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Abstract

The paper considers maximum likelihood estimation of dynamic panel
structural equation models with latent variables and fixed effects (DPSEM).
This generalises the structural equation methods where latent variables are
measured by multiple observable indicators and where structural and mea-
surement models are jointly estimated to dynamic panel models with fixed
effects. Analytical expressions for the covariance structure of the DPSEM
model as well as the score vector and the Hessian matrix are given in a closed
form, and a scoring method approach to the estimation of the unknown pa-
rameters is suggested. We apply these methods to an empirical model of
financial development and economic growth where financial development is
measured by several observable indicators and the dynamic effects were in-
corporated in the model. The results suggest a different explanation of the
finance-growth relationship to the one commonly reported in the mainstream
empirical literature and stress the importance of modelling the measurement
structure of the latent variables.
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1 Introduction

The methods for estimating static simultaneous equation models (SEM) containing

unobservable (latent) variables or variables measured with error are widely available

and frequently used in the applied literature. Bartholomew and Knott (1999) and

Wansbeek and Meijer (2000) provide a comprehensive review of these methods.

Panel data methods for models with latent variables or with errors-in-variables have

been considered in the literature in the context of the instrumental variables (IV)

and the generalised method of moments (GMM) estimation (Arellano and Bover

1995, Wansbeek 2001, Arellano 2003, Hsiao 2003). Moreover, static panel random

effects models with latent variables can be estimated in the standard SEM modelling

framework using the covariance structure analysis methods of Jöreskog (1981) and

Jöreskog and Sörbom (1996); see e.g. Aasness et al. (1993) and Aasness et al. (2003)

for empirical applications.

On the other hand, dynamic panel models with latent variables have not been

extensively analysed and there is a lack of suitable estimation methods for dynamic

simultaneous equation models with latent variables or with all variables measured

with error. Single equation and systems IV estimators were suggested by Cziráky

(2004b) for time series and random effects panel models. In this paper we consider

estimation of dynamic simultaneous equation panel models with latent variables and

fixed effects. Such models include unobservable variables that are measurable by

multiple observable indicators. We consider full information maximum likelihood

estimation, which has the potential advantages over the non-parametric IV and

GMM methods in respect to modelling and testing the implied (latent) structure

rather then merely providing consistent estimates of the structural parameters. This

is an important aspect in the economic applications where the substantive theory is

formulated in terms of the latent variables where the measurement of these variables

as well as the structural relationships are tested.

Panel models with simultaneity, dynamics, and latent variables are common

place in empirical econometrics. A widely researched example is the relationship

between financial development (FD) and growth. This is a theoretically ambigu-

ous relationship since economic models indicating both positive and negative rela-

tionship exist in the literature. King and Levine (1993a), for example, suggest a

positive FD-growth effect, while Bencivenga and Smith (1991) and Bencivenga et

al. (1995) indicate a possibility of both positive and negative effects. Lucas (1988),

on the other hand, dismisses the FD-growth effect altogether. Levine (2003) gives

a detailed review of this literature. Without unambiguous theoretical implications,

the finance-growth relationship thus remains an empirical issue. Nevertheless, the
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empirical literature failed to give a conclusive answer although preponderance of

the empirical studies claim a positive FD-growth effect (Levine 1997, Levine and

Zervos 1996, Demetriades and Hussein 1996, Levine and Zervos 1998, Neuser and

Kugler 1998, Levine 1999, Rousseau and Wachtel 2000, Levine et al. 2000, Hali et

al. 2002, Levine 2003).

The key statistical issues in the FD-growth research relate to the modelling and

testing of the substantively implied latent structure of the unobservable (latent)

financial development. While the mainstream FD-growth literature based on the

IV/GMM methods does not explicitly test for the measurement errors by estimating

formal statistical measurement models for the latent variable, it does suggest various

observable FD indicators on the substantive grounds. Naturally, this introduces the

problem of whether and how well the available indicators measure a single latent

construct and how much error is contained in such indicators. In addition, the FD-

growth simultaneity is held to be an important consideration and the dynamics and

lagged feedback effects are both implied by the substantive theory.

Earlier studies (Levine 1997, Levine and Zervos 1998) used simple cross-country

OLS regressions of GDP growth on the separate FD indicators without accounting

for the cross-country heterogeneity or simultaneity problems. Separate growth re-

gressions with individual observable indicators containing measurement error might

result in the errors-in-variables problem and thus produce biased or inconsistent coef-

ficient estimates. The inconsistency of the regression coefficients due to the measure-

ment error is potentially considerable, which most profoundly concerns the actual

relationship between the financial development and economic growth. In homoge-

neous random samples the measurement error biases regression coefficients towards

zero, however, with heterogeneous cross-country data with fixed country-specific ef-

fects, the bias can go either way and the problem can be further magnified by the

inclusion of other variables in a multiple regression setup (see e.g. Wansbeek and

Meijer (2000)). A major complication arises with heterogeneous samples (such as

cross-sections of countries) where individual (fixed) effects might be correlated with

the measurement-error components resulting from using noisy indicators in place of

the (unobservable) latent variables (Griliches and Hausman 1986, Wansbeek 2001).

Consequently, the more recent empirical literature uses panel data and instrumental

variable methods (Rousseau and Wachtel 2000, Neusser and Kugler 1998, Levine

1999, Levine et al. 2000, Hali et al. 2002). While the panel studies suggested a

similar positive finance-growth relationship, it was shown that even with similar

methods and data different conclusions can be reached (Favara 2003). The most

likely source of the problem is the failure to model the measurement structure of
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the latent financial development along with modelling the simultaneous and dy-

namic effects. Consequently, on the basis of such results we cannot assess validity

of the substantively suggested FD indicators even if the errors-in-variables problem

is corrected by using the IV methods.

To account for these issues an extension of the presently available estimation

procedures is required with the aim of efficient estimation of dynamic panel models

with fixed effects and latent variables measured by multiple observable indicators.

In this paper we propose a full information maximum likelihood (FIML) method for

the estimation of such models.

The paper is organised as follows. In the second section we illustrate the poten-

tial problems due to a failure to formally model the measurement structure of the

latent financial development on several simple empirical examples by re-analysing

the models from the published empirical studies. Third section describes the techni-

cal problems in formulating and estimating dynamic simultaneous equations models

and proposes a maximum likelihood solution based on the within-group concentrated

likelihood. The analytical derivatives and the information matrix are also derived

in the third section, while in section four we estimate a simple dynamic structural

equation model of financial development and growth thus illustrating the suggested

methods empirically.

2 The latent variables problem

There is a large body of empirical literature that investigates the FD-growth rela-

tionship using multiple observable indicators of the latent (unobservable) financial

development. Commonly used indicators include various measures of the bank-

ing sector such as liabilities of commercial and central banks, domestic credit, and

credit to the private sector (King and Levine 1993a, King and Levine 1993b, Levine

1997, Levine and Zervos 1998, Neusser and Kugler 1998, Levine 1999, Rousseau

and Wachtel 2000, Levine et al. 2000, Hali et al. 2002, Levine 2003, Rousseau and

Wachtel 2000, Neusser and Kugler 1998, Levine 1999, Levine et al. 2000, Hali et

al. 2002, Favara 2003).

The observable indicators are generally identified on substantive grounds and

used as individual regressors in separate growth regressions. The measurement issue

is not addressed in this literature through statistical testing, which might have

resulted in the collection of inappropriate indicators or produced wrong conclusions

about the FD-growth relationship. This constitutes a major omission since the

availability of multiple indicators allows identification of the measurement error
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components and statistical evaluation of the FD measurement models.

The errors-in-variables problem arising from the latent nature of the financial

development can be generalised to the case of multiple observable indicators by

a factor-analytic model. Suppose we can observe mj noisy indicators xij of the

unobservable variable ξj. Then we can specify a factor model

xij = λijξj + δi, i = 1, . . . , k, j = 1, . . . , g, (1)

where xij is the ith observable indicator of the jth latent variable ξj, and δij is

the measurement error. The error covariance matrix is required to be diagonal,

E[δδ′] = diag
(
σ2

δ1
, . . . , σ2

δm

)
. Though implicitly, a factor model for the latent FD

variable is implied by the substantive theory which suggests multiple indicators

and linear relationships between the indicators and the unobservable components.

Obviously the classical errors-in-variables model x = ξ + δ is a special case of the

general factor model with one observable indicator and λ fixed to 1.

Once the latent structure is explicitly recognized and modelled the main issue

becomes whether and how well the observable indicators measure the postulated

latent construct(s), which can be easily tested by simple confirmatory factor analysis.

To illustrate these issues, we will give some new empirical results using the same

data as in the existing literature.

For the first empirical illustration, consider the FD measurement models implied

by Levine and Zervos (1998) who investigate the relationship between economic

growth and various stock market development indicators. In addition, they also

consider multiple indicators of economic development using the following observable

variables in their analysis1: GDP growth (λ11), capital stock growth (λ12), productivity

growth (λ13), savings (λ14), capitalization (λ25), value traded (λ26), turnover (λ27),

CAPM integration (λ28), ATP integration (λ29). Using data from a cross-section of

47 countries, time-averaged over the 1976–1993 period, Levine and Zervos (1998)

estimated a series of separate growth regressions of the particular economic growth

indicators on the various stock market development indicators without testing the

measurement models for the two latent concepts. The key underlying assumption

was that these indicators indeed measure the economic growth and the stock market

development, respectively. This implies a two-factor model with GDP growth, capital

stock growth, and productivity growth measuring the latent economic growth and

with savings, capitalization, value traded, turnover, CAPM integration, and ATP

integration measuring stock market development. Using the same data as Levine

and Zervos (1998), we fitted the two-factor model with maximum likelihood, which

1The symbols for factor loading parameters are in the parentheses
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produced a χ2 fit statistic of 125.81 with 26 degrees of freedom. This strongly rejects

the model. Furthermore, the estimated error variance of the GDP growth is2 −0.11

(0.09) while the correlation between the two latent variables is 0.33 (0.13). Individual

(cross-sectional) correlations between growth indicators and FD indicators are all

positive but the mis-fit of the measurement model is problematic. Namely, the

postulated indicators of the financial development and the economic growth do not

seem to measure the hypothesized latent variables well, which brings in question the

conclusions about the FD-growth relationship made by Levine and Zervos (1998).

As a second example we take the Hali et al. (2002) study of the international

financial integration and economic growth, where the latent international financial

integration is measured by several observable indicators. Hali et al. (2002) use

panel data from 57 countries over five 5-year periods (1976-1980, 1981-1985, 1986-

1990, 1991-1995, 1996-2000) and investigate the effect of the international financial

integration on the GDP growth. The observable indicators are: capital account re-

striction measure (λ11), stock of accumulated capital flows divided by GDP (λ12),

capital inflows and outflows divided by GDP (λ13), stock of accumulated capital in-

flows divided by GDP (λ14), capital inflows (λ15). We fitted a single factor model to

these indicators, which produced a χ2 goodness-of-fit statistic of 725.793 (d.f. = 5),

which strongly rejects the hypothesis that these five indicators measure a single la-

tent variable. A trivial modelling exercise easily identifies the source of the problem

which turns out to be associated with the capital inflows indicator. Re-estimating

the model without capital inflows produced an insignificant χ2 of 5.879 (d.f. = 2).

These results suggests that capital inflows does not measure the same latent variable

as the other indicators. Interestingly, the growth regressions estimated by Hali et

al. (2002) using individual indicators in separate regressions find significant effect

of financial integration on GDP growth across various specifications mainly when

capital inflows is used the financial integration indicator.

The above two examples illustrate the likely drawback of not estimating the

measurement errors and of selecting noisy indicators of latent variables without

empirically testing the implied measurement models.

Our final example considers the possible bias of the regression coefficients due

to the measurement error. It is known that measurement error in the regressors can

bias the regression coefficients downwards (Ainger et al. 1984, Wansbeek and Meijer

2000). However, in heterogenous samples such as cross sections of countries, due to

the possible correlation between the fixed effects and the measurement error, the

direction of the bias cannot be easily determined. We will illustrate this problem in

2Standard error is in the parentheses.
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the context of the FD-growth models when financial development is unobservable but

measured by various noisy indicators. We use the same data as Demirgüç-Knut and

Levine (2001a), on 84 countries averaged from 1969 to 1995 where the variables are

several indicators of the financial development, GDP growth (∆GDPi), logarithm

of the initial GDP (inii), government expenditure (govi), change in consumer prices

(∆pi) and a sum of exports plus imports divided by GDP (tradei). We estimate a

simple FD-growth model

∆GDPi = γ1FDi + γ2inii + γ3govi + γ4∆pi + tradei, (2)

as commonly done in the literature (e.g. Demirgüç-Knut and Levine (2001b)). Es-

timating the regression equation (2) by using individual noisy indicators such as

liquid liabilities of the banks (liquidi), share of domestic credit from deposit banks

(banki), or credit to private sector (privoi) produced three separate regression equa-

tions with γ1 coefficients 1.92 (0.84), 3.767 (1.31), and 1.34 (0.765), with liquidi,

banki, and privoi as regressors, respectively. When (2) is estimated as a SEM model

with the latent financial development measured with all three observable indicators,

the γ1 coefficient is 1.21 (0.45). The γ2–γ4 coefficient estimates were very similar

across all four equations. It is immediately noticeable that γ1 differs considerably

in magnitude across different models, which is indicative of the measurement er-

ror bias. In this case the bias from using individual noisy indicators seems to be

upward. However, it is difficult to make valid conclusions without modelling the

possible feedback from growth to financial development with a temporal lag and

without accounting for the country effects.

In the next section we develop a general dynamic panel structural equation model

(DPSEM) that encompasses these aspects and we suggest a maximum likelihood

procedure for estimation of the model parameters.

3 Dynamic panel structural equation model

In this section we consider a dynamic panel simultaneous equation model with latent

variables and fixed effects (DPSEM(p, q)). A DPSEM(p, q) model for the individual

i = 1, . . . , N at time t = 1, . . . , T can be written for the generic individual at any

time period t using the “t-notation” as
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ηit =

p∑
j=0

B jηit−j +

q∑
j=0

Γ jξit−j + ζit (3)

y it = Λyηit + µyi + εit (4)

x it = Λxξit + µxi + δit (5)

where ηit =
(
η

(1)
it , η

(2)
it , . . . , η

(m)
it

)′
and ξit =

(
ξ

(1)
it , ξ

(2)
it , . . . , ξ

(g)
it

)′
are vectors of latent

variables, y it =
(
(y

(1)
it , y

(2)
it , . . . , y

(n)
it

)′
and x it =

(
x

(1)
it , x

(2)
it , . . . , x

(k)
it

)′
are vectors of

observable variables, and B j (m × m), Γ j (m × g), Λx (k × g), and Λy (n × m)

are coefficient matrices. The contemporaneous and simultaneous coefficients are in

B0, and Γ 0, while B1, B2, . . . , Bp, and Γ 1, Γ 2, . . . , Γ q contain coefficients of

the lagged endogenous and exogenous latent variables. Finally, µyi and µxi are the

n× 1 and k × 1 vectors of individual means, respectively. We treat µyi and µxi as

vectors of coincidental (fixed) parameters, which makes the DPSEM model (3)-(5)

a “fixed-effects” panel model. The statistical assumptions about the variables in

(3)–(5) are as follows.

