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1 Continuum approach to porous media
[BB90, Chs. 1, 2], [LS98, Chs. 1, 2], [dB00, Ch. 5], [KGSW12, Sec. 2.2]

A porous medium is formed by a solid matrix and a void space (pore space), which is occupied by
one or more fluids. A constituent (or a phase) is a part of the porous medium that is separated
from other such parts by sharp interfaces (e.g., a solid, water, air).

At the microscopic level, state variables that describe the behaviour of a particular constituent are
defined only within subdomains occupied by the constituent. To treat the porous medium with
the methods of continuum mechanics, one introduces a macroscopic level, where the variables and
quantities are defined at every point in the porous medium domain.

There are two major approaches that can be used to pass to macroscopic quantities from the
microscopic ones: the volume fraction concept and homogenisation. We shall introduce only the
first one briefly here.

In the volume fraction concept, each point of a control space of a porous medium is considered to
be a centroid of a so-called representative elementary volume or average volume element dv. In
addition, it is assumed that each volume element is composed of microscopic volume elements dvm
of real constituents (see Figure 1). Let π denote individual constituents of the porous material.
In particular, π = s marks a solid whereas π = f is used for fluids. The partial volume element
dvπ is the volume of constituent π within dv. Similarly we write daπ for the part occupied by
constituent π of the area da of the volume element, and dam for microscopic area elements.

To describe the microstructure of a porous medium in the macroscopic manner, neglecting the real
topology of the pore structure and the exact location of the individual constituents, one defines
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dv

dvm

Figure 1: Average volume element dv of a porous medium consisting of three constituents.

the following variables for measuring local fractions of the constituents:

ηπ :=
dvπ

dv
— the volume fraction of constituent π

φ :=
dv − dvs

dv
— the porosity

Sf :=
dvf

dv − dvs
=
ηf
φ

— the saturation of fluid f

Macroscopic quantities can be derived from microscopic ones by averaging: taking a microscopic
variable ξ, one can introduce

〈ξ〉π :=
1

dv

∫
dvπ

ξ dvm — the volume phase average

〈ξ〉ππ :=
1

dvπ

∫
dvπ

ξ dvm — the volume intrinsic phase average

ξ
π

:=

∫
dvπ

ρξ dvm∫
dvπ

ρdvm
— the mass average

ρ — the microscopic mass density

and for a vectorial or tensorial ξ

ξ
π

:=
1

da

∫
daπ

ξ dam — the area average

ξ
π

π :=
1

daπ

∫
daπ

ξ dam — the area intrinsic phase average

From the definition of volume fraction, the volume averages are related to each other by

〈ξ〉π = ηπ〈ξ〉ππ

Moreover

if the microscopic mass density ρ is constant =⇒ 〈ξ〉ππ = ξ
π

if the microscopic variable ξ is constant =⇒ 〈ξ〉ππ = ξ

Delesse’s law: the surface ratio of each constituent must be equal to its volume ratio on each cut
surface in an isotropic mixture. =⇒ The volume and area averages differ only slightly from each
other for an isotropic distribution of constituents.

Associating the average volumes dv and the average areas da with each point of the control space
in the definitions above, one obtains macroscopic quantities which are defined in the total con-
trol space, and which can be interpreted as local statistical averages of values at the underlying
microscale. Within this context, the porous material under consideration is theoretically substi-
tuted by a model where each constituent is “smeared” over the control space, and it occupies the
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total volume simultaneously with the other constituents. One then speaks of overlapping partial
continua.

Two strategies are used to arrive at a description of the mechanical and thermodynamic behaviour
of these substitute continua: Mixture theory treats the porous medium as a mixture of all con-
stituents directly from a macromechanics viewpoint. On the other hand in averaging theories,
averaging is used for introducing the macroscopic description from the microscopic one. Espe-
cially, macroscopic quantities such as the velocity, external body force, internal energy or external
supply of heat are obtained through volume or mass averaging, whereas the macroscopic mass den-
sities are volume-averaged ones. Area averaging is then employed to derive macroscopic quantities
such as the stress tensor or heat flux.

In each approach of porous media theory in general, a variety of simplifying assumptions and
constraints is introduced, e.g., that the pores and mass of all constituents are statistically uniformly
or even periodically distributed. Nevertheless, we shall deal directly with a common macroscopic
description with macroscopic quantities, and we shall tacitly suppose that it is relevant for all the
physical phenomena involved in the intended applications. In particular, the complete governing
equations of the models in the following sections are derived from macroscopic balance equations,
which are closed by a sufficient number of constitutive relationships.

