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SCHOTTKY COHOMOLOGIES FOR VERTEX ALGEBRAS

A. ZUEVSKY

Abstract. Using Schottky procedure of forming a genus g Riemann surface by

multiple attaching handles to a complex sphere, we introduce cohomologies for

vertex algebras by sewing procedure for coboundary operators.

AMS Classification: 53C12, 57R20, 17B69

1. Introduction

In [H] (see also [Q]) the notion of a cohomology of grading-restricted vertex al-
gebras [K, FHL, FLM, F] was introduced. In such formulation, matrix elements are
associated with correlation functions for vertex algebras with formal parameters iden-
tified with local coordinates on the complex sphere [Z]. In [H] a coboundary operator
for chain-cochain double complexes was introduced in terms of rational functions ob-
tained as matrix elements for such vertex algebras. It is natural then to consider
a different construction, when local coordinates for vertex operators are taken on a
complex sphere with multiply sewn handles [Y]. This construction leads to a different
form of coboundary operators and cohomology for a grading-restricted vertex algebra.

In this paper we introduce the cohomology of vertex algebras with coboundary
operators defined by summations of matrix elements associated to multiple a genus g
Riemann surface obtained by multiple sewing g handles to the complex sphere in the
frames of the Schottky uniformization. Recall that correlation functions for a vertex
algebra V [FHL, FLM, Z] on the torus obtained as a result of sewing a sphere to
itself, one starts from matrix elements

〈1V , Y (v1, z1)...Y (v1, zn)1V 〉,
where (v1, . . . , vn) ∈ V , (z1, . . . , zn) on Σ(0), and pass to matrix elements∑

w∈W ;
k≥0

ρk〈w̄, YW (ū, η1) YW (v1, z1)... YW (v1, zn) YW (u, η2) w〉,

reproducing the trace of product of vertex operators on the torus, where w̄ is dual to w
with respect to a non-degenerate bilinear form 〈., .〉 on W , YW (v1, z1) . . . YW (v1, zn)
are vertex operators in a V -module W , and η1, η2 ∈ C are coordinates of points
on the sphere where a handle is attached, and ρ as introduced above. In contrust
to [H], in this paper we introduce a cohomology theory which is associated on a
different auxiliary space. In case of the construciton of [H], that auxiliary space is the
Riemann sphere, while in our construction it is a genus g Riemann surface formed
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2 A. ZUEVSKY

in the Schottky procedure of multiple sewing handles to the Riemann sphere. Such
methodology is widely used in conformal field theory and as it is usually done in
the procedure of construction of higher genus partition and correlation functions for
vertex operator algebras.

2. Riemann Surfaces from a Sewn Sphere

Let us first recall the set up for self-sewing the complex sphere [Y]. Consider the
construction of a torus Σ(1) formed by self-sewing a handle to a Riemann sphere Σ(0).
This is given by Yamada formalism [Y], or so-called ρ-formalism. Let z1, z2 be local
coordinates in the neighborhood of two separated points p1 and p2 on the sphere.
Consider two disks

|za| ≤ ra,
for ra > 0 and a = 1, 2. Note that r1, r2 must be sufficiently small to ensure that the
disks do not intersect. Introduce a complex parameter ρ where

|ρ| ≤ r1r2,

and excise the disks

{za : |za| < |ρ|r−1
ā } ⊂ Σ(0),

to form a twice-punctured sphere

Σ̂(0) = Σ(0)\
⋃
a=1,2

{za : |za| < |ρ|r−1
ā }.

We use the convention 1̄ = 2, 2̄ = 1. We define annular regions Aa ⊂ Σ̂(g) with

Aa = {za : |ρ|r−1
ā ≤ |za| ≤ ra}

and identify them as a single region

A = A1 ' A2,

via the sewing relation

z1z2 = ρ, (2.1)

to form a torus

Σ(1) = Σ̂(0)\{A1 ∪ A2} ∪ A.
The sewing relation (2.1) can be considered to be a parameterization of a cylinder
connecting the punctured Riemann surface to itself.

One can also construct a genus g Riemann surface by simultaneous sewing of g
handles to the complex sphere. Now let us recall the Schottky formulation of forming

a genus g Riemann surface. We identify g pairs of annuli centred at A±i ∈ Ĉ, for
1 ≤ 1 ≤ g, and sewing parameters ρi satisfying

(z −A−i)(z′ −Ai) = ρi, (2.2)

provided no two annuli intersect.