Assumption 3.0.1 The vectors of measurement errors εit and δit are homoscedas-

tic Gaussian white noise stochastic processes, uncorrelated with the errors in the

structural model (ζit). We require for l = . . . ,−1, 0, 1, . . . and s = . . . ,−1, 0, 1, . . .

that

E
[
ζilζ

′
js

]
=

{
Ψ , l = s, i = j

0 , l 6= s, i 6= j
, E

[
εilε

′
js

]
=

{
Θε, l = s, i = j

0 , l 6= s, i 6= j
,

E
[
δilδ

′
js

]
=

{
Θδ, l = s, i = j

0 , l 6= s, i 6= j
,

where Ψ (m×m), Θε (n×n), and Θδ (k×k) are symmetric positive definite matri-

ces. We also require that E
[
ζitξ

′
jt−s

]
= E

[
ζitε

′
jt−s

]
= E

[
ζitδ

′
jt−s

]
= E

[
δitε

′
jt−s

]
=

0 , ∀s.

In 3.0.1 we assume that error covariances are the same for all individuals, but

the errors are uncorrelated across individuals and across time. The following as-

sumptions relate to the stochastic properties of the observable and latent variables.

Assumption 3.0.2 The observable and latent variables are mean (or trend) sta-

tionary and covariance stationary Gaussian variables. In particular we require the

following.
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1. The observable variables have expectation zero (or are expressed in the mean-

deviation form), which holds for all time periods, i.e., E [y it] = E
[
y it+j

]
= 0

and E [x it] = E [x it+j] = 0 , for j = . . . ,−1, 0, 1, . . ..

2. E [ηit] = E
[
ηit+j

]
= 0 , E [ξit] = E

[
ξit+j

]
= 0 where j = . . . ,−1, 0, 1, . . ..3

3. By covariance stationarity E
[
y ity

′
it−j

] ≡ Σ yy
j , E

[
x itx

′
it−j

] ≡ Σxx
j , and

E
[
y itx

′
it−j

] ≡ Σ yx
j , for t = . . . ,−1, 0, 1, . . ..

4. E
[
ξitξ

′
it−j

] ≡ Φj, so that Σ ∗∗
−j = Σ 0∗∗j .

5. In addition, the structural equation (3) is stable with the roots of the equations

|I − λB1 − λ2B2 − · · · − λpBp| = 0 and |I − λΓ 1 − λ2Γ 2 − · · · − λqΓ q| = 0

greater then one in absolute value.

In 3.0.1 and 3.0.2 we assumed multivariate normality for all variables, thus we

are treating the latent variables as random. However, this is not essential as we

could similarly state the requited assumptions in terms of the unobservable sums

of squares and cross products thus replacing the expectations with the probability

limits. Anderson and Amemiya (1988) used such approach to develop a general

asymptotic framework for the analysis of the latent variable models (see also An-

derson (1989) and Amemiya and Anderson (1990)).

Assumption 3.0.3 Following Anderson (1971) we assume that s = max(p, q) pre-

sample observations are equal to their expectation, i.e., ηi(−s) = ηi(−s+1) = · · · =

ηi0 = 0 and ξi(−s) = ξi(−s+1) = · · · = ξi0 = 0 .

Anderson (1971) suggested that such treatment of the pre-sample (initial) values

allows considerable simplification of the covariance structure and gradients of the

Gaussian log-likelihood.4 More recently, Turkington (2002) showed that making such

assumption allows more tractable mathematical treatment of complex multivariate

models by using the shifting and zero-one matrices.

The DPSEM model (3)-(5) can be viewed as a dynamic panel generalisation of

the static structural equation model with latent variables (SEM). The basic (cross-

sectional) SEM model (Jöreskog 1970, Jöreskog 1981) is thus a special case of (3)–(5)

3The cases with deterministic trend can be incorporated in the present framework by considering
detrended variables, e.g. if z it contains deterministic trend, we can define y it ≡ z it − t, which is
trend-stationary.

4Note that the Assumption 3.0.3 could be relaxed by conditioning on the initial s observations,
though this would make no difference to the asymptotic treatment of the model. Du Toit and
Browne (2001), for example, took such approach in the analysis of the standard vector autoregres-
sive model allowing for the change in the time series process before the first observation.
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with B j = Γ j = 0 , for j 6= 0, and with µyi = µxi = 0 . The main idea behind

the SEM model is to combine the multiple indicator factor-analytic measurement

models for the latent variables with the structural equation model thus allowing

for the measurement error in all variables in the structural model (Jöreskog 1970,

Jöreskog 1981, Jöreskog and Sörbom 1996, Bartholomew and Knott 1999).

Using the notation from (3)-(5), that the static SEM model can be written as

ηit = B0ηit + Γ 0ξit + ζit (6)

y it = Λyηit + εit (7)

x it = Λxξit + δit. (8)

An elegant solution suggested by Jöreskog (1981) was to substitute the reduced form

of (6) into (7) and hence arrive at the system

y it = Λy (I −B0)
−1 (Γ 0ξit + ζit) + εit (9)

x it = Λxξit + δit, (10)

with only the observable variables on the left-hand side. This enables derivation

of the closed-form covariance matrix of w i ≡ (y ′it : x ′it)
′ in terms of the model

parameters. Given w i ∼ N (µ,Σ), it follows that (T − 1)S ∼ W (T − 1,Σ ), where

S = (T − 1)−1
∑T

i=1 w iw
′
i is the empirical covariance matrix, and W denotes the

Wishart distribution.5

When a closed form of the model-implied covariance matrix Σ is available, as-

suming the model is identified or overidentified, it is straightforward to obtain the

maximum likelihood estimates of the parameters by maximising the logarithm of the

Wishart likelihood. In the later case, a measure of the overall fit can be obtained as

–2 times the Wishart log likelihood, which is asymptotically χ2 distributed; see e.g.

Amemiya and Anderson (1990).

Generalised dynamic models such as the DPSEM model (3)–(5), in addition to

the complications due to the presence of the fixed effects, run into difficulties when

the same approach is attempted. Namely, substituting (3) into (4) in a dynamic

model with p 6= 0 will not eliminate the endogenous latent variable ηit as substituting

(6) into (7) did in the static model. We can solve this problem by specifying the

5The Wishart distribution has the likelihood function of the form

fW (S) =
|S | 12 (T−1−n−k) exp

[− 1
2 tr

(
Σ−1S

)]

π
1
4 T (T−1)2

1
2 (T (n+k)) |Σ | 12 (n+k)

p∏
j=1

Γ
(

T+1−j
2

)

where T is the sample size; see e.g. Anderson (1984).
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DPSEM model (3)-(5) for the time series process t = 1, . . . , T using a “T -notation”

defined in Table 1.

Table 1: T -notation for individual i
Symbol Definition Dimension

H iT vec {ηit}T
1 = (η′i1, . . . , η

′
iT )′ mT × 1

Z iT vec {ζit}T
1 = (ζ ′i1, . . . , ζ

′
iT )

′
mT × 1

Ξ iT vec {ξit}T
1 =

(
ξ′i1), . . . , ξ

′
iT

)′
gT × 1

Y iT vec {y it}T
1 = (y ′i1, . . . ,y

′
iT )′ nT × 1

E iT vec {εit}T
1 = (ε′i1, . . . , ε

′
iT )′ nT × 1

X iT vec {x it}T
1 = (x ′i1, . . . ,x

′
iT )′ kT × 1

∆iT vec {δit}T
1 = (δ′i1, . . . , δ

′
iT )

′
kT × 1

Next, we obtain a T -notation expression for the DPSEM model (3)–(5) written

for the time series process that started at t = 1 and was observed till t = T . This

will enable us to obtain a closed form covariance structure of the general DPSEM

model.

Using the Assumption 3.0.3 we can write the DPSEM model (3)–(5) for the

time series process that started at time t = 1 and was observed until t = T in the

“T -notation” as {ηit}T
1 ≡ (ηi1, . . . , ηiT ), thus

{ηit}T
1 =




η
(1)
i1 · · · η

(1)
iT

... · · · ...

η
(m)
i1 · · · η

(m)
iT


 ,

and similarly, {ξit}T
1 ≡ (ξi1, . . . , ξiT ) and {ζit}T

1 ≡ (ζi1, . . . , ζiT ), the structural

equation (3) can be written for the time series process as

{ηit}T
1 =

p∑
j=0

B j {ηit}T
1 S ′j

T +

q∑
j=0

Γ j {ξit}T
1 S ′j

T + {ζit}T
1 , (11)

where we made use of a T × T shifting matrix ST given by

ST ≡




0 0 · · · 0 0

1 0 · · · 0 0

0 1
. . . 0 0

...
. . . . . . . . .

...

0 · · · 0 1 0




. (12)

Note that we take S 0
T ≡ I T . The structural equation (11) can be vectorised using

the vec operator that stacks the e × f matrix Q into an ef × 1 vector vecQ , i.e.,
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vecQ =
(
q 01, . . . , q

0
f

)′
where Q =

(
q1, . . . , q f

)
. Therefore, from (11) we can obtain

the structural equation in the reduced form as

vec {ηit}T
1 =




p∑

j=0

S j
T ⊗B j


 vec {ηit}T

1 +




q∑

j=0

S j
T ⊗ Γ j


 vec {ξit}T

1 + vec {ζit}T
1

=


ImT −

p∑

j=0

S j
T ⊗B j



−1 





q∑

j=0

S j
T ⊗ Γ j


 vec {ξit}T

1 + vec {ζit}T
1


 ,(13)

where

p∑
j=0

S j
T⊗B j =

(
S 0

T ⊗B0

)
+

(
S 1

T ⊗B1

)
+ . . . + (S p

T ⊗Bp)

=




B0 0 0 0 0 · · · 0

B1 B0 0
. . .

...
. . .

...
...

. . . . . . 0 0 · · · 0

Bp · · · B1 B0 0 · · · 0

0 Bp · · · B1 B0
. . . 0

...
. . . . . . . . . . . . . . .

...

0 · · · 0 Bp · · · B1 B0




,

and hence

(
p∑

j=0

S j
T⊗B j

)
vec {ηit}T

1 =




B0ηi1∑1
j=0 B jηi(2−j)

...∑p
j=0 B jηi(p+1−j)∑p
j=0 B jηi(p+2−j)

...∑p
j=0 B jηi(T−j)




.

Similarly, note that
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(
q∑

j=0

S j
T⊗Γ j

)
=

(
S 0

T ⊗ Γ 0

)
+

(
S 1

T ⊗ Γ 1

)
+ . . . + (S q

T ⊗ Γ p)

=




Γ 0 0 0 0 0 · · · 0

Γ 1 Γ 0 0
. . .

...
. . .

...
...

. . . . . . 0 0 · · · 0

Γ p · · · Γ 1 Γ 0 0 · · · 0

0 Γ p · · · Γ 1 Γ 0
. . . 0

...
. . . . . . . . . . . . . . .

...

0 · · · 0 Γ p · · · Γ 1 Γ 0




,

which implies that

(
q∑

j=0

S j
T⊗Γ j

)
vec {ξit}T

1 =




Γ 0ξi1∑1
j=0 Γ jξi(2−j)

...∑q
j=0 Γ jξi(q+1−j)∑q
j=0 Γ jξi(q+2−j)

...∑q
j=0 Γ jξi(T−j)




.

Now let ιr be an r × 1 vector of ones, i.e., ιr ≡ (1, 1, . . . , 1)′, thus, we can write

the mT × m block-vector of identity matrices of order m as (Im, Im, . . . , Im)′ =

(ιT ⊗ Im). Note that (ιT ⊗ Im) (ιT ⊗ Im)′ = 1
T

(ιT ι′T ⊗ Im) and

(ιT ⊗ Im)′ (ιT ⊗ Im) = TIm.

Writing the measurement equations (4) and (5) for the process vectors {y it}1
T

and {x it}1
T we have the equations {y it}1

T = Λy {ηit}T
1 + µyi + {εit}T

1 and similarly

{x it}1
T = Λx {ξit}T

1 + µxi + {δit}T
1 , which after applying the vec operator become

vec {y it}1
T = (I T ⊗Λy) vec {ηit}T

1 + (ιT ⊗ I n) µyi + vec {εit}T
1 (14)

vec {x it}1
T = (I T ⊗Λx) vec {ξit}T

1 + (ιT ⊗ I g) µxi + vec {δit}T
1 . (15)

Finally, using the notation from Table 1, the DPSEM model DPSEM model (3)-(5)

can now be written for the individual i as

13



H iT =

(
ImT −

p∑
j=0

S j
T⊗B j

)−1 ((
q∑

j=0

S j
T⊗Γ j

)
Ξ iT + Z iT

)
(16)

Y iT = (I T ⊗Λy)H iT + (ιT ⊗ I n) µyi + E iT (17)

X iT = (I T ⊗Λx)Ξ iT + (ιT ⊗ I k) µxi + ∆iT , (18)

using the notation defined in Table 1.

It follows that (16) can be substituted into (17) to obtain a system of equations with

observable variables on the left-hand side

Y iT = (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T⊗B j

)−1 [(
q∑

j=0

S j
T⊗Γ j

)
Ξ iT + Z iT

]

+ (ιT ⊗ I n) µyi + E iT (19)

X iT = (I T ⊗Λx)Ξ iT + (ιT ⊗ I k) µxi + ∆iT . (20)

By Assumption 3.0.1 the unobservable variables in (3)–(5) have expectation zero,

thus it is easy to see that E [Y iT ] = (ιT ⊗ I n) µyi and E [X iT ] = (ιT ⊗ I g) µxi.

Therefore, the expectations of the observable variables are the individual fixed-

effects so we can define

V Ti ≡
(

Y iT − E [Y iT ]

X iT − E [X iT ]

)
=

(
Y iT − (ιT ⊗ I n) µyi

X iT − (ιT ⊗ I k) µxi

)
. (21)

Since E [V iT ] = 0 we have Var (V iT ) = E [V iTV
′
iT ]. Using the reduced form

equations (19)–(20) it is now possible to obtain a closed form of the model-implied

covariance matrix of the data vectors in the mean deviation form (21). The following

proposition gives the required result.

