Plant Triterpenoid Crosstalk: The Interaction of Brassinosteroids and Phytoecdysteroids in Lepidium sativum
Tarkowská D., Krampolová E., Strnad M.
PLANTS 9: 1325, 2020
Keywords: triterpenoids; brassinosteroids; phytoecdysteroids; Lepidium sativum; plant growth
Abstract: Plant steroid alcohols, plant sterols, are essential components of cell membranes that perform many functions. Their most prominent function is maintaining membrane semipermeability and regulating its fluidity through their specific interaction with phospholipids and membrane proteins. This work is focused on the study of the interaction of two groups of plant sterols, brassinosteroids (BRs) and phytoecdysteroids (PE). Steroid substances belonging to both groups are important signaling molecules essential for plant growth and development, but while the first group has all the known attributes of plant hormones, the second lacks hormonal function in plants. The aim of this preliminary study was to determine at what concentration level and to what extent substances of this type are able to interact with each other, and thus influence the early growth and development of a plant. It was found that exogenously applied PE 20-hydroxyecdysone (20E) significantly reduced the level of endogenous BRs in four-day-old garden cress (Lepidium sativum) seedlings. On the other hand, exogenously applied BRs, 24-epibrassinolide (epiBL), caused the opposite effect. Endogenous 20E was further detected at the picogram level in garden cress seedlings. Thus, this is the first report indicating that this plant species is PE-positive. The level of endogenous 20E in garden cress seedlings can be decreased by exogenous epiBL, but only at a relatively high concentration of 1·10−6 M in a culture medium. The image analysis of garden cress seedlings revealed that the length of shoot is affected neither by exogenous BRs nor PE, whereas the root length varies depending on the type and concentration of steroid applied.
DOI: 10.3390/plants9101325 IEB authors: Miroslav Strnad, Danuše Tarkowská
PLANTS 9: 1325, 2020
Keywords: triterpenoids; brassinosteroids; phytoecdysteroids; Lepidium sativum; plant growth
Abstract: Plant steroid alcohols, plant sterols, are essential components of cell membranes that perform many functions. Their most prominent function is maintaining membrane semipermeability and regulating its fluidity through their specific interaction with phospholipids and membrane proteins. This work is focused on the study of the interaction of two groups of plant sterols, brassinosteroids (BRs) and phytoecdysteroids (PE). Steroid substances belonging to both groups are important signaling molecules essential for plant growth and development, but while the first group has all the known attributes of plant hormones, the second lacks hormonal function in plants. The aim of this preliminary study was to determine at what concentration level and to what extent substances of this type are able to interact with each other, and thus influence the early growth and development of a plant. It was found that exogenously applied PE 20-hydroxyecdysone (20E) significantly reduced the level of endogenous BRs in four-day-old garden cress (Lepidium sativum) seedlings. On the other hand, exogenously applied BRs, 24-epibrassinolide (epiBL), caused the opposite effect. Endogenous 20E was further detected at the picogram level in garden cress seedlings. Thus, this is the first report indicating that this plant species is PE-positive. The level of endogenous 20E in garden cress seedlings can be decreased by exogenous epiBL, but only at a relatively high concentration of 1·10−6 M in a culture medium. The image analysis of garden cress seedlings revealed that the length of shoot is affected neither by exogenous BRs nor PE, whereas the root length varies depending on the type and concentration of steroid applied.
DOI: 10.3390/plants9101325 IEB authors: Miroslav Strnad, Danuše Tarkowská