Eventually, let us emphasise that rigorous constitutive relations require a consistent theory es-
tablished on mechanical and thermodynamic principles such as the material objectivity or the
entropy principle. However, most of the constitutive models presented below result from experi-
ments and they can be regarded as mere approximations of models developed from fundamentals
of mechanics and thermodynamics. Hence one has to be aware of their limited applicability to
various problems!

2 Saturated flow
[BC10, Chs. 4, 5]

The entire void space is occupied by water (index w).

Balance equations

Mass balance equation for water

∂(φρw)

∂t
= −div(ρwqw) +Qw (2.1)

ρw — the mass density of water t — the time

qw ≡ φvw — the water specific discharge vw — the water velocity

Qw — an external source (or a sink if negative) of water mass

(= added mass of water per unit volume of porous medium, per unit time)

Introducing

vs — the solid velocity

vrw ≡ vw − vs — the water relative velocity

qrw ≡ φvrw — the water specific discharge relative to the solid (Darcy velocity)

(= water volume passing through a unit area of porous medium per unit time)

Ds

Dt
≡ ∂

∂t
+ vs · ∇ — the total (or material) time derivative with respect to the solid phase
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one can rewrite (2.1) in the form

∂(φρw)

∂t
= −div(φρw(vw − vs))− div(φρwvs) +Qw

= −div(ρwqrw)− vs · ∇(φρw)− φρw div vs +Qw

Ds(φρw)

Dt
= −div(ρwqrw)− φρw div vs +Qw (2.2)

where we have used
div(φρwvs) = ∇(φρw) · vs + φρw div vs

Mass balance equation for solid

∂((1− φ)ρs)

∂t
= −div((1− φ)ρsvs) (2.3)

ρs — the solid mass density

− It is needed in the case of a deformable porous medium (vs 6= 0, ∂φ/∂t 6= 0)
Similarly as before, (2.3) can be rewritten in the form

Ds((1− φ)ρs)

Dt
= −(1− φ)ρs div vs (2.4)

Constitutive relationships

Water density
We consider that the water is compressible and its density depends on the pressure:

ρw = ρwoe
cw(pw−pwo) (2.5)

cw — the coefficient of water compressibility

pw — the pressure in the water (positive for compression)

ρwo, pwo — initial values of the water density and pressure (steady states at standard

conditions)

Assuming that cw is constant (over a certain range of pressures) yields

Dsρw
Dt

=
dρw
dpw

Dspw
Dt

= ρwcw
Dspw

Dt
(2.6)

Darcy’s law

qrw =
k

µ
(−∇pw + ρwf) (2.7)

k — the permeability (tensor) of the porous medium

µ — the dynamic viscosity of water

f — a body force density per unit mass (usually due to gravity: f = −g∇z with

g — the gravity acceleration, z — the elevation above some datum level,

∇z = a unit vector directed vertically upward)

• Obtained empirically first, but can be also derived from the water momentum balance
equation under certain simplifying assumptions.
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Solid phase
In the case of Dsφ/Dt 6= 0 (a deformable porous medium), we have to investigate stresses:
The total stress tensor in a porous medium is given by (the stresses are taken positive for tension
unlike the water pressure)

σ = (1− φ)σs + φσw, σw = −pwI + τw

σs,σw — the stress tensors in the solid and water

τw — the shear (or deviatoric) stress in the water

Neglecting τw, one obtains approximately

σ = (1− φ)σs − φpwI = (1− φ)(σs + pwI)− pwI = σ′s − pwI (2.8)

σ′s ≡ (1− φ)(σs + pwI) — the effective stress tensor

In a granular porous medium with an incompressible grain material, the pressure in the water (or
in the fluids in a multiphase system) that almost completely surrounds each solid grain produces
no deformation of the grains and does not contribute to deformation of the solid skeleton. Instead,
the deformation occurs mainly by rearrangement of grains due to the forces at the points of contact
between the grains. Hence, σ′s is the strain-producing part of the stress.