SCHOTTKY COHOMOLOGIES FOR VERTEX ALGEBRAS 3

We define q, a±1, known as Schottky parameters, by

ai =
Ai + qA−i

1 + q
,

χ =
q

(1 + q)2
, (2.3)

for i = ±1. Consider the construction of a torus by sewing a handle to the Riemann
sphere Ĉ by identifying annular regions centered at A±1 ∈ Ĉ via a sewing condition(

z − a−1

z − a1

)(
z′ − a1

z′ − a−1

)
= q. (2.4)

Inverting (2.3) we find that q = C(χ) for Catalan series

C(χ) =
1− (1− 4χ)

1/2

2χ
− 1

=
∑
n≥1

1

n

(
2n

n+ 1

)
χn. (2.5)

We may similarly construct a general genus g Riemann surface by identifying g pairs
of annuli. For i = 1, . . . , g we define Schottky parameters a±i, qi by

a±i =
A±i + qA∓i

1 + qi
,

ρi = −qi(A−i −Ai)
2

(1 + qi)2
, (2.6)

where |qi| < 1 is again related to the Catalan series (2.5)

qi = C(χi),

χi = − ρi
(Ai −A−i)2

.

The Schottky sewing condition has the form(
z − a−i
z − ai

)(
z′ − ai
z′ − a−i

)
= qi. (2.7)

The genus g partition function for a VOA V in the canonical sewing scheme in
terms of genus zero 2g-point correlation functions can be expressed as a convergent
series as follows:

Z
(g)
V (ρi, A±i) = 〈1V ,

g∏
i=1

∑
ni≥0

ρni
i

∑
vi∈V(n)

Y (vi, A−i)Y (vi, Ai)1V 〉, (2.8)

where vi is dual to vi [Zo, M, T].
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3. Matrix elements in functional form

In this section, let us recall [H, Q] the functional formulation for matrix elements
for a grading-restricted vertex algebra (see Appendix 6).

Let V be a grading-restricted vertex algebra and W a grading-restricted generalized
V -module. Let W be the algebraic completion of W , that is,

W =
∏
n∈C

W(n) = (W ′)
∗
.

One defines also the configuration space FCn

FCn = {(z1, ..., zn+1) : zi 6= zj , i 6= j} . (3.1)

A W -valued rational function in (z1, . . . , zn) with the only possible poles at zi = zj ,
i 6= j is a map

f : FnC → W,

(z1, . . . , zn) 7→ f(z1, . . . , zn), (3.2)

such that for any w′ ∈W ′, matrix element

〈w′, f(z1, . . . , zn)〉, (3.3)

is a rational function in (z1, . . . , zn) with the only possible poles at zi = zj , i 6= j.
By a rational function of (z1, . . . , zn), one means a function of (z1, . . . , zn) of the

form

f(z1, . . . , zn) =
P (z1, . . . , zn)

Q(z1, . . . , zn)
, (3.4)

where P (z1, . . . , zn) and Q(z1, . . . , zn) are polynomials in (z1, . . . , zn).
If the polynomials P (z1, . . . , zn) and Q(z1, . . . , zn) have no common factors, then

for a linear factor g(z1, . . . , zn) of Q(z1, . . . , zn), one says that f(z1, . . . , zn) has poles
at the set of zeros of g(z1, . . . , zn). The maximal power of g(z1, . . . , zn) inQ(z1, . . . , zn)
is called the order of these poles.

By a rational function with the only possible poles at a set of points in Cn, one
means in [H] a rational function of the form above such that P (z1, . . . , zn) and
Q(z1, . . . , zn) have no common factors, Q(z1, . . . , zn) is a product of linear factors
whose zeros are contained in that set of points in Cn.

Denote the space of all W -valued rational functions in (z1, . . . , zn) by W̃z1,...,zn . If
a meromorphic function f(z1, . . . , zn) on a region in Cn can be analytically extended
to a rational function in (z1, . . . , zn), we will use [H, Q] R(f(z1, . . . , zn)) to denote
this rational function. For each (z1, . . . , zn, ζ) ∈ Fn+1C, v1, . . . , vn ∈ V , w ∈ W and
w′ ∈W ′, we have an element

E(YW (v1, z1) · · ·YW (vn, zn)YWWV (w, ζ)1V ) ∈W, (3.5)

given by

〈w′, E(YW (v1, z1) · · ·YW (vn, zn)YWWV (w, ζ)1V )〉
= R(〈w′, YW (v1, z1) · · ·YW (vn, zn)YWWV (w, ζ)1V 〉),
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where YWWV (w, ζ) is the intertwining operator. It is a linear map

YWWV : W ⊗ V → W [[z, z−1]],

w ⊗ v 7→ YWWV (w, z)v,

defined by

YWWV (w, z)v = ezL(−1)YW (v,−z)w,
for v ∈ V and w ∈W .