Proposition 3.0.4 Let the covariance structure implied by the DPSEM model (16)–

(17) be partitioned as

E [V iTV
′
iT ] ≡ Σ (θ) =

(
Σ 11 Σ 12

Σ ′
12 Σ 22

)
, (22)

where Σ 11 ≡ E[Y iTY
′
iT ], Σ 12 ≡ E[Y iTX

′
iT ], and Σ 22 ≡ E[X iTX

′
iT ], which is a

function of the parameter vector θ defined as

θ ≡ (
θ′(Bi) : θ′(Γj) : θ′(Λy) : θ′(Λx) : θ′(Φj) : θ′(Ψ) : θ′(Θε) : θ′(Θδ)

)′
, (23)
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where θ(Bi) ≡ vecB i, θ(Γj) ≡ vecΓ j, θ(Λy) ≡ vecΛy, θ(Λx) ≡ vecΛx, θ(Φj) ≡
vechΦj, θ(Ψ) ≡ vechΨ , θ(Θε) ≡ vech θε, and θ(Θδ) ≡ vech θδ; i = 0, . . . , p, j =

0, . . . q.6 Then the closed form of the block elements Σ (θ), expressed in terms of

the model parameters is given by

Σ 11 = (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1

×
((

q∑
j=0

S j
T ⊗ Γ j

)(
I T ⊗Φ0 +

q∑
j=1

(
S j

T ⊗Φj + S ′j
T ⊗Φ′

j

)
)

×
(

q∑
j=0

S ′j
T ⊗ Γ ′

j

)
+ (I T ⊗Ψ)

)(
ImT −

p∑
j=0

S ′j
T ⊗B ′

j

)−1

× (
I T ⊗Λ′

y

)
+ (I T ⊗Θε) , (24)

Σ 12 = (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1 (
q∑

j=0

S j
T ⊗ Γ j

)

×
(
I T ⊗Φ0 +

q∑
j=1

(
S j

T ⊗Φj + S ′j
T ⊗Φ′

j

)
)

(I T ⊗Λ′
x) , (25)

and

Σ 22 = (I T ⊗Λx)

(
I T ⊗Φ0 +

q∑
j=1

(
S j

T ⊗Φj + S ′j
T ⊗Φ′

j

)
)

× (I T ⊗Λ′
x) + (I T ⊗Θδ) , (26)

where I T ⊗Φ0 +
q∑

j=1

(
S j

T ⊗Φj + S 0jT ⊗Φ′
j

) ≡ E [Ξ iTΞ
′
iT ].

Proof Firstly note that Assumption 3.0.1 implies the following results for the time

series processes {ζ}T
1 , {ε}T

1 , and {δ}T
1 ,

E
[
ζit−kζ

′
jt−s

]
=

{
Ψ , k = s, i = j

0 , k 6= s, i 6= j
⇒ E

[
(ζ ′i1, . . . , ζ

′
iT )

′
(ζ ′i1, . . . , ζ

′
iT )

]
= (I T ⊗Ψ)

E
[
εit−kε

′
jt−s

]
=

{
Θε, k = s, i = j

0 , k 6= s, i 6= j
⇒ E

[
(ε′i1, . . . , ε

′
iT )

′
(ε′i1, . . . , ε

′
iT )

]
= (I T ⊗Θε)

E
[
δit−kδ

′
jt−s

]
=

{
Θδ, k = s, i = j

0 , k 6= s, i 6= j
⇒ E

[
(δ′i1, . . . , δ

′
iT )

′
(δ′i1, . . . , δ

′
iT )

]
= (I T ⊗Θδ) ,

6We make use of the vech operator for the symmetrical matrices, which stacks the columns on
and below the diagonal.
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therefore, in the T -notation (Table 1) we have

E [Z iTZ
′
iT ] = E

[(
vec {ζit}T

1

)(
vec {ζ ′it}T

1

)]
= (I T ⊗Ψ) (27)

E [E iTE
′
iT ] = E

[(
vec {εit}T

1

)(
vec {ε′it}T

1

)]
= (I T ⊗Θε) (28)

E [∆iT∆′
iT ] = E

[(
vec {δit}T

1

)(
vec {δ′it}T

1

)]
= (I T ⊗Θδ) . (29)

From (21) and (22) using the reduced-form equations (19) and (20) for Y iT and

X iT the covariance equations are given by

Σ 11 = E
[(

Y iT − (ι⊗ I n) µyi

) (
Y iT − (ι⊗ I n) µyi

)′]

= E





(I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1 ((
q∑

j=0

S j
T ⊗ Γ j

)
Ξ iT + Z iT

)
+ E iT




×

(I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1 ((
q∑

j=0

S j
T ⊗ Γ j

)
Ξ iT + Z iT

)
+ E iT



′
 ,

Σ 12 = E
[(

Y iT − (ι⊗ I n) µyi

)
(X iT − (ι⊗ I k) µxi)

′]

= E





(I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1 ((
q∑

j=0

S j
T ⊗ Γ j

)
Ξ iT + Z iT

)
+ E iT




× ((I T ⊗Λx)Ξ iT + ∆iT )′
]
,

and

Σ 22 = E
[
(X iT − (ι⊗ I k) µxi) (X iT − (ι⊗ I k) µxi)

′]

= E
[
((I T ⊗Λx)Ξ iT + ∆iT ) ((I T ⊗Λx)Ξ iT + ∆iT )′

]
,

which by using (27)–(29) evaluate to (24), (25), and (26), respectively. Note that by

covariance stationarity (Assumptions 3.0.1 and 3.0.2) E [Ξ iTΞ
′
iT ] has block-Toeplitz

structure
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E [Ξ iTΞ
′
iT ] =




Φ0 Φ′
1 Φ′

2 · · · Φ′
T−1

Φ1 Φ0
. . . . . .

...

Φ2
. . . . . . Φ′

1 Φ′
2

...
. . . Φ1 Φ0 Φ′

1

ΦT−1 · · · Φ2 Φ1 Φ0




=
T−1∑
j=0

(
S j

T ⊗Φj

)
+

T−1∑
j=1

(
S 0jT ⊗Φ′

j

)

= I T ⊗Φ0 +
T−1∑
j=1

(
S j

T ⊗Φj + S 0jT ⊗Φ′
j

)
, (30)

and also note that E [Z iTZ
′
iT ] = I T ⊗Ψ , E [E iTE

′
iT ] = I T ⊗Θε, and E [∆iT∆

′
iT ] =

I T ⊗Θδ. Typically, most of the block-elements Φj of the second-moment matrix

E [Ξ iTΞ
0
iT ] will be zero, depending on the length of the memory in the process

generating ξit, which for the reason of simplicity we take to be q. Thus, for j > q,

Φj = 0 . It follows that (30) can be simplified to




Φ0 · · · Φ′
q 0 · · · 0

... Φ0
. . . . . . . . .

...

Φq
. . . . . . . . . . . . 0

0
. . . . . . . . . . . . Φ′

q
...

. . . . . . . . . Φ0
...

0 · · · 0 Φq · · · Φ0




= S 0
T ⊗Φ0 +

q∑
j=1

(
S j

T ⊗Φj + S ′j
T ⊗Φ′

j

)
, (31)

which consists of only q + 1 symmetric matrices Φ0, . . . ,Φq. Finally, note that

Σ ′
12 = Σ 21.

Q.E.D.

The closed-form expression for the Σ (θ) matrix enables separation of the ob-

servable variables (data) from the unobservable in the likelihood function, since the

unknown parameters are all contained in Σ(θ).

3.1 Maximum likelihood estimation of the parameters

The maximum likelihood estimation proceeds in two steps. Firstly, since we treat

the vectors of fixed effects µyi and µxi as incidental parameters of no substantive
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interest, we concentrate them out of the log-likelihood. Secondly, we maximise the

concentrated log-likelihood to obtain the estimates of the parameter vector θ. We

will assume that sufficient restrictions (e.g. zero restrictions) are placed on the model

parameters so that the model is identified. The following assumption outlines the

basic regularity conditions.

Assumption 3.1.1 Let Σ (θ) be a function of the parameters vecB ′
i, vecΓ ′

j, vecΛy,

vecΛx,vechΦ′
j, vechΨ ′, vechΘ ′

δ, and vechΘ ′
ε; i = 0, . . . , p, j = 0, . . . , q, where θ

is an open set in the parameter space Υ . We assume that Σ(θ) is positive definite

and continuous in θ at every point in Υ . We also require that ∂Σ (θ) /∂θ′ and

∂2Σ (θ) /∂θ∂θ′ are continuous in the neighborhood of θ0, and that ∂ vecΣ (θ) /∂θ′

has full column rank at θ = θ0. Finally, ∀ε > 0,∃δ > 0 : ||Σ (θ) −Σ(θ0)|| < δ ⇒
||θ − θ0|| < ε.

We firstly consider estimation of the fixed effects parameters µy and µx. Let

M i ≡
(

µyi

µxi

)
, F ≡

(
ιT ⊗ I n 0

0 ιT ⊗ I k

)
, (32)

so we can write

E

[(
Y iT

X iT

)]
=

(
ιT ⊗ I n 0

0 ιT ⊗ I k

)(
µyi

µxi

)
= FM i.

Therefore, by letting W iT ≡ (Y ′
iT : X ′

iT )
′
, the multivariate Gaussian likelihood of

the DPSEM model for the individual i is given by

L (W iT ,M i) = (2π)T/2 |Σ (θ)|−1/2 exp

(
−1

2
(W i − FM i)

′Σ−1 (θ) (W i − FM i)

)
,

and thus the log-likelihood is

ln L (W iT ,M i) = −T

2
ln(2π)− 1

2
ln |Σ (θ)|

− 1

2
(W i − FM i)

′Σ−1 (θ) (W iT − FM i) . (33)

The maximum likelihood estimate of M i can be obtained by solving the first-order

condition

∂ ln L (W iT ,M i)

∂M i

= F ′Σ−1 (θ) (W i − FM i) = 0 (34)

which gives the ML solution
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M̂ i = (F ′F )
−1

F ′W iT . (35)

Substituting (35) into (33) yields the concentrated log-likelihood of the form

lnL
(
W iT , M̂ i

)
= −T

2
ln(2π)− 1

2
ln |Σ (θ)|

− 1
2

[(
I − F

(
F ′F

)−1
F ′

)
W iT

]′
Σ−1 (θ)

[(
I − F

(
F ′F

)−1
F ′

)
W iT

]

which, by letting W̃ iT ≡
(
I − F (F ′F )

−1
F ′

)
W iT , simplifies to

−T

2
ln(2π)− 1

2
ln |Σ (θ)| − 1

2
W̃

′
iTΣ

−1 (θ)W̃ iT . (36)

The concentrated log-likelihood (36) is the log-likelihood for the within-group (WG)

transformed data. To see this, note that
(
I − F (F ′F )

−1
F ′

)
is the WG transfor-

mation matrix, i.e.,

(
I − F (F ′F )

−1
F ′

)
= I (n+k)T − 1

T

(
ιT ι′T ⊗ I n 0

0 ιT ι′T ⊗ I k

)
, (37)

which follows from the fact that

F ′F =

(
ι′T ⊗ I n 0

0 ι′T ⊗ I k

)(
ιT ⊗ I n 0

0 ιT ⊗ I k

)

=

(
(ιT ⊗ I n)′ (ιT ⊗ I n) 0

0 (ιT ⊗ I k)
′ (ιT ⊗ I k)

)

= T

(
I n 0

0 I k

)
,

and thus (F ′F )
−1

= T−1I (n+k). Therefore,

F (F ′F )
−1

F ′ =
1

T

(
ιT ⊗ I n 0

0 ιT ⊗ I k

)(
ι′T ⊗ I n 0

0 ι′T ⊗ I k

)
,

which yields (37). It now follows that the Gaussian log-likelihood for the sample of N

mutually independent time series process W iT ≡ (Y ′
iT : X ′

iT )
′
is the concentrated

likelihood given by
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N∑
i=1

ln L
(
W iT , M̂ i

)
= −TN

2
ln(2π)− N

2
ln |Σ (θ)| − 1

2

N∑
i=1

W̃
′
iTΣ

−1 (θ)W̃ iT

= −NT

2
ln (2π)− N

2
ln |Σ (θ)| − 1

2
trΣ−1 (θ)W̃ NTW̃

′
NT

(38)

where W NT = (W 1T , . . .W NT ) and W̃ NT ≡
(
I − F (F ′F )

−1
F ′

)
W NT is the

within-group transformed data matrix. It thus follows that the maximum likelihood

estimator of θ solves

θ̂ML = arg max
θ

(
N∑

i=1

ln L
(
W iT , M̂ i

))
, (39)

Equivalently, the maximisation problem (39) can be turned into an equivalent min-

imisation problem

θ̂ML = arg min
θ

(
−2

N∑
i=1

(
W it, M̂ i

))
, (40)

ignoring the constant term. Optimisation of (39) or (40) requires numerical methods

such as the method of scoring or the Newton-Raphson algorithm. We will derive

the closed form expressions for the analytical first and second derivatives in §3.2,

which facilitates both methods. As we will show, the expectation of the Hessian

matrix (or its probability limit) turns out to be notably simpler then the Hessian

itself. Therefore, the method of scoring, which requires only the expectation of the

Hessian matrix, is simpler to implement. The parameters’ estimates can hence be

obtained by iterating

θ̂f = θ̂f−1 + =−1(θf−1)
∂ ln L

(
W̃ NT

)

∂ θ

∣∣∣∣∣∣
θf−1

, (41)

which can be implemented by using the closed form analytical expressions for the

score vector and the information matrix provided in §3.2 and §3.3. The method of

scoring generally requires good starting values, which can be provided using the IV

methods suggested by Cziráky (2004b).

At this point construction of the empirical covariance matrix merits few remarks.

The 1/N times W̃ NTW̃
′
NT is the empirical covariance matrix of the within-group

transformed data on N individual time series vectors W̃ i. To show this, we point

out that the within-group transformed data for the individual i for T time periods

can be stacked into the (n + k)T × 1 vector
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W̃ i =

(
Ỹ i

X̃ i

)
=




ỹ i1
...