Assumption 1. The horizontal stresses are negligible, so it suffices to consider the vertical ones
only.
In this case, (2.8) reduces to

σ = σ′s − pw (2.9)

Assumption 2. The deformation of the solid phase is volume preserving (not of the solid skeleton
— voids may be rearranged).
This can be expressed by

∂vs

∂σ′s
= 0, vs — the volume of solid of a given fixed mass ms

or in terms of the porous medium volume v containing vs (v = vs/(1− φ))

∂vs

∂σ′s
= (1− φ)

∂v

∂σ′s
+ v

∂(1− φ)

∂σ′s
= 0

1

v

∂v

∂σ′s
=

1

1− φ
∂φ

∂σ′s

Now assume, that we deal with relatively small volume changes and the solid behaves as an
elastic material. For this case of vertical stresses only, one can define

c ≡ 1

v

∂v

∂σ′s
=

1

1− φ
∂φ

∂σ′s
— the compressibility coefficient of the solid skeleton

Finally assuming no change in the total stress, i.e., ∂σ = 0, hence ∂σ′s = ∂pw according to
(2.9), we get

c =
1

1− φ
∂φ

∂pw
(2.10)

Dsφ

Dt
= (1− φ)c

Dspw
Dt

(2.11)

By integrating (2.10) we obtain

φ = 1 + (φo − 1)e−c(pw−pwo), φo — an initial porosity (2.12)

Remark 1. The resulting relations for the porosity can be employed also in more general cases,
where flow and solid deformation do not occur mainly in the vertical direction. However, this
simplified approach is not always sufficient, and three-dimensional solid deformation has to be
included in the model generally (poromechanics).
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Flow equations

The balance laws are now transformed and the constitutive equations applied for obtaining com-
plete flow equations: Dividing the solid mass balance equation (2.4) by (1− φ)ρs yields

1

1− φ
Ds(1− φ)

Dt
= − 1

ρs

Dsρs
Dt
− div vs (2.13)

(the left-hand side may be interpreted as the relative rate of expansion of the volume occupied by
the solid phase)
Under Assumption 2, Dsρs/Dt = 0 (not div vs = 0 at the macroscopic level!), and (2.13) reduces
to

1

1− φ
Dsφ

Dt
= − 1

1− φ
Ds(1− φ)

Dt
= div vs (2.14)

Consequently one can develop the total time derivative in the water mass balance equation (2.2)
and eliminate div vs:

φ
Dsρw

Dt
+ ρw

Dsφ

Dt
= − div(ρwqrw)− φρw div vs +Qw (2.15)

φ
Dsρw

Dt
+ ρw

1

1− φ
Dsφ

Dt
= −div(ρwqrw) +Qw (2.16)

Expressing the material derivatives of ρw and φ by (2.6) and (2.11) one obtains

φ
Dsρw

Dt
+ ρw

1

1− φ
Dsφ

Dt
= φρwcw

Dspw
Dt

+ ρwc
Dspw

Dt
= −div(ρwqrw) +Qw

cms
Dspw

Dt
= −div(ρwqrw) +Qw (2.17)

cms ≡ ρw(φcw + c) — the specific mass storativity (2.18)

Inserting Darcy’s law (2.7) into (2.17) we get

cms
Dspw

Dt
= −div

(
ρw
k

µ
(−∇pw + ρwf)

)
+Qw (2.19)

Assumption 3. Local spatial variations of pw are much smaller than the temporal ones, or the
solid velocity vs is slow: ∣∣∣∣∂pw∂t

∣∣∣∣� |vs · ∇pw|
Then (2.19) reduces approximately to

cms
∂pw
∂t

= −div

(
ρw
k

µ
(−∇pw + ρwf)

)
+Qw (2.20)

In addition, the following assumption may also be justified in practice:

Assumption 4. The temporal rate of density change at a point is much larger than the spatial
one: ∣∣∣∣∂ρw∂t

∣∣∣∣� |vrw · ∇ρw|
Then ∣∣∣∣φDsρw

Dt

∣∣∣∣� |qrw · ∇ρw|
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and (2.16), (2.17) and (2.20) may be reduced approximately to

φ
Dsρw

Dt
+ ρw

1

1− φ
Dsφ

Dt
= −ρw div qrw +Qw

cs
Dspw

Dt
= −div qrw +

Qw
ρw

, cs ≡ φcw + c

cs
∂pw
∂t

= −div

(
k

µ
(−∇pw + ρwf)

)
+
Qw
ρw

Remark 2. (i) The last two equations are derived under the assumption that the water density
behaves approximately constant, except in the expression for cs, where one takes into account
water compressibility.
(ii) Deformation of the porous medium is not really considered in the above derivation either. It
is assumed that its effect can be incorporated in the coefficient of specific storativity, as well.