Let Φ : V ⊗n → W̃z1,...,zn , be a map composable [H, Q] (see Appendix 8) with m
vertex operators. We then define

Φ(E
(l1)
V ; 1V

⊗ · · · ⊗ E(ln)
V ; 1V

) : V ⊗m+n → W̃z1,...,zm+n ,

by

Φ(E
(l1)
V ; 1V

⊗ · · · ⊗ E(ln)
V ; 1V

)(v1 ⊗ · · · ⊗ vm+n−1)

= Φ(E
(l1)
V ;1V

(v1 ⊗ · · · ⊗ vl1)⊗ · · ·

⊗E(ln)
V ;1V

(vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln)). (3.6)

Finally, for ζ ∈ C we introduce the special action of an E-element of the form
(3.5) on Φ by adding of intertwining operators with formal parameters associated to
coordinates of insertion of a handle to the sphere:

E ((v1, z1)⊗ . . .⊗ (vm, zm);w, ζ) ◦ Φ(vm+1 ⊗ · · · ⊗ vm+n)) (zm+1, . . . , zm+n)

= R(〈1W , YW (v1, z1) . . . , YW (vm, zm) (3.7)

YWWV (Φ(vm+1 ⊗ · · · ⊗ vm+n))(zm+1, . . . , zm+n)YWWV (w, ζ)1V ,−ζ)1V )〉).

This action provides passing from a matrix element to the trace on sewn sphere. Note
that this action can be combined with (3.6) (see (4.2)). The action (3.7) allows to
define the coboundary operators for bicomplexes constructed for grading-restricted
vertex algebras. The idea is to use E-operators involved in [H, Q] in order to define
coboundary operators on the self-sewn sphere in terms of original matrix elements.

4. Schottky cohomology of a grading-restricted vertex algebra

In this section in addition to [H, Q], we define the multiple sewn cohomology
(associated to the Schottky univformization of a genus g Riemann surface) for a
grading-restricted vertex algebra. One can define an action of Sn on the space

Hom(V ⊗n, W̃z1,...,zn) of linear maps from

V ⊗n → W̃z1,...,zn ,

by

(σ(Φ))(v1 ⊗ · · · ⊗ vn) = σ(Φ(vσ(1) ⊗ · · · ⊗ vσ(n))),

for σ ∈ Sn and (v1, . . . , vn) ∈ V . We will use the notation σi1,...,in ∈ Sn to denote the
the permutation given by σi1,...,in(j) = ij for j = 1, . . . , n.
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Recall the definition of shuffles [H]. For n ∈ N and 1 ≤ s ≤ n − 1, let Jn;s be the
set of elements of Sn which preserve the order of the first s numbers and the order of
the last n− s numbers, that is,

Jn,s = {σ ∈ Sn | σ(1) < · · · < σ(s), σ(s+ 1) < · · · < σ(n)}.

Elements of Jn;s are called shuffles. Let J−1
n;s = {σ | σ ∈ Jn;s}.

Let V be a grading-restricted vertex algebra and W a V -module. For fixed m, and

n ∈ Z+, let Cnm(V,W ) be the vector spaces of all linear maps from V ⊗m → W̃z1,...,zm

composable with m vertex operators, satisfying the L(−1)-derivative property and
the L(0)-conjugation property, and such that∑

σ∈J−1
n;s

(−1)|σ|σ(Φ(vσ(1) ⊗ · · · ⊗ vσ(n))) = 0. (4.1)

Let C0
m(V,W ) = W . Then we have

Cnm(V,W ) ⊂ Cnm−1(V,W ).

Let us denote

E(1) = E((w̄p, η1,p)⊗ (v1, z1);wp, η2,p),

E(2) = E((w̄p, η1,p);wp, η2,p),

σn+1,1,...,n E
(1) = (−1)n+1E ((w̄p, η1,p)⊗ (vn+1, zn+1);wp, η2,p) .