ỹ iT

x̃ i1

...

x̃ iT




, (42)

where

Ỹ i =




y
(1)
i1 − 1

T

∑T
j=1 y

(1)
ij

...

y
(n)
i1 − 1

T

∑T
j=1 y

(l)
ij

...

y
(1)
iT − 1

T

∑T
j=1 y

(1)
iT

...

y
(n)
iT − 1

T

∑T
j=1 y

(l)
iT




, and X̃ i =




x
(1)
i1 − 1

T

∑T
j=1 x

(1)
ij

...

x
(k)
i1 − 1

T

∑T
j=1 x

(k)
ij

...

x
(1)
iT − 1

T

∑T
j=1 x

(1)
ij

...

x
(k)
iT − 1

T

∑T
j=1 x

(k)
ij




(43)

are nT × 1 and kT × 1 vectors, respectively. We now define an (n+ k)T ×N matrix

whose columns are data vectors on N individuals as

W̃ NT ≡
(

Ỹ 1 Ỹ 2 · · · Ỹ N

X̃ 1 X̃ 2 · · · X̃N

)
=




ỹ11 ỹ21 · · · ỹN1
...

...
...

ỹ1T ỹ2T · · · ỹNT

x̃ 11 x̃ 21 · · · x̃N1

...
...

...

x̃ 1T x̃ 2T · · · x̃NT




(44)

hence W̃ NT is the empirical data matrix for the entire sample (panel) of N individ-

uals observed over T time periods. The (n+k)NT ×(n+k)NT empirical covariance

matrix can be computed by noting that
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W̃ NTW̃
0
NT =




ỹ11 ỹ21 · · · ỹN1
...

...
...

ỹ1T ỹ2T · · · ỹNT

x̃ 11 x̃ 21 · · · x̃N1

...
...

...

x̃ 1T x̃ 2T · · · x̃NT







ỹ ′11 · · · ỹ ′1T x̃ ′11 · · · x̃ ′1T

ỹ ′21 · · · ỹ ′2T x̃ ′21 · · · x̃ ′2T
...

...
...

...

ỹ ′N1 · · · ỹ ′NT x̃ ′N1 · · · x̃ ′NT




=




N∑
i=1

ỹ i1ỹ
′
i1 · · ·

N∑
i=1

ỹ i1ỹ
′
iT

N∑
i=1

ỹ i1x̃
′
i1 · · ·

N∑
i=1

ỹ i1x̃
′
iT

...
...

...
...

N∑
i=1

ỹ i1T ỹ
′
i1 · · ·

N∑
i=1

ỹ iT ỹ
′
iT

N∑
i=1

ỹ iT x̃
′
i1 · · ·

N∑
i=1

ỹ iT x̃
′
iT

N∑
i=1

x̃ i1ỹ
′
i1 · · ·

N∑
i=1

x̃ i1ỹ
′
iT

N∑
i=1

x̃ i1x̃
′
i1 · · ·

N∑
i=1

x̃ i1x̃
′
iT

...
...

...
...

N∑
i=1

x̃ iT ỹ
′
i1 · · ·

N∑
i=1

x̃ iT ỹ
′
iT

N∑
i=1

x̃ iT x̃
′
i1 · · ·

N∑
i=1

x̃ iT x̃
′
iT




which can be written more concisely as

W̃ NTW̃
0
NT =




N∑
i=1

Ỹ iỸ
′
i

N∑
i=1

Ỹ iX̃
′
i

N∑
i=1

X̃ iỸ
′
i

N∑
i=1

X̃ iX̃
′
i


 (45)

Letting ȳ
(∗)
i ≡ T−1

∑T
j=1 y

(∗)
ij and x̄

(∗)
i ≡ T−1

∑T
j=1 x

(∗)
ij it follows that the typical

elements of
N∑

i=1

Ỹ iỸ
′
i,

N∑
i=1

X̃ iỸ
′
i, and

N∑
i=1

X̃ iX̃
′
i are of the form

N∑

i=1

y ijy
′
if =




∑N
i=1

(
y

(1)
ij − ȳ

(1)
i

)2
· · · ∑N

i=1

(
y

(1)
i1 − ȳ

(1)
i

)(
y

(l)
i1 − ȳ

(l)
i

)

...
...

∑N
i=1

(
y

(l)
ij − ȳ

(l)
i

)(
y

(1)
if − ȳ

(1)
i

)
· · · ∑N

i=1

(
y

(l)
i1 − ȳ

(l)
i

)2


 ,

N∑

i=1

x ijy
′
if =




∑N
i=1

(
x

(1)
ij − x̄

(1)
i

)2
· · · ∑N

i=1

(
x

(1)
i1 − x̄

(1)
i

)(
x

(k)
i1 − x̄

(k)
i

)

...
...

∑N
i=1

(
x

(k)
ij − x̄

(k)
i

)(
x

(1)
if − x̄

(1)
i

)
· · · ∑N

i=1

(
x

(k)
i1 − x̄

(k)
i

)2


 ,

and
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N∑

i=1

x ijx
′
if =




∑N
i=1

(
x

(1)
ij − x̄

(1)
i

)2
· · · ∑N

i=1

(
x

(1)
i1 − x̄

(1)
i

)(
x

(k)
i1 − x̄

(k)
i

)

...
...

∑N
i=1

(
x

(k)
ij − x̄

(k)
i

) (
x

(1)
if − x̄

(k)
i

)
· · · ∑N

i=1

(
x

(k)
i1 − x̄

(k)
i

)2


 ,

respectively. By assumption (3.0.2) the time means converge in probability to the

population individual means

p lim
T→∞

(
1

T

∑T

j=1
y

(k)
ij

)
= µ

(k)
yi and p lim

T→∞

(
1

T

∑T

j=1
x

(k)
ij

)
= µ

(k)
xi

which implies that

p lim
T→∞

W̃ i = W i −M i. (46)

Therefore, the covariances of the within-group transformed data converge in proba-

bility limit to

p lim
T→∞

∑N

i=1

(
y

(1)
is − ȳ

(1)
i

)(
y

(k)
is − ȳ

(k)
i

)
=

∑N

i=1

(
y

(1)
is − µ

(l)
yi

)(
y

(k)
is − µ

(k)
yi

)

Hence, the within group estimator requires that T → ∞. Sequentially, if we let

N → ∞, we obtain the convergence in probability of the the empirical covariance

matrix as

p lim
T,N→∞

1

N
W̃ NTW̃

′
NT = Σ (θ0) . (47)

3.2 Analytical derivatives and the score vector

We derive the closed form analytical expressions for the first and second derivatives

of the DPSEM model, thus enabling the construction of the score vector and the

information matrix.

Derivation of the analytical derivatives and components of the information ma-

trix is a difficult problem for complex multivariate models, nevertheless, the modern

matrix calculus methods (e.g. Magnus and Neudecker (1988), Turkington (2002))

make possible to obtain these results. However, detailed derivations of the score

vector and the information matrix for multivariate models is not frequently under-

taken and the theoretical literature is rather scarce in this area. Turkington (1998),

for example, derives the score vector and the information matrix in the closed ana-

lytical form for the simultaneous equation model with vector autoregressive errors,
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which is so far the most complex linear model for which full analytical results were

obtained. This model is, however, a special case of the DPSEM model considered

in this paper, which actually encompasses virtually all multivariate linear dynamic

models.

While the main motivation behind the studies such as Turkington (1998) was to

obtain the basic analytical results needed for the classical statistical inference and

derivation of the Cramer-Rao lower bound, which can in turn be used for benchmark-

ing the efficiency of various estimators, the motivation in this paper is additionally

in providing analytical inputs for implementation of efficient estimation algorithms.

The computational efficiency is a major issue with complex multivariate models,

specially dynamic models with unobservable variables, hence the availability of the

analytical results might greatly facilitate practical implementation of the various

special cases of the general model considered in this paper.

The maximum likelihood estimator (39) can be interpreted as a covariance es-

timator, where all the unknown parameters are contained in the model-implied

covariance matrix Σ (θ). To obtain the closed-form analytical derivatives of the

log-likelihood (38) it is necessary to obtain the derivatives of Σ (θ) in respect to

particular elements of the parameter vector θ given in (23). We achieve this by

firstly expressing the Σ (θ) as a linear function of its block elements Σ ij, and then

trivially by expressing its derivatives as linear functions of the derivatives of the Σ ij

blocks.

Lemma 3.2.1 Let Σ (θ) have the partition into (n + k)T columns as

Σ (θ) =

(
Σ 11 Σ 12

Σ 21 Σ 22

)
=

(
m

(11)
1 · · · m

(11)
nT m

(12)
1 · · · m

(12)
kT

m
(21)
1 · · · m

(21)
nT m

(22)
1 · · · m

(22)
kT

)
, (48)

thus each block is partitioned into columns as Σ ij =
(
m

(ij)
1 · · ·m (ij)

nT

)
, so that

vecΣ ij =
(
m ′(ij)

1 , · · · ,m ′(ij)
nT

)′
. Then vecΣ (θ) can be expressed as a linear combi-

nation of its vectorised columns as

vecΣ (θ) = H 11 vecΣ 11 + H 21 vecΣ 21 + H 12 vecΣ 12 + H 22 vecΣ 22, (49)

where the T 2(n+k)2×nT zero-one matrices H i1, and the T 2(n+k)2×nkT zero-one

matrices H i2, i = 1, 2 are specified as
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H 11 ≡




I nT 0 0 · · · 0

0 0 0 · · · 0

0 I nT 0 · · · 0

0 0 0 · · · 0

0 0 I nT · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · I nT

0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 0 0








a

H 21 ≡




0 0 0 · · · 0

I kT 0 0 · · · 0

0 0 0 · · · 0

0 I kT 0 · · · 0

0 0 0 · · · 0

0 0 I kT · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · I kT

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0








b

and

H 12 ≡




0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

I nT 0 0 · · · 0

0 0 0 · · · 0

0 I nT 0 · · · 0

0 0 0 · · · 0

0 0 I nT · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · I nT

0 0 0 · · · 0








b

H 22 ≡




0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0

I kT 0 0 · · · 0

0 0 0 · · · 0

0 I kT 0 · · · 0

0 0 0 · · · 0

0 0 I kT · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · I kT








c

where a = T 2k(n + k)− kT , b = T 2k(n + k), and c = T 2k(n + k)− nT .

Proof See Appendix A.

Corollary 3.2.2 The first derivative of the vec of a 2 × 2 block matrix Σ (θ) is a

linear function of the derivatives of its vectorised block elements of the form
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∂ vecΣ (θ)

∂ θ
=

∂ H 11vecΣ 11

∂ θ
+

∂ H 21vecΣ 21

∂ θ
+

∂ H 12vecΣ 12

∂ θ
+

∂ H 22vecΣ 22

∂ θ

=
2∑

i=1

2∑
j=1

(
∂ vecΣ ij

∂ θ

)
H 0ij. (50)

Proof By the chain rule for matrix calculus (see Magnus and Neudecker (1988,

pg. 96) and Turkington (2002, pg. 71)) we have

∂ H ijvecΣ ij

∂ θ
=

(
∂ vecΣ ij

∂ θ

)(
∂ H ijvecΣ ij

∂ vecΣ ij

)
=

(
∂ vecΣ ij

∂ θ

)
H ′

ij.

Therefore,

2∑
i=1

2∑
j=1

(
∂ H ijvecΣ ij

∂θ

)
=

2∑
i=1

2∑
j=1

(
∂ vecΣ ij

∂ θ

)
H ′

ij,

as required.

Q.E.D.

The following proposition gives the general expression for the analytical deriva-

tives of the log-likelihood, ∂ ln L
(
W̃ NT

)
/∂ θ.

Proposition 3.2.3 The score vector ∂ ln L
(
W̃ NT

)
/∂ θ of the log likelihood (38)

has the jth component of the form

1

2

(
∂ vecΣ (θ)

∂ θ
(∗)
j

) [
vecΣ−1 (θ)W̃ NTW̃

′
NTΣ

−1 (θ)−N vecΣ−1 (θ)
]
. (51)

Proof See Appendix B.

To obtain analytical expressions for the partial derivatives ∂ vecΣ (θ)/∂ θ
(∗)
j in re-

spect to particular elements θ
(∗)
j of the parameter vector θ, we firstly introduce some

new notation. We will make use of two special types of zero-one matrices, K ab and

Da. We define the commutation matrix K ab as an orthogonal ab × ab zero-one

permutation matrix

K ab ≡
(
I a ⊗ eb

1 : I a ⊗ eb
2 : · · · : I a ⊗ eb

b

)
(52)

such that K ab vecX = vecX ′, where eb
j is the jth column of a b×b identity matrix,

i.e., I b =
(
eb

1 : eb
2 : · · · : eb

b

)
. Additionally, let
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K ∗
ab ≡ devecbK ab = [I b ⊗ (ea

1)
′ : I b ⊗ (ea

2)
′ : · · · : I b ⊗ (ea

a)
′] . (53)

The a2×a(a+1)/2 duplication matrix Da is defined as a zero-one matrix such that

for an a× a matrix X , Da vechX = vecX . To further simplify the exposition, we

define some abbreviating notation as follows.

X ≡

ImT −

p∑

j=0

S j
T ⊗B j



−1 


q∑

j=0

S j
T ⊗ Γ j




×




I T ⊗Φ0 +

q∑

j=1

(
S j

T ⊗Φj + S ′jT ⊗Φ′
j

)

 + (I T ⊗Ψ)




×



q∑

j=0

S ′jT ⊗ Γ ′
j





ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1

,

Y ≡



q∑

j=0

S j
T ⊗ Γ j








I T ⊗Φ0 +

q∑

j=1

(
S j

T ⊗Φj + S ′jT ⊗Φ′
j

)

 + (I T ⊗Ψ)







q∑

j=0

S ′jT ⊗ Γ ′
j


 ,

A ≡ (I T ⊗Λy)


ImT −

p∑

j=0

S j
T ⊗Bj



−1

,

F ≡

I T ⊗Φ0 +

q∑

j=1

(
S j

T ⊗Φj + S ′jT ⊗Φ′
j

)

 ,

Z ≡ (I T ⊗Λy)


ImT −

p∑

j=0

S j
T ⊗Bj



−1 


q∑

j=0

S j
T ⊗ Γ j


 ,

D ≡ (I T ⊗Λy)


ImT −

p∑

j=0

S j
T ⊗Bj



−1 


q∑

j=0

S j
T ⊗ Γ j


 ,

Q ≡

ImT −

p∑

j=0

S j
T ⊗Bj



−1 


q∑

j=0

S j
T ⊗ Γ j


 ,

F ≡

I T ⊗Φ0 +

q∑

j=1

(
S j

T ⊗Φj + S ′jT ⊗Φ′
j

)

 .