Remark 3. Assume that one can take

div(ρwqw) = div(ρwqrw) (2.21)

which can be justified in one of the following cases:
• the solid velocity is negligible with respect to the water one:

|vw · ∇(φρw)| � |vs · ∇(φρw)| and |div vw| � |div vs|

• the solid matrix is stationary or the coordinate system moves with the solid phase, thus vs = 0.

Then the Darcy law (2.7) can be introduced directly into the water mass balance equation (2.1),
and one gets

∂(φρw)

∂t
= div

(
ρw
k

µ
(∇pw + ρwg∇z)

)
+Qw

∂(φρw)

∂t
= φ

∂ρw
∂t

+ ρw
∂φ

∂t
=
(
φ
∂ρw
∂pw

+ ρw
∂φ

∂pw

)∂pw
∂t

(2.5),(2.10)
= c∗ms

∂pw
∂t

(2.22)

c∗ms ≡ ρw(φcw + (1− φ)c) (under Assumptions 1, 2)

c∗ms
∂pw
∂t

= −div

(
ρw
k

µ
(−∇pw + ρwf)

)
+Qw

where c∗ms is another form for the specific storativity.
Eventually in the case of Assumption 4 one obtains approximately

c∗s
∂pw
∂t

= −div

(
k

µ
(−∇pw + ρwf)

)
+
Qw
ρw

, c∗s ≡ φcw + (1− φ)c

Moreover taking into account the physical interpretation of the left-hand side of (2.22), one can see
that c∗ms is the mass of water released from (or added to) storage in a unit volume of a deformable
porous medium per unit decline (or rise) in water pressure. Hence the term specific storativity.
In addition under Assumption 3 one has approximately

cms
∂pw
∂t

= cms
Dspw

Dt
=

(2.17)
= −div(ρwqrw) +Qw

and in consequence of (2.21)

cms
∂pw
∂t

= −div(ρwqw) +Qw
(2.1)
=

∂(φρw)

∂t

Accordingly, the previous verbal definition of the specific storativity can be applied to cms as well.
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3 Unsaturated flow
[BC10, Ch. 6]

Let the void space be partly filled by water and partly by air (index a) — an unsaturated zone.

Balance equations

Mass balance equation for water

∂(φSwρw)

∂t
= −div(ρwqw) +Qw (3.1)

qw ≡ φSwvw — the specific discharge of water

• No exchange of mass between water and air.
Introducing

qrw ≡ φSwvrw = φSw(vw−vs) — the water specific discharge relative to the solid (Darcy velocity)

one can transform (3.1) into

∂(φSwρw)

∂t
= −div(φSwρw(vw − vs))− div(φSwρwvs) +Qw

= −div(ρwqrw)− vs · ∇(φSwρw)− φSwρw div vs +Qw

Ds(φSwρw)

Dt
= −div(ρwqrw)− φSwρw div vs +Qw (3.2)

Mass balance equation for solid
− in the form (2.4) or (2.13)

Constitutive relationships

Retention curve
Introduce the capillary pressure (also called matric suction)

pc ≡ pa − pw (3.3)

pa — the air pressure

and the suction head

ψ ≡ pc
gρw

(3.4)

(this one should be employed only when ρw is constant)
There is a relationship between Sw and pc or ψ — water retention curves Sw = Sw(pc) or Sw =
Sw(ψ).

• Retention curves usually depend on the direction and history of drainage and wetting (hys-
teresis). However, we assume that these dependencies may be neglected.

Then

DsSw
Dt

=
dSw
dpc

Dspc
Dt

=
dSw
dpc

(
Dspa
Dt
− Dspw

Dt

)
=
cm
φ

(
Dspw

Dt
− Dspa

Dt

)
cm = cm(Sw) ≡ −φdSw

dpc
— the water (moisture) capacity
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Figure 2: The function ψ 7→ Se(ψ) given by (3.5) with cvg = 2e−8, n = 2 and m = 1/2.

An instance of a retention curve proposed in [vG80] (Figure 2):

Se ≡
Sw − Sr
Ss − Sr

= Se(ψ) =

{
(1 + (cvgψ)n)−m if ψ ≥ 0,

1 if ψ < 0
(3.5)

Se — the effective water saturation

Sr — the residual water saturation (after drying)

Ss — the level of full saturation

cvg, n, m > 0 — coefficients

Assumption 5 (stationary air). The resistance to flow in the air phase is everywhere negligible,
so that the air is at a constant (hydrostatic) atmospheric pressure, taken as the (reference) zero
datum: pa = 0.