We then formulate

Proposition 1. For coordinates η1,p, η2,p ∈ C p = 1, . . . , g, of points on the complex
sphere, and arbitrary ζi ∈ C, i = 1, . . . , n and let up ∈ V be such that

lim
η1→0

Y †(up, η1)1W = w̄p.

Then the operator δnm(ρ1, . . . , ρg; η2,1 . . . , η2,g)

δnmΦ =

g∏
p=1

∑
wp∈W(k);

k≥0

ρkp

[
lim

η1,p→0

[
E(1) ◦ Φ

+
n∑
i=1

(−1)iE(2) ◦ Φ(E
(2)
V ;1V

(vi, zi − ζi; vi+1, zi+1 − ζi))

+ (−1)n+1σn+1,1,...,n E
(1) ◦ Φ

]]
, (4.2)

for Φ ∈ Cnm(V,W ), defines a coboundary operator for the chain bicomplex

δnm : Cnm(V,W )→ Cn+1
m−1(V,W ),

δn+1
m−1 ◦ δnm = 0, (4.3)

(here we omit the dependence on (ρ1, . . . , ρg) and (η2,1 . . . , η2,g)).
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In (4.2) dagger means the dual vertex operator with respect to the bilinear form
on W . With coboundary operator (4.2) one defines the n-th Schottky cohomology
Hn
m(V,W ) of the bicomplex (Cnm(V,W ), δnm) with the spaces Cnm(V,W ) composable

with m vertex operators to be

Hn
m(V,W ) = ker δnm/im δn−1

m+1.

Remark 1. Using modifications of (4.2) we are able to construct the spectral sequences
for grading-restricted vertex operator algebra complexes which can be used in various
cohomology construction, in particular, on orbifolds [V1, V2].

Proof. In (4.2) wp ∈ W(n), p = 1, . . . , g, and w̄p are corresponding dual to wp with
respect to a non-degenerate non-vanishing bilinear form on W , and η1,p, η2,p ∈ C are
complex coordinates of g pair of points on the sphere where g cylinders are attached
to form a genus g Riemann surface in Schottky procedure (see Appendix 2). Let
v1, . . . , vn+1 ∈ V , and (z1, . . . , zn+1) ∈ Fn+1C, and Φ ∈ Cnm(V,W ), and let us denote

Φ1,n = Φ(v1 ⊗ · · · ⊗ vn)(z1, . . . , zn),

Φi = Φ(v1 ⊗ · · · ⊗ vi−1 ⊗ (YV (vi, zi − ζi)YV (vi+1, zi+1 − ζi)1V ) (4.4)

⊗vi+2 ⊗ · · · ⊗ vn+1)(z1, . . . , zi−1, ζi, zi+2, . . . , zn+1),

Φ2,n+1 = Φ(v2 ⊗ · · · ⊗ vn+1)(z2, . . . , zn+1)..

We consider (4.2) with the action defined in (3.7)

δnmΦ(v1 ⊗ · · · ⊗ vn+1)(z1, . . . , zn+1)

=

g∏
p=1

∑
wp∈W(k);

k=wt(wp)≥0

ρkp

[
lim

η1,p→0
[R(〈1W , YW (up, η1,p)YW (v1, z1 − η2)

YWWV (Φ2,n+1Y
W
WV (wp, η2,p)1V ,−η2,p)1V 〉)

+
n∑
i=1

(−1)iR(〈1W , YWWV (ΦiY
W
WV (wp, η2,p)1V ,−η2,p)1V )〉)

+(−1)n+1R(〈1W , YW (ū1, η1,p)YW (vn+1, zn+1 − η2,p)

YWWV (Φ1,nY
W
Wv(w, η2,p)1V ,−η2,p)1V )〉)

]]
.