Proposition 3.2.4 The the partial derivatives of ∂ vecΣ (θ)/∂ θ
(∗)
j in respect to

the elements of the parameter vector θ are of the form

2∑
i=1

2∑
j=1

∂ vecΣij

∂ θ
(∗)
j

Hij,
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where the analytical expressions for the matrices ∂ vecΣ ij/∂ θ
(∗)
j are as follows. The

derivatives of the block elements of Σ 11, Σ 12, and Σ 22 in respect to θ(Bi) for any

i = 0, . . . , p are7

∂ vecΣ11

∂ vecB i
=

[
K ∗

T,m

(
ImT ⊗ S ′iT

)⊗ Im

]




ImT −

p∑

j=0

S j
T ⊗B j



−1

⊗

ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1



×




Y


ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1

⊗ ImT




+


Y ′


ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1

⊗ ImT


KmT,mT


× (

I T ⊗Λ′
y

)⊗ (
I T ⊗Λ′

y

)

∂ vecΣ12

∂ vecB i
=

[
K ∗

T,m

(
ImT ⊗ S ′iT

)⊗ Im

]




ImT −

p∑

j=0

S j
T ⊗B j



−1

⊗

ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1



×









q∑

j=0

S j
T ⊗ Γ j


F

(
I T ⊗Λ′

x

)

⊗ (I T ⊗Λy)

′



∂ vecΣ22

∂ vecB i
= 0 .

In respect to θ(Γi), for any i = 0, . . . , q, the derivatives of the individual blocks are

∂ vecΣ11

∂ vecΓ i
=

[
K ∗

T,g

(
I Tg ⊗ S ′iT

)⊗ Im

] [
Y

(
S i

T ⊗ Γ i

)′ ⊗ ImT + Y ′ (S i
T ⊗ Γ i

)′ ⊗ ImT )
]

× KmT,mT

(
A′ ⊗A′)

∂ vecΣ12

∂ vecΓ i
=

[
K ∗

T,g

(
I gT ⊗ S ′iT

)⊗ Im

]

×

[

F
(
I T ⊗Λ′

x

)]⊗




ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1

(
I T ⊗Λ′

y

)






∂ vecΣ22

∂ vecΓ i
= 0 .

In respect to θ(Λy), the derivatives are

7Since Σ12 = Σ ′
21 we do not need to give a separate expression for Σ21.
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∂ vecΣ 11

∂ vecΛy

=
(
K ∗

T,m ⊗ I n

) ([
X

(
I T ⊗Λ′

y

)⊗ I nT

]
+

[
X ′ (I T ⊗Λ′

y

)⊗ I nT

]
K nT,nT

)

∂ vecΣ 12

∂ vecΛy

=
[
I n ⊗ (vec I T )′

]
(K n,T ⊗ I T ) ([QF (I T ⊗Λ′

x)]⊗ I nT )

∂ vecΣ 22

∂ vecΛy

= 0 .

In respect to θ(Λx), the derivatives are

∂ vecΣ 11

∂ vecΛx

= 0

∂ vecΣ 11

∂ vecΛx

=
[
I n ⊗ (vec I T )′

]
(K k,T ⊗ I T )K k,T

(
I gT ⊗ FQ ′ [(I T ⊗Λ′

y

)])

∂ vecΣ 22

∂ vecΛx

=
(
K ∗

T,g ⊗ I k

)
([F (I T ⊗Λ′

x)⊗ I kT ] + [F ′ (I T ⊗Λ′
x)⊗ I kT ]K k,T ) .

The contemporaneous covariance matrix Φ0 of the exogenous latent variables appears

on the diagonal of the block Toeplitz matrix (30), while for any other j 6= 0, both

Φj and Φ′
j appear off-diagonally. Hence we differentiate each Σ ij separately for Φ0

and Φj (j 6= 0) in respect to θ(Φ), which yields

∂ vecΣ 11

∂ vechΦ0

= D ′
g

[
I g ⊗ (vec I T )′

]
(K g,T ⊗ I T ) (Z ′ ⊗ Z ′)

∂ vecΣ 11

∂ vechΦi

= D ′
g

[
K ∗

T,g

(
I gT ⊗ S ′i

T

)⊗ I g

]
(I gT + K gT,gT ) (Z ′ ⊗ Z ′)

∂ vecΣ 12

∂ vecΦ0

= D ′
g

[
I g ⊗ (vec I T )′

]
(K g,T ⊗ I T )

[
(I T ⊗Λ′

x)⊗Q ′ (I T ⊗Λ′
y

)]

∂ vecΣ 12

∂ vechΦi

= D ′
g

[
K ∗

T,g

(
I gT ⊗ S ′i

T

)⊗ I g

]
(I gT + K gT,gT )

[
(I T ⊗Λ′

x)⊗Q ′ (I T ⊗Λ′
y

)]

∂ vecΣ 22

∂ vecΦ0

= D ′
g

[
I g ⊗ (vec I T )′

]
(K g,T ⊗ I T ) [(I T ⊗Λ′

x)⊗ (I T ⊗Λ′
x)]

∂ vecΣ 22

∂ vechΦi

= D ′
g

[
K ∗

T,g

(
I gT ⊗ S ′i

T

)⊗ I g

]
(I gT + K gT,gT ) [(I T ⊗Λ′

x)⊗ (I T ⊗Λ′
x)] .

Finally, the derivatives in respect to the error covariance matrices are as follows.

For θ(Ψ) we have

∂ vecΣ 11

∂ vechΨ
= D ′

m

[
Im ⊗ (vec I T )′

]
(Km,T ⊗ I T ) (D ′ ⊗D ′)

∂ vecΣ 12

∂ vechΨ
= 0

∂ vecΣ 22

∂ vechΨ
= 0 .
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For θ(Θε) we have

∂ vecΣ 11

∂ vechΘε

= D ′
n

[
I n ⊗ (vec I T )′

]
(K n,T ⊗ I T )

∂ vecΣ 12

∂ vechΘε

= 0

∂ vecΣ 22

∂ vechΘε

= 0 ,

and for θ(Θδ),

∂ vecΣ 11

∂ vechΘδ

= 0

∂ vecΣ 12

∂ vechΘδ

= 0

∂ vecΣ 22

∂ vechΘδ

= D ′
k

(
I k ⊗ (vec I T )′

)
(K kT ⊗ I T ) .

Proof See Appendix C.

The score vector can now be constructed by substituting the partial derivatives

given in proposition 3.2.4 into the general expression for the components of the score

vector given by the expression (51).

3.3 Asymptotic inference

The basic inferential properties of the multivariate Gaussian models whose likelihood

can be written by separating the unknown parameters from the observable variables,

e.g. the likelihood of the DPSEM model (38), are asymptotically equivalent to the

properties of the Wishart estimators analysed by Anderson and Amemiya (1988),

Anderson (1989), and Amemiya and Anderson (1990). In addition to these known

results, we give the analytical expressions in the closed form of the Hessian and

information matrices.

We make the standard assumption that Σ (θ) is twice continuously differentiable

in a neighborhood of θ0, and that ∂ vecΣ (θ) /∂ θ
(∗)
j has full column rank at θ = θ0.

Proposition 3.3.1 Let θ(∗) denote any component of the parameter vector θ, as

defined in (23). Then the Hessian matrix is of the form

H (θ) =




∂ ln L

�
W̃ NT

�

∂ θ(B0)
∂ θ0

(B0) · · ·
∂ ln L

�
W̃ NT

�

∂ θ(B0)
∂ θ0

(Θδ)

...
...

∂ ln L

�
W̃ NT

�

∂ θ(Θδ)
∂ θ0

(B0) · · ·
∂ ln L

�
W̃ NT

�

∂ θ(Θδ)
∂ θ0

(Θδ)




(54)
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where the typical element is given by

∂2 lnL
(
W̃ NT

)

∂ θ
(∗)
j ∂ θ

(∗)
i
′

=
1
2

(
∂2vecΣ (θ)

∂ θ
(∗)
j ∂ θ′(∗)i

) ([
vecΣ−1 (θ)W̃ NTW̃

′
NTΣ−1 (θ)−N vecΣ−1 (θ)

]
⊗ I pi

)

− 1
2

[(
∂ vecΣ (θ)

∂ θ
(∗)
i

)
[
Σ−1 (θ)⊗Σ−1 (θ)

]

×
([

W̃ NTW̃
′
NTΣ−1 (θ)⊗ ImT

]
−

[
ImT ⊗ W̃ NTW̃

′
NTΣ−1 (θ)

])

− N

(
∂ vecΣ (θ)

∂ θ
(∗)
i

)
[
Σ−1 (θ)⊗Σ−1 (θ)

]
](

∂ vecΣ (θ)

∂ θ
(∗)
j

)′
. (55)

Proof See Appendix D.

Proposition 3.3.2 The information matrix is of the form = (θ0) = −H (θ0) with

typical block elements given by

plim
T,N→∞

∂2 ln L
(
W̃ NT

)

∂θ
(∗)
j ∂θ0

(∗)
i

∣∣∣∣∣∣
θ=θ0

=

(
∂ vecΣ (θ0)

∂θ
(∗)
i

)
[
Σ−1 (θ0)⊗Σ−1 (θ0)

]
(

∂ vecΣ (θ0)

∂θ
(∗)
j

)′
,

(56)

where θ0 is the population value of θ.

Proof See Appendix E.

The information matrix (56) can be constructed by using the analytical expres-

sions given in the proposition 3.2.4 for the partial derivatives of the log-likelihood in

respect to the particular elements of the parameter vector θ. Note that the asymp-

totics in the temporal dimension (i.e., T →∞) are required only for the consistent

estimation of the time-means (fixed effects).

The asymptotic normality of the maximum likelihood estimator of θ can be

established in the standard way by using the Taylor series expansion of the log-

likelihood

∂ ln L
(
W̃ NT

)

∂ θ

∣∣∣∣∣∣
θ=θ̂ML

=
∂ lnL

(
W̃ NT

)

∂ θ

∣∣∣∣∣∣
θ=θ0

+
∂2 ln L

(
W̃ NT

)

∂ θ∂ θ′

∣∣∣∣∣∣
θ=θ0

(
θ̂ML − θ0

)
= 0 ,

which implies

31



θ̂ML − θ0 =
1

2


∂2 ln L

(
W̃ NT

)

∂ θ0∂ θ′0



−1

∂ ln L
(
W̃ NT

)

∂ θ0

=
1

2
H −1 (θ0)

(
∂ vecΣ (θ0)

∂ θ0

)

×
[
vecΣ−1 (θ0)W̃ NTW̃

′
NTΣ

−1 (θ0)−N vecΣ−1 (θ0)
]

+ op

(
1√
N

)
.

(57)

From (71) now have that

√
N

(
θ̂ML − θ0

)
d→N

[
0 , 2H −1(θ0)

]
. (58)

Subsequently, hypotheses of the goodness of fit of the form H0 : E
[
W̃ NTW̃

′
NT

]
=

Σ (θ) can be tested using the statistic T = N ln LW̃ NT

(
θ̂ML

)
, which is asymptot-

ically χ2 distributed with degrees of freedom d (for the proof see Anderson (1989)’s,

theorem 2.3; see also Browne (1984)). The degrees of freedom parameter d is the

difference between the number of distinct elements in the data covariance matrix

(1/N)W̃ W̃
′
and the number of elements in θ, i.e., the number of parameters to

be estimated. This χ2-distributed fit statistic can be used for testing the null hy-

pothesis corresponding to a particular model-implied covariance structure against

the alternative of a completely unconstrained covariance matrix.

In practice, the reliance on this statistic must be taken with caution as it is known

to be sensitive to departures from normality. While we have assumed normality in

this paper, Amemiya and Anderson (1990) have shown that this statistic will be

still asymptotically valid for the non-normal data as well as for certain classes of

dependent data, though the model they considered is somewhat less general then

the one we are analysing in this paper.8

4 Empirical application

We estimate an empirical DPSEM FD-growth model to illustrate the above discussed

methods using panel data on 45 countries observed over 25 years, running from 1970

8The asymptotic results of Amemiya and Anderson (1990) strictly apply to models without the
stochastic error term in the structural equation; the extension of these results to the non-zero error
case is not straightforward and it requires a more general framework.
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till 1995, and averaged over 5-year periods.9 Our data come from the same sources

as the data used by Demirgüç-Knut and Levine (2001b) and Levine et al. (2001),

thereby avoiding possible data-induced effects in the empirical results. The empirical

studies such as Beck et al. (2000) and Beck and Levine (2003) use data averaged

over the five years periods in order to abstract from the business cycle effects and

we follow the same approach here.

While a criticism that business cycle dynamics should be better modelled by

using temporally less aggregated data (e.g. quarterly or annual series), the use of

a relatively small number of time averages does not itself cause asymptotic difficul-

ties for our purposes. While the maximum likelihood estimator of the fixed effects

requires the “T →∞” asymptotics for the consistent estimation of the time means,

this primarily concerns the time span of the data rather then how the series were

aggregated.10

We estimate a simple FD-growth model that accounts for the dynamics and the

measurement error. Formulating such model as a DPSEM model enables us to si-

multaneously model the measurement structure of the latent financial development

and its possible effects on the economic growth. Since DPSEM is a multi-equation

model, it is straightforward to include the second equation in which financial de-

velopment is endogenous, possibly affected by the lagged economic growth. The

variable definitions are given in table (2).

The indicators of the financial system development are constructed in the same

way as the indicators in the mainstream empirical FD-growth literature to avoid

introduction of data-specific differences in the results (see e.g. Back et al. (2000)

and Demirgüç-Knut and Levine (2001b)).

Initially we consider the the measurement model for the latent financial develop-

9For 25 years of annual data the use of the 5-year averages requires computing w̄1 = 1
5

5∑
i=1

wi,

w̄2 = 1
5

5∑
i=1

w5+i, w̄3 = 1
5

5∑
i=1

w10+i, w̄4 = 1
5

5∑
i=1

w15+i, and w̄5 = 1
5

5∑
i=1

w20+i.
10Generally, for the l-period time averages, the overall time mean can be written as

1
T

T∑
t=1

wt =
1
T

T/l∑

j=1

l∑

i=1

wjl+i,

which implies that

lim
T→∞

1
T

T∑
t=1

wt = lim
T→∞

1
T

T/l∑

j=1

l∑

i=1

wjl+i.