Then (3.3) and (3.4) reduce to

pc = −pw, ψ = − pw
gρw

and water retention curves lead to relationships Sw = Sw(pw) and

DsSw
Dt

=
dSw
dpw

Dspw
Dt

=
cm
φ

Dspw
Dt

, cm = φ
dSw
dpw

(3.6)

Water density
− the relations (2.5), (2.6)

Darcy’s law for water

qrw =
k

µ
(−∇pw + ρwf) (3.7)

k = k(Sw) — the effective permeability (tensor) of the porous medium to water

• It can be derived from the momentum balance equation for water under certain simpli-
fying assumptions.

We assume

k(Sw) = kskr(Sw) (3.8)

ks — the permeability of the porous medium at full saturation

(also called intrinsic permeability)

kr(Sw) — the relative permeability to water
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Figure 3: The functions Se 7→ Kr(Se) (left) and ψ 7→ Kr(Se(ψ)) (right) given by (3.9) and (3.10),
respectively, with cvg = 2e−8, n = 2 and m = 1/2.

or in terms of hydraulic conductivities

K(Sw) ≡ k(Sw)ρwg

µ
= KsKr(Sw)

A relationship suggested in [vG80] for Se given by (3.5) with m = 1− 1/n ∈ (0, 1) (Figure 3):

Kr(Sw) = Kr(Se) = S1/2
e

(
1− (1− S1/m

e )m
)2

(3.9)

(3.5)
=

{
[1−(cvgψ)nm(1+(cvgψ)

n)−m]2

(1+(cvgψ)n)m/2
if ψ ≥ 0,

1 if ψ < 0
(3.10)

Solid phase
We extend the introduction of the effective stress σ′s from saturated flow: Neglecting the shear
stress in the fluids in the unsaturated zone, one can express the total stress tensor σ as

σ = (1− φ)σs − φpvI = (1− φ)(σs + pvI)− pvI = σ′s − pvI (3.11)

σ′s ≡ (1− φ)(σs + pvI)

pv — an average pore pressure of the fluids in the void space

Consequently under Assumptions 1 and 2, the relations (2.10)–(2.12) for the porosity can be
extended to

c =
1

1− φ
∂φ

∂pv
Dsφ

Dt
= (1− φ)c

Dspv
Dt

(3.12)

φ = 1 + (φo − 1)e−c(pv−pvo), pvo — an initial average fluid pressure (3.13)

For example, one can use the relationship

pv = χ(Sw)pw + (1− χ(Sw))pa

where Bishop’s coefficient χ is some differentiable function with χ(1) = 1 (e.g., χ(Sw) = Sw, which
corresponds to the mean pressure Swpw + Sapa).
Then under Assumption 5

pv = χ(Sw)pw (3.14)

Dspv
Dt

= χ(Sw)
Dspw

Dt
+ pwχ

′(Sw)
DsSw

Dt
(3.15)

(3.6)
=

(
χ(Sw) + pwχ

′(Sw)
cm
φ

)
Dspw

Dt
(3.16)
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Flow equations

Due to the solid mass balance equation (2.13) reduced to (2.14) under Assumption 2, the water
mass balance equation (3.2) becomes

φSw
Dsρw

Dt
+ Swρw

Dsφ

Dt
+ φρw

DsSw
Dt

= −div(ρwqrw)− φSwρw div vs +Qw (3.17)

φSw
Dsρw

Dt
+ Swρw

1

1− φ
Dsφ

Dt
+ φρw

DsSw
Dt

= −div(ρwqrw) +Qw

Introduction of (2.6), (3.12) with (3.16), and (3.6) for the material derivatives of ρw, φ and Sw
gives

φSwρwcw
Dspw

Dt
+ Swρwc

(
χ(Sw) + pwχ

′(Sw)
cm
φ

)
Dspw

Dt
+ ρwcm

Dspw
Dt

= −div(ρwqrw) +Qw

cms
Dspw

Dt
= −div(ρwqrw) +Qw

cms ≡ ρw
(
φSwcw + Swc

(
χ(Sw) + pwχ

′(Sw)
cm
φ

)
+ cm

)
(3.18)

where we have extended the definition (2.18) of the specific mass storativity cms (with Sw = 1, or
Sw = Ss? and cm := 0 for the saturated zone).