Note that due to

YV (vi, zi − ζi) YV (vi+1, zi+1 − ζi)1V = YV (vi, zi − zi+1)vi+1,
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in (4.4), the last expression is independent of ζi. When we take ζi = zi+1 for i =
1, . . . , n, we obtain

δnmΦ =

g∏
p=1

∑
wp∈W(k)

k≥0

ρkp

[
lim
η1→0

R(〈Y †W (up, η1,p)1W ,

[YW (v1, z1 − η2,p)e
−η2L(−1)Φ2,n+1e

η2L(−1)

+
n∑
i=1

(−1)ie−η2,pL(−1)Φie
η2,pL(−1)

+(−1)n+1YW (vn+1, zn+1 − η2,p)e
−η2,pL(−1)

Φ1,ne
η2,pL(−1)]YW (1V ,−η2)wp〉)

]
. (4.5)

By performing the summation for all wp ∈ W(k) to obtain trace function over W .
Using the L(−1) property (7.1) of maps Φ we finally find

δnmΦ(v1 ⊗ · · · ⊗ vn+1))(z1, . . . , zn+1) =

g∏
p=1

∑
k≥0

ρkp

TrW [YW (v1, z1 − η2,p) Φ2,n+1

+

n∑
i=1

(−1)iΦi + (−1)n+1YW (vn+1, zn+1 − η2,p) Φ1,n].

Let us now prove the convergence of (4.2). For that purpose we make a connection
with the proofs of Propositions (4.1) and (4.4) in [T] stating convergence for a similar
expression for a genus g n-point correlation function in the case of the Heisenberg
vertex operator algebra. In order to prove the convergence of (4.5) let us use the
construction of Schottky uniformization of the Riemann sphere to form a genus g
Riemann surface as a auxillary space defining the differential (4.5). In this regard,
let us associate the pairs of complex variables η1,p, η1,p to local coordinates of pairs
of points on the Riemann sphere. Each pair of coordinates describes two points to
which a hangle corresponding to 1 ≤ p ≤ g in (4.5) is attached.

According to the expression of δnm (4.5) and the definition of a W -valued rational
function (3.2), the differential δnm is given by the power series in ρp, 1 ≤ p ≤ g, with

converging [H] W -valued rational functions as coefficients. Each coefficient in (4.5) is
given by the function

Z
(0)
p,k(z1, . . . , zn+1, η2,p) =

Fp,k(z1, . . . , zn+1, η2,p)

Qp,k(z1, . . . , zn+1, η2,p)
, (4.6)

where Fp and Qp are polynomials in (z1, . . . , zn+1, η2,p). Thus, we can represent (4.5)
in the following form

δnmΦ =

g∏
p=1

∑
k≥0

ρkp Z
(0)
p,k(z1, . . . , zn+1, η2,p). (4.7)
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Recall [FHL, Z] ui ∈ U , 1 ≤ i ≤ n inserted at points with local coordinates zi the
ordinary n-point correlation function on a Riemann surface is defined by

Z(0)(u1, z1; . . . ;un, zn) = 〈1U , Y (u1, z1) . . . Y (un, zn)1U 〉,

where 〈·, ·〉 is a invariant bilinear form on U , and Z(0)(u1, z1; . . . ;un, zn) it is given by
a rational function of zi. In [T] the genus g n-point correlation function is defined for
a vertex operator algebra which has the form

Z(g)(u1, z1; . . . ;un, zn) =

g∏
p=1

∑
k≥0

ρwt(bp)
p Z(0)(u1, z1; . . . ;un, zn; b̄−p, y−p, bp, yp),

where y−p, yp ∈ C. For each k ≥ 0, 1 ≤ p ≤ g, we find a set of the Heisenberg
vertex algebra U element b2,p,k ∈ U(k), its dual b̄1,p,k, 1 ≤ p ≤ g, and ui,p,k ∈ U ,
1 ≤ i ≤ n+ 1, k ≥ 0, such that the the right hand side of expression (4.7) is equal to
a genus g n+ 1 point function (41) of [T], i.e.,

g∏
p=1

∑
k≥0

ρkp Z
(0)
p,k(u1,p,k, z1; . . . ;un+1,p,k, zn+1; b̄1,p,k, η1,p, b2,p,k, η2,p).

Using the MacMahon Master Theorem (2.1), and the Theorem (3.3) (the convergence
of a infinite determinant depending on η1,p, η2,p, 1 ≤ p ≤ g, and ρp), it is proven in
Propositions (4.1) and (4.5) of [T] that the last expression is convergent. Thus, (4.5)
is also convergent.