Therefore, the use of time-averaged data does not introduce the “short T” problem in respect
to the maximum likelihood estimator of the individual fixed effects since the consistency of this
estimator will still depend on the length of the original (un-averaged) time series of length T .
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Table 2: Observable variables
Symbol Definition

y1 Deposit bank domestic credit divided by the sum of deposit bank
domestic credit and central bank domestic credit

y2 Currency plus demand and interest-bearing liabilities of banks and
nonbank financial intermediaries divided by GDP

y3 Value of credits by financial intermediaries to the private sector
divided by GDP

z Rate of real per capita GDP growth
x Log of real GDP per capita in beginning of the period

ment by using the observable indicators y1–y3. Beck et al. (2000), for example, run

three different sets of growth regressions using y1–y3, which importantly assumes

that these three indicators indeed measure financial development. A factor-analytic

interpretation of the first assumption is that these indicators measure a single latent

variable (factor) or that a single latent variable accounts for the observed corre-

lations among y1, y2, and y3. To this end we specify the following measurement

model




y1t

y2t

y3t


 =




λ11

λ21

λ31


 η1t +




ε1t

ε2t

ε3t


 , (59)

where the measurement error covariance matrix is of the form

Θε =




σ2
ε1

0 0

0 σ2
ε2

0

0 0 σ2
ε3


 . (60)

We allow a third-order autocorrelation process in the latent variable η1t, which can

be specified as11

3∑
j=0

(
S j

5 ⊗Φj

)
=




1 0 0 0 0

φ1 1 0 0 0

φ2 φ1 1 0 0

φ3 φ2 φ1 1 0

0 φ3 φ2 φ1 1




. (61)

This specification requires that the observable indicators measure a single latent

11We only need to specify the lower triangular of this autocorrelation matrix due to symmetry.
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variable over the entire sample period. Correlated measurement errors are not per-

mitted but (61) allows fairly general dynamics in the latent variable process.

While an iterative routine can be set up in a general programming language

such as C++ by using (41) and the analytical derivatives given in §3.2 and §3.3, we

briefly outline how some existing computer programmes can be used to obtain the

estimates of the models we estimate in this paper.

Firstly, an estimate of the empirical covariance matrix can be easily obtained

using a general purpose mathematical package such as Matlab or Maple by firstly

transforming the data into the deviations from the time means (within-group trans-

formation), and then computing the covariance matrix of the within-group trans-

formed data using (43) and (45). Once the empirical covariance matrix is computed,

a programme for estimation of the general covariance structures such as LISREL

8.54 (Jöreskog and Sörbom 1996) can be used to obtain the maximum likelihood

estimates of the unknown parameters. LISREL 8.54 allows element-by-element spec-

ification of the covariance structures that are divided into four blocks as (22); see

Cziráky (2004a) for a review of the programme.

However, the specification of DPSEM models is not straightforward in the LIS-

REL syntax, which is designed for the estimation of static SEM models (6)–(8),

and the syntax refers only to the elements of contemporaneous B and Γ matrices.

Furthermore, the LISREL programme uses numerical derivatives which might make

estimation of the more complex models difficult. Nevertheless, some simple DPSEM

models can be formulated in the LISREL syntax by treating all parameter matri-

ces as belonging to a single matrix and then imposing various restrictions on the

parameters to obtain the required DPSEM structure.

The starting values for the numerical algorithm can be obtained using the instru-

mental variables technique suggested by Cziráky (2004b), where the initial estimates

can be obtained by estimating the latent variable model transformed into the form

with observable variables and composite error terms.

Estimating the measurement model (59) as a special case of the DPSEM model

we obtain the maximum likelihood estimates reported in table 3.

The estimated coefficients (table 3) are all of the same sign and statistically

significant, most notably, all three error variances are significant, which is a strong

indication of the presence of the measurement error. The overall fit of the model,

however, is rather poor with the χ2 fit statistic nearly five times greater than its

degrees of freedom parameter. This brings in question the empirical results based

on the separate growth regressions, but it also calls for considerable extension of the

FD-growth research framework in the direction of searching for additional or better
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FD indicators. Recalling the example we used in section 2 (the Hali et al. (2002)

study) where we showed how dropping a single indicator can considerably improve

the fit of the model, the search for better indicators might be awarding in this case

too. Another immediate implication for the empirical literature would be in using

formal statistical procedures for the assessment of the measurement models as tools

for selecting the observable indicators rather then guiding the selection only on the

substantive grounds.

Table 3: FD measurement model estimates
All countries Developed countries Developing countries

θi Estimate (SE) Estimate (SE) Estimate (SE)
λ11 0.018 (0.003) 0.007 (0.002) 0.026 (0.005)
λ21 0.063 (0.005) 0.077 (0.009) 0.053 (0.006)
λ31 0.096 (0.007) 0.106 (0.012) 0.076 (0.008)
σ2

ε1
0.004 (0.000) 0.001 (0.000) 0.006 (0.001)

σ2
ε2

0.003 (0.000) 0.003 (0.000) 0.002 (0.000)
σ2

ε3
0.006 (0.001) 0.007 (0.001) 0.004 (0.001)

φ1 0.023 (0.012) 0.023 (0.018) 0.022 (0.017)
φ2 –0.682 (0.031) –0.662 (0.041) –0.691 (0.044)
φ3 –0.671 (0.031) –0.652 (0.042) –0.678 (0.045)
χ2 543.489 266.492 333.820
d.f. 111 111 111

Furthermore, we divided the countries into developed and developing (see table

4), hypothesizing that these two groups of possibly quite different countries might

have differently measured financial development. The estimates in table 3 indeed

suggest that separate models fit better. The error variances and autocovariances of

the latent FD variable are fairly close, though some differences can be observed in

the factor loadings, which might be one of the sources of the improved fit. Namely,

it seems that y3 (value of credits by financial intermediaries to the private sector)

has greater weight in measuring financial development for developed countries, while

the opposite holds for y1 (ratio of domestic and domestic plus central bank credit).

Finally we estimate a full DPSEM model including economic growth and an

additional exogenous control variable, the initial GDP per capita. The first equation

is a dynamic FD-growth relationship, which includes lagged economic growth, while

the second equation accounts for the possible feedback from the lagged growth back

to the current financial development, i.e.,

(
η1t

η2t

)
=

(
0 β

(0)
12

0 0

)(
η1t

η2t

)
+

(
β

(1)
11 0

β
(1)
21 0

)(
η1t−1

η2t−1

)
+

(
γ

(0)
11

γ
(0)
21

)
ξt+

(
ζ1t

ζ2t

)
. (62)
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Table 4: Country groups

Developed countries Developing countries
Australia UK Cameroon Kenya Syria
Austria Greece Colombia Korea Thailand
Belgium Ireland Costa Rica Sri Lanka Trinidad & T.
Canada Italy Ecuador Malaysia Venezuela
Switzerland Japan Egypt Pakistan South Africa
Germany Netherlands Ghana Philippines –
Denmark Norway Guatemala Papua N.G. –
Spain New Zealand Honduras Rwanda –
Finland Sweden India Senegal –
France USA Jamaica El Salvador –

The measurement model assumes that economic growth (η2t) and initial GDP (ξt)

are measured without error, while the financial development is measured by the

same three observable indicators as above,




zt

y1t

y2t

y3t

xt




=




1 0 0

0 λ22 0

0 λ32 0

0 λ42 0

0 0 1







η1t

η2t

ξt


 +




0

ε1t

ε2t

ε3t

0




. (63)

This specification aims at testing a possible FD-growth effect, while in the same time

considering the alternative explanation that higher levels of financial development

occur in those countries which had higher economic growth in the recent past (i.e.

over the past five years period). The parameter matrices to be estimated are specified

as follows

B0 =

(
0 β

(0)
12

0 0

)
, B1 =

(
β

(1)
11 0

β
(1)
21 0

)
, Γ 0 =

(
γ

(0)
11

γ
(0)
21

)
, Ψ =

(
1 0

0 σ2
ζ2

)
,

3∑
j=0

(
Sj

5 ⊗Φj

)
=




φ0 0 0 0 0

φ1 φ0 0 0 0

φ2 φ1 φ0 0 0

φ3 φ2 φ1 φ0 0

0 φ3 φ2 φ1 φ0




, Θε =




1 0 0 0

0 σ2
ε1

0 0

0 0 σ2
ε1

0

0 0 0 σ2
ε1




.

Estimation of the DPSEM model (62)–(63) by maximum likelihood produces

the estimates reported in table 5. We estimated three separate models, using the
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overall sample, and the two sub-samples for developed and developing countries,

respectively.

Table 5: Maximum likelihood estimates
Full panel Developed countries Developing countries

Parameter Estimate (SE) Estimate (SE) Estimate (SE)

β
(0)
12 –0.0009 (0.0013) –0.0001 (0.0008) –0.0006 (0.0027)

β
(1)
11 8.3894 (3.9914) 37.9824 (14.3015) 4.7053 (4.8261)

β
(1)
21 0.0035 (0.0749) –0.2165 (0.1017) 0.0382 (0.1134)

γ
(0)
11 –6.3067 (1.5587) –3.5109 (6.2232) –5.8761 (1.9860)

γ
(0)
21 –0.0799 (0.0282) –0.2476 (0.0450) –0.0767 (0.0456)

λ22 0.0184 (0.0044) 0.0061 (0.0035) 0.0271 (0.0081)
λ32 0.0510 (0.0062) 0.0672 (0.0114) 0.0436 (0.0076)
λ42 0.1173 (0.0126) 0.1268 (0.0199) 0.0939 (0.0939)
σ2

ε1
0.0039 (0.0004) 0.0011 (0.0002) 0.0057 (0.0009)

σ2
ε2

0.0042 (0.0006) 0.0051 (0.0014) 0.0030 (0.0007)
σ2

ε3
0.0005 (0.0026) 0.0019 (0.0044) 0.0009 (0.0023)

σ2
ζ2

0.0004 (0.0000) 0.0001 (0.0000) 0.0006 (0.0000)
φ0 0.0024 (0.0003) 0.0003 (0.0001) 0.0035 (0.0006)
φ1 0.0000 (0.0001) 0.0000 (0.0001) 0.0000 (0.0001)
φ2 –0.0013 (0.0001) –0.0002 (0.0001) –0.0018 (0.0003)
φ3 –0.0012 (0.0001) –0.0002 (0.0001) –0.0017 (0.0003)
χ2 954.638 557.434 580.681
d.f. 309 309 309

Similarly to the results obtained above for the measurement model alone, the

full model (62)–(63) fits considerably better in the two sub-samples than in the

overall sample. The apparent lack of the close fit might be due to departures from

normality, thus we test the normality of the model residuals (see figures 1 and 2).12

Using the Doornik and Hansen (1994) normality test we obtain the normality χ2

statistics with 2 d.f. of 30.584, 2.840, and 49.816 for the full sample, developed, and

developing countries’ models, respectively. Clearly, we cannot reject the normality

only for the model estimated with the sample of developed countries, hence caution

is needed in interpreting the χ2 fit statistics reported in table 5.

Despite the normality issues, the results strongly support several conclusions

that sharply contrast the mainstream empirical FD-growth literature. The first is a

clear difference between the models for the two groups of countries, which suggest a

more elaborative substantive theory should be developed to explain the FD-growth

12The residuals here refer to the differences between the corresponding elements of the fitted
and observed covariance matrix.
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Figure 1: Density plot of the standardised residuals: Overall sample
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Figure 2: Density plot of the standardised residuals: Sub-samples

relationship relative to the level of development of the analysed countries. The sec-

ond finding is that financial development has no significant impact on growth (β
(0)
12 ),

while lagged growth has strong positive impact on the current financial development

(β
(1)
11 ), which equally holds in the full sample as well as in the two sub-samples,

separately. We also find that initial capital significantly affects both growth and

financial development in the overall sample, but its effect on growth diminishes for

the developed countries, while its effect on financial development is insignificant for
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the developing countries. The coefficients of the measurement model are similar to

those estimated before, with generally significant loadings and error variances. We

note that the smallest error variance belongs to y3 (credit to private sector), which

suggests that this indicator might be somewhat better then the other two.

5 Conclusion

This paper considers maximum likelihood estimation of dynamic panel structural

equation models with latent variables and fixed effects (DPSEM). The theoretical

analysis was motivated by a specific empirical example of the relationship between

the financial development and the economic growth. The unobservability of the

financial development, along with the possible dynamic effects, simultaneity, and

country-specific effects causes potential biases in the empirical estimation and leads

to possibly wrong conclusions about this relationship.

The methods considered in this paper derive from the structural equation mod-

elling tradition where latent variables are measured by multiple observable indica-

tors and where the structural equations are estimated jointly with the measurement

model. In this paper these methods are generalised to dynamic panel models with

fixed effects. The DPSEM model encompasses virtually any dynamic or static linear

model, and it can be trivially shown that classical dynamic simultaneous equation

models, vector autoregressive moving average models, seemingly unrelated regres-

sion models with autoregressive disturbances, as well as factor analysis models and

static structural equation models can all be specified by imposing zero restrictions

on the parameter matrices of the general DPSEM model.

We derived analytical expressions for the covariance structure of the DPSEM

model as well as the score vector and the Hessian matrix, in a closed form, and

suggested a scoring method approach to the estimation of the unknown parameters.

The closed form covariance structure allowed us to write the likelihood function of

the DPSEM model by separating the observable covariance matrix from the model-

implied covariance matrix in the likelihood function, which enabled application of

the existing asymptotic results for the general class of Wishart estimators.

Further research should consider small-sample properties of these estimators as

well as their properties when the observable variables are not normally distributed.

Another extension of the present research framework would be to obtain an analyti-

cal expression for the Cramer-Rao lower bound, which would provide a general lower

bound for virtually any linear model and thus enable benchmarking of asymptotic

efficiency of alternative estimators. This would require analytical inversion of a the
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information matrix derived in this paper.

Finally, we applied the DPSEM methods to an empirical model of the financial

development and the economic growth where the financial development was mea-

sured by several observable indicators and the dynamic effects were incorporated

in the model. The results suggested a different explanation of the finance-growth

relationship to the one commonly reported in the mainstream empirical literature,

but they also suggested a considerable extension of this literature in the direction

of identifying better indicators of the latent financial development.
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Appendix A

Proof of Lemma 3.2.1 Firstly, let G1, . . . ,G4 be some zero-one matrices such
that

(
Σ 11 Σ 12

Σ 21 Σ 22

)
= G1 ⊗Σ 11 + G2 ⊗Σ 21 + G3 ⊗Σ 12 + G4 ⊗Σ 22,

which, by applying the vec operator yields

vec

(
Σ 11 Σ 12

Σ 21 Σ 22

)
= vec (G1 ⊗Σ 11) + vec (G2 ⊗Σ 21)

+vec (G3 ⊗Σ 12) + vec (G4 ⊗Σ 22)

= H 1vecΣ 11 + H 2vecΣ 21 + H 3vecΣ 12 + H 4vecΣ 22,

for some zero-one matrices H 1, . . . ,H 4. Note that for any Gk (a × b) and Σ ij

(c× d) it holds that vecGk ⊗Σ ij = [(I b ⊗K da) (vecGk ⊗ I d)⊗ I c] vecΣ ij, there-
fore H k = [(I b ⊗K da) (vecGk ⊗ I d)⊗ I c]. Now, to show that vecΣ (θ) can be

expressed as a linear function of the vectors vecΣ ij =
(
m

(ij)
1

′ · · ·m (ij)
nT

′
)′

, i, j = 1, 2

we will show that H 1, . . . ,H 4 are of the required form. Note that the dimensions
of the blocks of Σ (θ) and their columns are
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


Σ 11︸︷︷︸
nT×nT

Σ 12︸︷︷︸
nT×kT

Σ 21︸︷︷︸
kT×nT

Σ 22︸︷︷︸
kT×kT


 =




m
(11)
1︸ ︷︷ ︸

nT×1

· · · m
(11)
nT︸ ︷︷ ︸

nT×1

m
(12)
1︸ ︷︷ ︸

nT×1

· · · m
(12)
kT︸ ︷︷ ︸

nT×1

m
(21)
1︸ ︷︷ ︸

kT×1

· · · m
(21)
nT︸ ︷︷ ︸

kT×1

m
(22)
1︸ ︷︷ ︸

kT×1

· · · m
(22)
kT︸ ︷︷ ︸

kT×1


 .