Inserting Darcy’s law (3.7) yields

cms
Dspw

Dt
= −div

(
ρw
k(Sw)

µ
(−∇pw + ρwf)

)
+Qw

and under Assumption 3 approximately

cms
∂pw
∂t

= − div

(
ρw
k(Sw)

µ
(−∇pw + ρwf)

)
+Qw (3.19)

In the case of Assumption 4, (3.19) reduces further approximately to

cs
∂pw
∂t

= − div

(
k(Sw)

µ
(−∇pw+ρwf)

)
+
Qw
ρw

, cs ≡ φSwcw+Swc
(
χ(Sw)+pwχ

′(Sw)
cm
φ

)
+cm

4 Saturated flow and deformation of the porous medium
[LS98, Ch. 2]

Balance equations

Mass balance equation for water
− in the form (2.2) or (2.15)

Mass balance equation for solid
− in the form (2.4) or (2.13)

Equilibrium equation
By summing up the equilibrium equations for water and solid one obtains

divσ + ρf = 0 (4.1)

ρ = (1− φ)ρs + φρw — the average density of the multiphase medium (4.2)
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Constitutive relationships

Water density
− the relations (2.5), (2.6)

Darcy’s law for water
− in the form (2.7)

Stresses
Assumption 6. The solid phase can be restricted to the small-strain framework.

The effective stress σ′s is given by (2.8). A modified effective stress is introduced for a compressible
grain material:

The water pressure pw induces an equal stress distribution in the solid phase. The ensuing defor-
mation is a purely volumetric strain. Denoting it εpv, one has

εpv = − pw
Ks

, Ks =
( 1

ρs

∂ρs
∂pw

)−1
— the bulk modulus of the solid phase (grains)

or in an incremental and tensorial form

dεpv =
1

3
Idεpv = −I dpw

3Ks
(4.3)

The effective stress σ′s causes all other relevant deformations of the solid skeleton. The constitutive
relationship may be written as

dσ′s = D(dε− dεpv − dε0) (4.4)

D — a fourth-order tangent constitutive tensor for the solid skeleton

ε ≡ 1

2

(
∇u+ (∇u)>

)
— the linear strain tensor of the skeleton

u — the displacement of the skeleton

ε0 — all other strains in the skeleton not directly associated with stress changes

The modified effective stress tensor σ′′s takes the form (cf. (2.8))

σ′′s = σ + αpwI, α — the Biot-Willis coefficient (4.5)

so that

dσ′′s = D(dε− dε0) (4.6)

One needs a constitutive equation of the solid phase for determination of α: By substituting (4.6)
and (4.3) into (4.4) one obtains

dσ′s = dσ′′s +DI
dpw
3Ks

dσ + αIdpw = dσ′′s = dσ′s −DI
dpw
3Ks

(3.11)
= dσ + Idpw −DI

dpw
3Ks

αIdpw = Idpw −DI
dpw
3Ks

(4.7)

Assumption 7. Let the solid matrix be elastic and isotropic.
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In this case

Ddε = λ(tr dε)I + 2µdε (4.8)

λ, µ — the Lamé coefficients of the solid skeleton (porous medium)

DI = 3KI

K = (3λ+ 2µ)/3 — the bulk modulus of the solid skeleton (4.9)

Hence (4.7) yields

αIdpw = Idpw −
K

Ks
Idpw

α = 1− K

Ks
(4.10)

For an incompressible grain material 1/Ks = 0, α = 1.

Solid density
When considering the solid phase as compressible, a relationship for the total time derivative of
the solid density ρs is needed. Assuming ρs = ρs(pw, trσ

′
s) leads to

1

ρs

Dsρs
Dt

=
1

ρs

∂ρs
∂pw

Dspw
Dt

+
1

ρs

∂ρs
∂(trσ′s)

Ds(trσ
′
s)

Dt

=
1

Ks

Dspw
Dt

− 1

3(1− φ)Ks

Ds(trσ
′
s)

Dt

Using the constitutive relationship for trσ′s (cf. (4.4) with (4.8), (4.9), (4.3) and dε0 omitted
– under Assumptions 6 and 7)

Ds(trσ
′
s)

Dt
= 3K

(Dsεv
Dt

+
1

Ks

Dspw
Dt

)
εv = divu — the volumetric strain of the solid skeleton

one gets

1

ρs

Dsρs
Dt

=
( 1

Ks
− 1

(1− φ)Ks

K

Ks

)Dspw
Dt

− K

(1− φ)Ks

Dsεv
Dt

(4.10)
=

1

1− φ

(
(α− φ)

