA. - Nucleic Acids Res. 8: 4321-4326, 1980. Go to original source...
  15. Parry M.A.J., Andralojc P.J., Mitchell R.A.C. et al.: Manipulation of Rubisco: the amount, activity, function and regulation. - J. Exp. Bot. 54: 1321-1333, 2003. Go to original source...
  16. Portis A.R., Li C., Wang D., Salvucci M.E.: Regulation of Rubisco activase and its interaction with Rubisco. - J. Exp. Bot. 59: 1597-1604, 2008.
  17. Portis A.R.: Rubisco activase-Rubisco's catalytic chaperone. - Photosynth. Res. 75: 11-27, 2003. Go to original source...
  18. Qian J., Rodermel S.R.: Ribulose-1,5-bisphosphate carboxylase/oxygenase activase cDNAs from Nicotiana tabacum. - Plant Physiol. 102: 683-684, 1993. Go to original source...
  19. Rieseberg L.H., Archer M.A., Wayne R.K.: Transgressive segregation, adaptation and speciation. - Heredity 83: 363-372, 1999. Go to original source...
  20. Ristic Z., Momčilović I., Bukovnik U. et al.: Rubisco activase and wheat productivity under heat-stress conditions. - J. Exp. Bot. 60: 4003-4014, 2009. Go to original source...
  21. Rundle S.J., Zielinski R.: Organization and expression of two tandemly oriented genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase activase in barley. - J. Biol. Chem. 266: 4677-4685, 1991.
  22. Salvucci M.E., van de Loo F.J., Stecher D.: Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing. - Planta 216: 736-744, 2003. Go to original source...
  23. Salvucci M.E., Werneke J.M., Ogren W.L., Portis A.R.: Purification and species distribution of Rubisco activase. - Plant Physiol. 84: 930-936, 1987. Go to original source...
  24. Schindler U., Menkens A.E., Beckmann H. et al.: Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. - Embo. J. 11: 1261-1273, 1992. Go to original source...
  25. Song H., Yin Z., Chao M. et al.: Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. - Plant Cell Environ. 37: 462-472, 2014. Go to original source...
  26. To K.Y., Suen D.F., Chen S.C.G.: Molecular characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice leaves. - Planta 209: 66-76, 1999. Go to original source...
  27. von Caemmerer S., Hendrickson L., Quinn V. et al.: Reductions of Rubisco activase by antisense RNA in the C4 plant Flaveria bidentis reduces Rubisco carbamylation and leaf photosynthesis. - Plant Physiol. 137: 747-755, 2005. Go to original source...
  28. Wang G., Zhang J., Wang G. et al.: Proline responding plays a critical role in regulating general protein synthesis and the cell cycle in maize. - Plant Cell 26: 2582-2600, 2014. Go to original source...
  29. Wang S., Basten C., Zeng Z.: Windows QTL Cartographer V2. 5. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. 2006.
  30. Werneke J.M., Chatfield J.M., Ogren W.L.: Alternative mRNA splicing generates the two ribulose-1,5-bisphosphate carboxylase/ oxygenase activase polypeptides in spinach and Arabidopsis. - Plant Cell 1: 815-825, 1989. Go to original source...
  31. Werneke J.M., Zielinski R.E., Ogren W.L.: Structure and expression of spinach leaf cDNA encoding ribulose-1,5-bisphosphate carboxylase/oxygenase activase. - P. Natl. Acad. Sci. USA 85: 787-791, 1988. Go to original source...
  32. Wu H., Li L., Jing Y., Kuang T.: Over-and anti-sense expressions of the large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene in Oryza sativa affect the photosynthetic capacity. - Photosynthetica 45: 194-201, 2007. Go to original source...
  33. Xu Y.: Quantitative trait loci, separating, pyramiding, and cloning. - In: Janick J. (ed.): Plant Breeding Reviews, Vol. 15. Pp. 85-139, John Wiley & Sons, New York 1997. Go to original source...
  34. Yamori W., Masumoto C., Fukayama H. Makino A.: Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. - Plant J. 71: 871-880, 2012.
  35. Yang Z., Lu Q., Wen X. et al.: Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis. - Biochem. Bioph. Res. Co. 418: 565-570, 2012. Go to original source...
  36. Yin Z., Meng F., Song H. et al.: GmFtsH9 expression correlates with in vivo photosystem II function: chlorophyll a fluorescence transient analysis and eQTL mapping in soybean. - Planta 234: 815-827, 2011. Go to original source...
  37. Yin Z., Meng F., Song H. et al.: Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean. - Plant Physiol. 152: 1625-1637, 2010 Go to original source...
  38. Yin Z., Qin Q., Wu F. et al.: Quantitative trait locus mapping of chlorophyll a fluorescence parameters using a recombinant inbred line population in maize. - Euphytica 205: 25-35, 2015. Go to original source...
  39. Yin Z., Wang Y., Wu F. et al.: Quantitative trait locus mapping of resistance to Aspergillus flavus infection using a recombinant inbred line population in maize. - Mol. Breeding 33: 39-49, 2014a. Go to original source...
  40. Yin Z., Zhang Z., Deng D. et al.: Characterization of Rubisco activase genes in maize: an α-isoform gene functions alongside a β-isoform gene. - Plant Physiol. 164: 2096-2106, 2014b. Go to original source...
  41. Zhang H., Hao D., Sitoe H.M. et al.: Genetic dissection of the relationship between plant architecture and yield component traits in soybean (Glycine max) by association analysis across multiple environments. - Plant Breeding 134: 564-572, 2015. Go to original source...
  42. Zhang N., Portis A.R.: Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. - P. Natl. Acad. Sci. USA 96: 9438-9443, 1999. Go to original source...
  43. Zhao K., Tung C.W., Eizenga G.C. et al.: Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. - Nat. Commun. 2: 467, 2011. Go to original source...
  44. Zuo W., Chao Q., Zhang N. et al.: A maize wall-associated kinase confers quantitative resistance to head smut. - Nat. Genet. 47: 151-157, 2015. Go to original source...