Applying the vec operator to the columns-partition (48) of Σ (θ) produces a T 2(n+
k)2 vector

vecΣ (θ) = vec

(
m

(11)
1 · · · m

(11)
nT m

(12)
1 · · · m

(12)
kT

m
(21)
1 · · · m

(21)
nT m

(22)
1 · · · m

(22)
kT

)
=




m
(11)
1

m
(21)
1

...

m
(11)
nT

m
(21)
nT

m
(12)
1

m
(22)
1

...

m
(12)
kT

m
(22)
kT




.

Now we have

H 11 vecΣ 11 =




I nT 0 0 · · · 0
0 0 0 · · · 0
0 I nT 0 · · · 0
0 0 0 · · · 0
0 0 I nT · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · I nT

0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 0 0







m
(11)
1

m
(11)
2

m
(11)
3
...

m
(11)
nT




=




m
(11)
1

0

m
(11)
2

0

m
(11)
3

0
...

m
(11)
nT

0
...
...
0




,
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H 21 vecΣ 21 =




0 0 0 · · · 0
I kT 0 0 · · · 0
0 0 0 · · · 0
0 I kT 0 · · · 0
0 0 0 · · · 0
0 0 I kT · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · I kT

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0







m
(21)
1

m
(21)
2

m
(21)
3
...

m
(21)
nT




=




0

m
(21)
1

0

m
(21)
2

0

m
(21)
3

0
...

m
(21)
nT
...
...
0




,

H 12 vecΣ 12 =




0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
I nT 0 0 · · · 0
0 0 0 · · · 0
0 I nT 0 · · · 0
0 0 0 · · · 0
0 0 I nT · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · I nT

0 0 0 · · · 0







m
(12)
1

m
(12)
2

m
(12)
3
...

m
(12)
kT




=




0
...
0

m
(12)
1

0

m
(12)
2

0

m
(12)
3

0
...

m
(12)
kT

0




,

and

H 22 vecΣ 22 =




0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0

I kT 0 0 · · · 0
0 0 0 · · · 0
0 I kT 0 · · · 0
0 0 0 · · · 0
0 0 I kT · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · I kT







m
(22)
1

m
(22)
2

m
(22)
3
...

m
(22)
kT




=




0
...
...
0

m
(22)
1

0

m
(22)
2

0

m
(22)
3

0
...

m
(22)
kT




,
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therefore, it is easy to see that

H 11 vecΣ 11 + H 21 vecΣ 21 + H 12 vecΣ 12 + H 22 vecΣ 22 = vecΣ (θ)

as required.

Q.E.D.

Appendix B

Proof of Proposition 3.2.3 Firstly note that differentiating the log-likelihood (??)
is equivalent to differentiating

∂ ln L
(
W̃ NT

)

∂ θ
(∗)
j

= −N

2

∂ ln |Σ (θ)|
∂ θ

(∗)
j

− 1

2

∂ trΣ−1 (θ)W̃ NTW̃
′
NT

∂ θ
(∗)
j

,

where, by the chain rule for matrix calculus, the first term evaluates to

∂ ln |Σ (θ)|
∂ θ

(∗)
j

=

(
∂ vecΣ (θ)

∂ θ
(∗)
j

) (
∂ ln |Σ (θ)|
∂ vecΣ (θ)

)
=

(
∂ vecΣ (θ)

∂ θ
(∗)
j

)
vecΣ−1 (θ) ,

and for the second term we obtain

∂ trΣ−1 (θ)W̃ NTW̃
′
NT

∂ θ
(∗)
j

=

(
∂ vecΣ (θ)

∂ θ
(∗)
j

)(
∂ vecΣ−1 (θ)
∂ vecΣ (θ)

) (
∂ trΣ−1 (θ)W̃ NTW̃

′
NT

∂ vecΣ−1 (θ)

)

= −
(

∂ vecΣ (θ)

∂ θ
(∗)
j

)
[
Σ−1 (θ)⊗Σ−1 (θ)

]
vecW̃ NTW̃

′
NT ,

where we used the results

∂ ln |Σ (θ)|
∂ vecΣ (θ)

= vecΣ−1 (θ) ,

and

∂ vecΣ−1 (θ)

∂ vecΣ (θ)
= −Σ−1 (θ)⊗Σ−1 (θ).

Differentiating the log-likelihood now yields
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∂ ln L
(
W̃ NT

)

∂ θ
(∗)
j

= −N

2

(
∂ vecΣ (θ)

∂ θ
(∗)
j

)
vecΣ−1 (θ)

+
1
2

(
∂ vecΣ (θ)

∂ θ
(∗)
j

)
(
Σ−1 (θ)⊗Σ−1 (θ)

)
vecW̃ NTW̃

′
NT

=
1
2

(
∂ vecΣ (θ)

∂ θ
(∗)
j

)([
Σ−1 (θ)⊗Σ−1 (θ)

]
vecW̃ NTW̃

′
NT −N vecΣ−1 (θ)

)

=
1
2

(
∂ vecΣ (θ)

∂ θ
(∗)
j

)[
vecΣ−1 (θ)W̃ NTW̃

′
NTΣ−1 (θ)−N vecΣ−1 (θ)

]
, (64)

which is equivalent to (51), as required.

Q.E.D.

Appendix C

Proof of Proposition 3.2.4 We derive the components ∂ vecΣ ij/∂ θ
(∗)
j for each

Σ ij block, in turn. The derivatives for vecΣ 11 are obtained as follows. For Σ 11 we
obtain the derivative in respect to particular components of θ as follows. Using the
result that

∂ vec

(
ImT −

p∑
j=0

S j
T ⊗B j

)

∂ vecB i

= −∂ vec
(
S i

T ⊗B i

)

∂ vecB i

= −K ∗
T,m

(
ImT ⊗ S ′i

T

)⊗ Im,

we obtain the partial derivative in respect to vecB i as
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∂ vecΣ11

∂ vecB i
=

∂ vec (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗Bj

)−1

Y

(
ImT −

p∑
j=0

S ′jT ⊗B ′
j

)−1 (
I T ⊗Λ′y

)′

∂ vecB i

=




∂ vec

(
ImT −

p∑
j=0

S j
T ⊗Bj

)

∂ vecB i







∂ vec

(
ImT −

p∑
j=0

S j
T ⊗Bj

)−1

∂ vec

(
ImT −

p∑
j=0

S j
T ⊗Bj

)




×




∂ vec

(
ImT −

p∑
j=0

S j
T ⊗Bj

)−1

Y

(
ImT −

p∑
j=0

S ′jT ⊗B ′
j

)−1

∂ vec

(
ImT −

p∑
j=0

S j
T ⊗Bj

)−1




×




∂ vec (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1

Y

(
ImT −

p∑
j=0

S ′jT ⊗B ′
j

)−1 (
I T ⊗Λ′y

)

∂ vec

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1

Y

(
ImT −

p∑
j=0

S ′jT ⊗B ′
j

)−1




=
[
K ∗

T,m

(
ImT ⊗ S ′iT

)⊗ Im

]




ImT −

p∑

j=0

S j
T ⊗Bj



−1

⊗

ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1




×





Y


ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1

⊗ ImT


 +


Y ′


ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1

⊗ ImT


KmT,mT




× (
I T ⊗Λ′y

)⊗ (
I T ⊗Λ′y

)
.

Next, we obtain

∂ vecΣ 11

∂ vecΓ i

=
∂ vecA

(
S i

T ⊗ Γ i

)
F

(
S i

T ⊗ Γ i

)′
A′

∂ vecΓ i

=

(
∂ vec

(
S i

T ⊗ Γ i

)

∂ vecΓ i

)(
∂ vec

(
S i

T ⊗ Γ i

)
Y

(
S i

T ⊗ Γ i

)′
∂ vec

(
S i

T ⊗ Γ i

)
)

×
(

∂ vecA
(
S i

T ⊗ Γ i

)
F

(
S i

T ⊗ Γ i

)′
A′

∂ vec
(
S i

T ⊗ Γ i

)
F

(
S i

T ⊗ Γ i

)′
)

=
[
K ∗

T,g

(
I Tg ⊗ S ′i

T

)⊗ Im

]

×
[
Y

(
S i

T ⊗ Γ i

)′ ⊗ ImT + Y ′ (S i
T ⊗ Γ i

)′ ⊗ ImT )
]
KmT,mT (A′ ⊗A′) ,

where we used the result that
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∂ vec

(
q∑

j=0

S j
T ⊗ Γ j

)

∂ vecΓ i

=
∂ vec

(
S i

T ⊗ Γ i

)

∂ vecΓ i

= K ∗
T,g

(
I gT ⊗ S ′i

T

)⊗ Im.

The derivative in respect to vecΛy is obtained as

∂ vecΣ 11

∂ vecΛy

=
∂ vec (I T ⊗Λy)X

(
I T ⊗Λ′

y

)

∂ vecΛy

=

(
∂ vec (I T ⊗Λy)

∂ vecΛy

) (
∂ vec (I T ⊗Λy)X

(
I T ⊗Λ′

y

)

∂ vec (I T ⊗Λy)

)

=
(
K ∗

T,m ⊗ I n

) ([
X

(
I T ⊗Λ′

y

)⊗ I nT

]
+

[
X ′ (I T ⊗Λ′

y

)⊗ I nT

]
K nT,nT

)
,

vecΣ11 = vecL


ImT −

p∑

j=0

S j
T ⊗B j



−1

Y


ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1

L′+vec (I T ⊗Θε) .

(65)

To obtain the derivatives in respect to vechΦ0 and vechΦi firstly note that for
a symmetrical a× a matrix X , ∂ vecX /∂ vechX = D ′

a. Hence we have

∂ vecΣ 11

∂ vechΦ0

=

(
∂ vecΦ0

∂ vechΦ0

)(
∂ vecZ (I T ⊗Φ0)Z

′

∂ vecΦ0

)

= D ′
g

(
∂ vec (I T ⊗Φ0)

∂ vecΦ0

)(
∂ vecZ (I T ⊗Φ0)Z

′

∂ vec (I T ⊗Φ0)

)

= D ′
g

[
I g ⊗ (vec I T )′

]
(K g,T ⊗ I T ) (Z ′ ⊗ Z ′) ,

and
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∂ vecΣ 11

∂ vechΦi

=

(
∂ vecΦi

∂ vechΦi

) ∂ vecZ

[
q∑

j=1

(
S j

T ⊗Φj + S ′j
T ⊗Φ′

j

)
]
Z ′

∂ vecΦi

= D ′
g




∂ vecZ

[
q∑

j=1

(
S j

T ⊗Φj

)
]
Z ′

∂ vecΦi

+

∂ vecZ

[
q∑

j=1

(
S ′j

T ⊗Φ′
j

)
]
Z ′

∂ vecΦi




= D ′
g

(
∂ vecZ

(
S j

T ⊗Φi

)
Z ′

∂ vecΦi

+
∂ vecZ

(
S i

T ⊗Φi

)′
Z ′

∂ vecΦi

)

= D ′
g

[(
∂ vec

(
S j

T ⊗Φi

)

∂ vecΦi

)(
∂ vecZ

(
S j

T ⊗Φi

)
Z ′

∂ vec
(
S j

T ⊗Φi

)
)

+

(
∂ vec

(
S i

T ⊗Φi

)

∂ vecΦi

)(
∂ vec

(
S i

T ⊗Φi

)′
∂ vec

(
S i

T ⊗Φi

)
)(

∂ vecZ
(
S i

T ⊗Φi

)′
Z ′

∂ vec
(
S i

T ⊗Φi

)′
)]

= D ′
g

[
K ∗

T,g

(
I gT ⊗ S ′i

T

)⊗ I g

]
(I gT + K gT,gT ) (Z ′ ⊗ Z ′)

while for vechΨ ,

∂ vecΣ 11

∂ vecΨ
=

(
∂ vecΨ

∂ vechΨ

)(
∂ vecD (I T ⊗Ψ)D ′

∂ vecΨ

)

= D ′
m

(
∂ vec (I T ⊗Ψ)

∂ vecΨ

)(
∂ vecD (I T ⊗Ψ)D ′

∂ vec (I T ⊗Ψ)

)

= D ′
m

[
Im ⊗ (vec I T )′

]
(Km,T ⊗ I T ) (D ′ ⊗D ′) .

Finally, we have

∂ vecΣ 11

∂ vechΘε

=

(
∂ vecΘε

∂ vechΘε

)(
∂ vec (I T ⊗Θε)

∂ vecΘε

)
= D ′

n

[
I n ⊗ (vec I T )′

]
(K n,T ⊗ I T ) .