1

Ks

Dspw
Dt

− (1− α)
Dsεv
Dt

)
(4.10)

=
1

1− φ

(
(α− φ)

1− α
K

Dspw
Dt

− (1− α)
Dsεv
Dt

)
(4.11)

Moreover, one has for the solid velocity

vs =
Dsu

Dt
≡ ∂u

∂t
+ (∇u)vs

Hence under Assumption 6 one gets approximately

vs '
∂u

∂t

div vs ' div
∂u

∂t
=
∂εv
∂t
' Dsεv

Dt
(4.12)

and (4.11) takes the form

1

ρs

Dsρs
Dt

=
1

1− φ

(
(α− φ)

1− α
K

Dspw
Dt

− (1− α) div vs

)
(4.13)
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Complete equations

By (4.13) for the material derivative of ρs, the solid mass balance equation (2.13) can be further
transformed into

Dsφ

Dt
=

1− φ
ρs

Dsρs
Dt

+ (1− φ) div vs (4.14)

=
(α− φ)(1− α)

K

Dspw
Dt

+ (α− φ) div vs (4.15)

which inserted into the water mass balance equation (2.15) gives

φ
Dsρw

Dt
+ ρw

(α− φ)(1− α)

K

Dspw
Dt

+ ρwα div vs = −div(ρwqrw) +Qw

Introduction of (2.6) for Dsρw/Dt, and the Darcy law (2.7) leads to

ρw

(
φcw +

(α− φ)(1− α)

K

)Dspw
Dt

+ ρwα div vs = −div

(
ρw
k

µ
(−∇pw + ρwf)

)
+Qw

Under Assumption 6 (Assumption 3) this can be approximately reduced with the aid of (4.12)
for div vs to

ρw

(
φcw +

(α− φ)(1− α)

K

)∂pw
∂t

+ ρwα div
∂u

∂t
= − div

(
ρw
k

µ
(−∇pw + ρwf)

)
+Qw (4.16)

Moreover, the equilibrium equation (4.1) with (4.2) and (4.5) results in

div
(
σ′′s − αpwI

)
+
(
(1− φ)ρs + φρw

)
f = 0

+ a stress-strain relationship in the form (4.6)

(4.17)

Remark 4. The time scale of the structural response is generally many orders of magnitude faster
than the time scale of the flow. When the coupled process is studied on the time scale of the
flow, one can therefore assume that the solid reaches a new equilibrium immediately in response
to a change in flow conditions, and apply the equilibrium equation (4.17) (with all inertial effects
neglected) to the time-dependent flow model (4.16).

Remark 5 (Evaluation of the solid density and porosity). Replacing the total time derivatives
with the corresponding partial ones and using (4.12) (both under Assumption 6), one can reduce
(4.11) and (4.15) approximately to

1

ρs

∂ρs
∂t

=
1− α
1− φ

(
α− φ
K

∂pw
∂t
− ∂εv

∂t

)
(4.18)

∂φ

∂t
= (α− φ)

(
1− α
K

∂pw
∂t

+
∂εv
∂t

)
(4.19)

Integration of (4.19) gives

φ = α+ (φo − α) exp

(
−1− α

K
(pw − pwo)− (εv − εvo)

)
εvo — an initial volumetric strain

and its first-order Taylor approximation

φ ' α+ (φo − α)

(
1− 1− α

K
(pw − pwo)− (εv − εvo)

)
= φo + (α− φo)

(
1− α
K

(pw − pwo) + (εv − εvo)
)
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Similarly from (4.18)

ρs = ρso exp

(∫ t

0

1− α
1− φ

(α− φ
K

∂pw
∂t
− ∂εv

∂t

))
' ρso exp

(
1− α
1− φo

(α− φo
K

(pw − pwo)− (εv − εvo)
))

' ρso
(

1 +
1− α
1− φo

(α− φo
K

(pw − pwo)− (εv − εvo)
))

ρso — an initial solid density

5 Unsaturated flow and deformation of the porous medium
[LS98, Ch. 2]

Balance equations

Mass balance equation for water
− in the form (3.2) or (3.17)

Mass balance equation for solid
− in the form (2.4) or (4.14)

Equilibrium equation
By summing up the equilibrium equations for water and solid one obtains

divσ + ρf = 0 (5.1)

ρ = (1− φ)ρs + φSwρw — the average density (5.2)

• No momentum exchange with air.

Constitutive relationships

Retention curve
− a relationship Sw = Sw(pw), which leads to (3.6) (Assumption 5)

Water density
− the relations (2.5), (2.6)

Darcy’s law for water
− in the form (3.7) with the effective permeability in the form (3.8)

Stresses
• Under Assumption 6.

The effective stress σ′s is given by (3.11) with the relations (3.14) and (3.16) for the average fluid
pressure pv in the void space (under Assumption 5). By replacing the water pressure pw with
pv, one extends the expression for the modified effective stress σ′′s from saturated flow as

σ′′s = σ + αpvI (5.3)

so that (4.6) still holds.
Under Assumption 7, the Biot-Willis coefficient α is given by (4.10) with

Ks =
( 1

ρs

∂ρs
∂pv

)−1
— the bulk modulus of the solid phase (grains) (5.4)

For an incompressible grain material 1/Ks = 0, α = 1.
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Solid density
When considering the solid phase as compressible, the relationship (4.13) for the total time
derivative of the solid density ρs can be extended from saturated flow as follows: By assum-
ing ρs = ρs(pv, trσ

′
s) with

1

ρs

Dsρs
Dt

=
1

Ks

Dspv
Dt
− 1

3(1− φ)Ks

Ds(trσ
′
s)

Dt

and using the constitutive relationship for trσ′s

Ds(trσ
′
s)

Dt
= 3K

(Dsεv
Dt

+
1

Ks

Dspv
Dt

)
one gets

1

ρs

Dsρs
Dt

=
1

1− φ

(
(α− φ)

1− α
K

Dspv
Dt
− (1− α)

Dsεv
Dt

)
(5.5)

(4.12)
=

1

1− φ

(
(α− φ)

1− α
K

Dspv
Dt
− (1− α) div vs

)
(5.6)

Complete equations

The solid mass balance equation (4.14) with (5.6) for the material derivative of ρs becomes

Dsφ

Dt
=

(α− φ)(1− α)

K

Dspv
Dt

+ (α− φ) div vs (5.7)

which inserted into the water mass balance equation (3.17) gives

φSw
Dsρw

Dt
+ Swρw

(α− φ)(1− α)

K

Dspv
Dt

+ φρw
DsSw

Dt
+ Swρwα div vs = −div(ρwqrw) +Qw

Introduction of (2.6), (3.16), (3.6) for the material derivatives of ρw, pv and Sw, and the Darcy
law (3.7) leads to

ρw

(
φSwcw + Sw

(α− φ)(1− α)

K

(
χ(Sw) + pwχ

′(Sw)
cm
φ

)
+ cm

)
Dspw

Dt
+ ρwαSw div vs

= −div

(
ρw
k(Sw)

µ
(−∇pw + ρwf)

)
+Qw

Under Assumption 6 (Assumption 3) this can be approximately reduced with the aid of (4.12)
for div vs to

ρw

(
φSwcw + Sw

(α− φ)(1− α)

K

(
χ(Sw) + pwχ

′(Sw)
cm
φ

)
+ cm

)
∂pw
∂t

+ ρwαSw div
∂u

∂t

= −div

(
ρw
k(Sw)

µ
(−∇pw + ρwf)

)
+Qw (5.8)

Moreover, the equilibrium equation (5.1) with (5.2), (5.3) and (3.14) results in

div
(
σ′′s − αχ(Sw)pwI

)
+
(
(1− φ)ρs + φSwρw

)
f = 0

+ a stress-strain relationship in the form (4.6)

(5.9)
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Remark 6 (Evaluation of the solid density and porosity). In an analogous way to Remark 5,
one can get approximately from (5.5), (5.7) and (4.12) (under Assumption 6)

1

ρs

∂ρs
∂t

=
1− α
1− φ

(
α− φ
K

∂pv
∂t
− ∂εv

∂t

)
∂φ

∂t
= (α− φ)

(
1− α
K

∂pv
∂t

+
∂εv
∂t

)
and consequently

φ = α+ (φo − α) exp

(
−1− α

K
(pv − pvo)− (εv − εvo)

)
' α+ (φo − α)

(
1− 1− α

K
(pv − pvo)− (εv − εvo)

)
= φo + (α− φo)

(
1− α
K

(pv − pvo) + (εv − εvo)
)

ρs ' ρso exp

(
1− α
1− φo

(α− φo
K

(pv − pvo)− (εv − εvo)
))

' ρso
(

1 +
1− α
1− φo

(α− φo
K

(pv − pvo)− (εv − εvo)
))
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