The derivatives of vecΣ 12 are similarly obtained as
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∂ vecΣ12

∂ vecB i
=

∂ vec (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1 (
q∑

j=0
S j

T ⊗ Γ j

)
F (I T ⊗Λ′

x)

∂ vecB i

=




∂ vec

(
ImT −

p∑
j=0

S j
T ⊗B j

)

∂ vecB i







∂ vec

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1

∂ vec

(
ImT −

p∑
j=0

S j
T ⊗B j

)




×
∂ vec (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1 (
q∑

j=0
S j

T ⊗ Γ j

)
F (I T ⊗Λ′

x)

∂ vec

(
ImT −

p∑
j=0

S j
T ⊗B j

)−1

=
[
K ∗

T,m

(
ImT ⊗ S ′iT

)⊗ Im

]




ImT −

p∑

j=0

S j
T ⊗B j



−1

⊗

ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1



×









q∑

j=0

S j
T ⊗ Γ j


F

(
I T ⊗Λ′

x

)

⊗ (I T ⊗Λy)

′

 ,

∂ vecΣ12

∂ vecΓ i
=

∂ vec (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗Bj

)−1 (
S i

T ⊗ Γ i

)
F

(
I T ⊗Λ′x

)

∂ vecΓ i

=

(
∂ vec

(
S i

T ⊗ Γ i

)

∂ vecΓ i

)



∂ vec (I T ⊗Λy)

(
ImT −

p∑
j=0

S j
T ⊗Bj

)−1 (
S i

T ⊗ Γ i

)
F

(
I T ⊗Λ′x

)

∂ vec
(
S i

T ⊗ Γ i

)




=
[
K τ̄T

T,g

(
I gT ⊗ S ′iT

)⊗ Im

]



[
F

(
I T ⊗Λ′x

)]⊗





ImT −

p∑

j=0

S ′jT ⊗B ′
j



−1

(
I T ⊗Λ′y

)




 ,

∂ vecΣ 12

∂ vecΛy

=
∂ vec (I T ⊗Λy)QF (I T ⊗Λ′

x)

∂ vecΛy

=

(
∂ vec (I T ⊗Λy)

∂ vecΛy

)(
∂ vec (I T ⊗Λy)QF (I T ⊗Λ′

x)

∂ vec (I T ⊗Λy)

)

=
[
I n ⊗ (vec I T )′

]
(K n,T ⊗ I T ) ([QF (I T ⊗Λ′

x)]⊗ I nT ) ,
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∂ vecΣ 11

∂ vecΛx

=
∂ vec (I T ⊗Λy)QF (I T ⊗Λ′

x)

∂ vecΛx

=

(
∂ vec (I T ⊗Λx)

∂ vecΛx

)(
∂ vec (I T ⊗Λ′

x)

∂ vec (I T ⊗Λx)

)(
∂ vec (I T ⊗Λy)QF (I T ⊗Λ′

x)

∂ vec (I T ⊗Λx)

)

=
[
I n ⊗ (vec I T )′

]
(K k,T ⊗ I T )K k,T

(
I gT ⊗ FQ ′ [(I T ⊗Λ′

y

)])
,

∂ vecΣ 12

∂ vechΦ0

=

(
∂ vecΦ0

∂ vechΦ0

)(
∂ vec (I T ⊗Λy)Q (I T ⊗Φ0) (I T ⊗Λ′

x)

∂ vecΦ0

)

= D ′
g

(
∂ vec (I T ⊗Φ0)

∂ vecΦ0

)(
∂ vec (I T ⊗Λy)Q (I T ⊗Φ0) (I T ⊗Λ′

x)

∂ vec (I T ⊗Φ0)

)

= D ′
g

[
I g ⊗ (vec I T )′

]
(K g,T ⊗ I T )

[
(I T ⊗Λ′

x)⊗Q ′ (I T ⊗Λ′
y

)]
,

and

∂ vecΣ12

∂ vechΦi
=

(
∂ vecΦi

∂ vechΦi

)



∂ vec (I T ⊗Λy)Q

[
q∑

j=1

(
S j

T ⊗Φj + S ′jT ⊗Φ′
j

)]
(
I T ⊗Λ′x

)

∂ vecΦi




=
(

∂ vecΦi

∂ vechΦi

) 
∂ vec (I T ⊗Λy)Q

(
S j

T ⊗Φi

) (
I T ⊗Λ′x

)

∂ vecΦi

+
∂ vec (I T ⊗Λy)Q

(
S i

T ⊗Φi

)′ (
I T ⊗Λ′x

)

∂ vecΦi

)

= D ′
g





∂ vec

(
S j

T ⊗Φi

)

∂ vecΦi





∂ vec (I T ⊗Λy)Q

(
S j

T ⊗Φi

) (
I T ⊗Λ′x

)

∂ vec
(
S j

T ⊗Φi

)



+

(
∂ vec

(
S i

T ⊗Φi

)

∂ vecΦi

)(
∂ vec

(
S i

T ⊗Φi

)′

∂ vec
(
S i

T ⊗Φi

)
)


∂ vec (I T ⊗Λy)Q

(
S j

T ⊗Φi

)′ (
I T ⊗Λ′x

)

∂ vec
(
S j

T ⊗Φi

)′







= D ′
g

[
K ∗

T,g

(
I gT ⊗ S ′iT

)⊗ I g

]
(I gT + K gT,gT )

[(
I T ⊗Λ′x

)⊗Q ′ (I T ⊗Λ′y
)]

.

Lastly, the derivatives of vecΣ 22 are obtained as follows

∂ vecΣ 22

∂ vecΛx

=
∂ vec (I T ⊗Λx)F (I T ⊗Λ′

x)

∂ vecΛx

=

(
∂ vec (I T ⊗Λx)

∂ vecΛx

)(
∂ vec (I T ⊗Λx)F (I T ⊗Λ′

x)

∂ vec (I T ⊗Λx)

)

=
(
K ∗

T,g ⊗ I k

)
([F (I T ⊗Λ′

x)⊗ I kT ] + [F ′ (I T ⊗Λ′
x)⊗ I kT ]K k,T ) ,
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∂ vecΣ 22

∂ vechΦ0

=

(
∂ vecΦ0

∂ vechΦ0

)(
∂ vec (I T ⊗Λx) (I T ⊗Φ0) (I T ⊗Λx)

′

∂ vecΦ0

)

= D ′
g

(
∂ vec (I T ⊗Φ0)

∂ vecΦ0

)(
∂ vec (I T ⊗Λx) (I T ⊗Φ0) (I T ⊗Λx)

′

∂ vec (I T ⊗Φ0)

)

= D ′
g

[
I g ⊗ (vec I T )′

]
(K g,T ⊗ I T ) [(I T ⊗Λ′

x)⊗ (I T ⊗Λ′
x)] ,

∂ vecΣ22

∂ vechΦi
=

(
∂ vecΦi

∂ vechΦi

)



∂ vec (I T ⊗Λx)

[
q∑

j=1

(
S j

T ⊗Φj + S ′jT ⊗Φ′
j

)]
(I T ⊗Λ′

x)

∂ vecΦi




= D ′
g




∂ vec (I T ⊗Λx)

[
q∑

j=1

(
S j

T ⊗Φj

)]
(I T ⊗Λx)′

∂ vecΦi

+

∂ vec (I T ⊗Λx)

[
q∑

j=1

(
S ′jT ⊗Φ′

j

)]
(I T ⊗Λx)′

∂ vecΦi




= D ′
g


∂ vec (I T ⊗Λx)

(
S j

T ⊗Φi

)
(I T ⊗Λx)′

∂ vecΦi
+

∂ vec (I T ⊗Λx)
(
S i

T ⊗Φi

)′ (I T ⊗Λx)′

∂ vecΦi




= D ′
g





∂ vec

(
S j

T ⊗Φi

)

∂ vecΦi





∂ vec (I T ⊗Λx)

(
S j

T ⊗Φi

)
(I T ⊗Λx)′

∂ vec
(
S j

T ⊗Φi

)



+

(
∂ vec

(
S i

T ⊗Φi

)

∂ vecΦi

)(
∂ vec

(
S i

T ⊗Φi

)′
∂ vec

(
S i

T ⊗Φi

)
)(

∂ vec (I T ⊗Λx)
(
S i

T ⊗Φi

)′ (I T ⊗Λx)′

∂ vec
(
S i

T ⊗Φi

)′
)]

= D ′
g

[
K ∗

T,g

(
I gT ⊗ S ′iT

)⊗ I g

]
(I gT + K gT,gT )

[(
I T ⊗Λ′

x

)⊗ (
I T ⊗Λ′

x

)]
,

and

∂ vecΣ 22

∂ vechΘδ

=

(
∂ vecΘδ

∂ vechΘδ

)(
∂ vec (I T ⊗Θδ)

∂ vecΘδ

)
= D ′

k

(
I k ⊗ (vec I T )′

)
(K kT ⊗ I T ) .

The remaining derivatives are zero trivially in all cases where particular component
of the parameter vector θ is not contained in Σ ij.

Q.E.D.
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Appendix D

Proof of Proposition 3.3.1 We obtain the general form of the second partial
derivative (55) by differentiating the typical element of the score vector

∂ lnL
(
W̃ NT

)

∂ θ
(∗)
j

=
1
2

(
∂ vecΣ (θ)

∂ θ
(∗)
j

)[
vecΣ−1 (θ)W̃ NTW̃

′
NTΣ−1 (θ)−N vecΣ−1 (θ)

]

(66)

in respect to the component θ
(∗)
i of the parameter vector θ. Note that (66) is the

partial derivative of the log-likelihood (38) in respect to the component θ
(∗)
j of the

parameter vector θ. We make use of the generalised product rule for matrix calculus

∂ G(z)h(z)

∂ z
=

∂ vec G(z)

∂ z
[h(z)⊗ Id] +

∂ h(z)

∂ z
G(z)′ (67)

where G(z) is a matrix function of the vector z, h(z) is a vector function of z, and

d is the dimension of the vector z. Letting ∂ vecΣ (θ)/∂ θ
(∗)
j ≡ G(z ) and

vecΣ−1 (θ)W̃ NTW̃
′
NTΣ

−1 (θ)−N vecΣ−1 (θ) ≡ h(z ),

we firstly differentiate the two additive components of ∂ h(z)/∂ z. Differentiating

the first component of h(z) in respect to θ
(∗)
i we obtain

∂ vec
(
Σ−1 (θ)W̃ NTW̃

′
NTΣ

−1 (θ)
)

∂ θ
(∗)
i

=

(
∂ vecΣ (θ)

∂ θ
(∗)
i

)(
∂ vecΣ−1 (θ)

∂ vecΣ (θ)

) (
∂ vecΣ−1 (θ)W̃ NTW̃

′
NTΣ

−1 (θ)

∂ vecΣ−1 (θ)

)

= −
(

∂ vecΣ (θ)

∂ θ
(∗)
i

)
(
Σ−1 (θ)⊗Σ−1 (θ)

)
(

∂ vecΣ−1 (θ)W̃ NTW̃
′
NTΣ

−1 (θ)

∂ vecΣ−1 (θ)

)

= −
(

∂ vecΣ (θ)

∂ θ
(∗)
i

)
(
Σ−1 (θ)⊗Σ−1 (θ)

)

×
([

W̃ NTW̃
′
NTΣ

−1 (θ)⊗ ImT

]
+

[
ImT ⊗ W̃ NTW̃

′
NTΣ

−1 (θ)
])

, (68)

where we used the result

∂ vecΣ−1 (θ)W̃ NTW̃
′
NTΣ

−1 (θ)

∂ vecΣ (θ)
=

[
W̃ NTW̃

′
NTΣ

−1 (θ)⊗ ImT

]
(69)

+
[
ImT ⊗ W̃ NTW̃

′
NTΣ

−1 (θ)
]

(70)

For the second component we have
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∂ vecΣ−1 (θ)

∂ θ
(∗)
i

= −
(

∂ vecΣ (θ)

∂ θ
(∗)
i

) (
∂ vecΣ−1 (θ)

∂ vecΣ (θ)

)

= −
(

∂ vecΣ (θ)

∂ θ
(∗)
i

)
(
Σ−1 (θ)⊗Σ−1 (θ)

)

Substituting (68) and (70) into (67) yields

∂2 lnL
(
W̃ NT

)

∂ θ
(∗)
j ∂ θ

(∗)
i
′

=
1
2

(
∂2vecΣ (θ)

∂ θ
(∗)
j ∂ θ′(∗)i

) ([
vecΣ−1 (θ)W̃ NTW̃

′
NTΣ−1 (θ)−N vecΣ−1 (θ)

]
⊗ I pi

)

+
1
2

(
∂ vecΣ−1 (θ)W̃ NTW̃

′
NTΣ−1 (θ)

∂ θ
(∗)
i

−N
∂ vecΣ−1 (θ)

∂ θ
(∗)
i

)(
∂ vecΣ (θ)

∂ θ
(∗)
j

)′

=
1
2

(
∂2vecΣ (θ)

∂ θ
(∗)
j ∂ θ′(∗)i

) ([
vecΣ−1 (θ)W̃ NTW̃

′
NTΣ−1 (θ)−N vecΣ−1 (θ)

]
⊗ I pi

)

− 1
2

[(
∂ vecΣ (θ)

∂ θ
(∗)
i

)
[
Σ−1 (θ)⊗Σ−1 (θ)

]

×
([

W̃ NTW̃
′
NTΣ−1 (θ)⊗ ImT

]
−

[
ImT ⊗ W̃ NTW̃

′
NTΣ−1 (θ)

])

− N

(
∂ vecΣ (θ)

∂ θ
(∗)
i

)
[
Σ−1 (θ)⊗Σ−1 (θ)

]
](

∂ vecΣ (θ)

∂ θ
(∗)
j

)′
,

which gives the expression (55), as required.

Q.E.D.

Appendix E

Proof of Proposition 3.3.2 We will show that the probability limit of the typical
element of the Hessian matrix (55) is given by (56). By (46) and (47) it follows that

p lim
T,N→∞

[
vecΣ−1 (θ)

1

N
W̃ NTW̃

′
NTΣ

−1 (θ)

]
= vecΣ−1 (θ) ,

and hence

p lim
T,N→∞

[
vecΣ−1 (θ)

1

N
W̃ NTW̃

′
NTΣ

−1 (θ)− vecΣ−1 (θ)

]
= 0 . (71)

Therefore, the first term converges in probability to zero,
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p lim
T,N→∞

1
2

(
∂2vecΣ (θ)

∂ θ
(∗)
j ∂ θ

(∗)
i
′

) ([
vecΣ−1 (θ)

1
N

W̃ NTW̃
′
NTΣ−1 (θ)− vecΣ−1 (θ)

]
⊗ I pi

)
= 0 .

Next, note that

p lim
T,N→∞

(
1

N
W̃ NTW̃

′
NTΣ

−1 (θ)⊗ ImT

)
= ImT ⊗ ImT ,

and

p lim
T,N→∞

(
ImT ⊗ 1

N
W̃ NTW̃

′
NTΣ

−1 (θ)

)
= ImT ⊗ ImT ,

thus we have

p lim
T,N→∞

([
1

N
W̃ NTW̃

′
NTΣ

−1 (θ)⊗ ImT

]
−

[
ImT ⊗ 1

N
W̃ NTW̃

′
NTΣ

−1 (θ)

])
= 0 .

This implies that the second term converges in probability to zero,

p lim
T,N→∞

1

2

(
∂ vecΣ (θ)

∂ θ
(∗)
i

)
[
Σ−1 (θ)⊗Σ−1 (θ)

]

× 1

N

([
W̃ NTW̃

′
NTΣ

−1 (θ)⊗ ImT

]
−

[
ImT ⊗ W̃ NTW̃

′
NTΣ

−1 (θ)
])

= 0

This leaves us with the remaining term as required by (56).

Q.E.D
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Financial Structure and Economic Growth: A Cross Country Comparison of

Banks, Markets, and Development. Cambridge, MA: MIT Press, pp. 3–14.
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