Now let us prove, using the Schottky uniformization, that the limiting function of
the convergent sum (4.7) is analytically extendable to a W -valued function defined
on the configuration space FCn+1 = {(z1, ..., zn+1) : zi 6= zj , i 6= j} . The element
Φ ∈ Cnm(V,W ) is defined on the configuration space FCn. Due to the property of the
original differential operator δnm of [H], for every wp ∈ W(k), each summand in (4.7)

defines a rational function Z
(0)
p,k(u1,p,k, z1; . . . ;un+1,p,k, zn+1; b̄1,p,k, η1,p, b2,p,k, η2,p)

on the configuration space FCn+1.
Let us identify the formal parameters (z1, ..., zn+1) with local coordinates on the

initial Riemann sphere where summands over k in (4.5) are defined. Chose pairs of
points with local coordinates in the sewing handle annulus (as described in Section 2)
given by complex parameters η1,p, η2,p, 1 ≤ p ≤ g, for insertion of g handles. Recall
the sewing relation (2.2) for (Section 2) for the Schottky uniformization parameters,
identifying the annuli for each handle. By the construction, it is assumed that annular
regions are not intersecting. Let Up be open domains in the first annulu of 1 ≤ p ≤ g
pairs. The sewing relation (2.2) identifies coordinates on U ′p on the second annuli.
Thus, the sewing relation (2.2) defines the extention of the function given by (4.5)
on domains covering the original Riemann sphere to domains covering the resulting
genus g Riemann surface. Now let zi and zj be any pair of n + 1 parameteres of
the function (4.5) satisfying the configuration space FCn+1 condition (3.1) on the
original Riemann sphere. Let z′i and z′j corresponding parameters for the extention
of (4.5) on the genus g Riemann surface resulting from the Schottky uniformization.
By substituting (zi, zj) and (z′i, z

′
j) into (2.2) and expressing for (z′i, z

′
j), we obtain

that zi = zj which contradicts the configuration space FCn+1 condition (3.1). We
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infer that the Schottky uniformization preserves the condition for configuration space
for coordinates for the whole (4.7). Thus, the Schottky uniformization defines an
analytic continuation for W -valued function given by the action (4.5) on the whole
resulting Riemann surface. Similar, considerations prove that the limiting function
of (4.5) is a W̄ -valued rational function with the only possible poles at zi = zj ,
1 ≤ i < j ≤ n + 1. Indeed, due to properties of the initial differential δnm, the
summands Z(0)(v1, z1; . . . ; vn+1zn+1; η2,p) in (4.5) have only possible polew at zi = zj ,
1 ≤ i < j ≤ n + 1. As above, using the sewing condition (2.2) it follows that only
poles at z′i = z′j , 1 ≤ i < j ≤ n + 1, can appear for the W -valued function resulting
from (4.5).

By Proposition 3.10 of [H] (see Appendix 9 in this paper), the summand in (4.5) is
composable with m− 1 vertex operators and has the L(−1)-derivative property and
the L(0)-conjugation property. Thus the operators δnm(Φ) also satisfy these properties,
and δnmΦ ∈ Cn+1

m−1(V,W ) and δnm is a map with image in Cn+1
m−1(V,W ). The shuffle

condition (4.1) insures [H] that δnm(Φ) ∈ Cnm and δnm is indeed a map whose image
is included in the kernel of δn−1

m+1.C
n+1
m−1. The proof of (4.3) is then provided by

cancellation of combinations of E-elements as in [H] in the summands of (4.5) in
(4.2). �

5. Conclusions

The notion of multiple sewn Schottky cohomology for grading-restricted vertex
algebras is constructed in order to enrich the structure of cohomology of vertex alge-
bras. We propose new formula for the coboundary operators depending on g sewing
parameters and leading to another sophisticated structure of cohomology spaces. Tak-
ing into account the above definitions and construction, we would like to develop a
theory [G] of characteristic classes for vertex algebras.

Acknowledgement

Research of the author was supported by the GACR project 18-00496S and RVO:
67985840. Author would like also to thank A. Galaev, H. V. Lê, A. Lytchak, P.
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6. Appendix: Grading-restricted vertex algebras and modules

In this section, we recall [H, Q] the definitions of grading-restricted vertex algebra
and grading-restricted generalized module. The description is over the field C of
complex numbers. A vertex algebra (V, YV ,1V ), [K] consists of a Z-graded complex
vector space V =

∐
n∈Z V(n), where dimV(n) < ∞ for each n ∈ Z, a linear map

YV : V → End(V )[[z, z−1]], for a formal parameter z and a distinguished vector 1V .
For each v ∈ V , the image under the map YV is the vertex operator YV (v, z) =∑
n∈Z v(n)z−n−1, with modes (YV )n = v(n) ∈ End(V ), where YV (v, z)1 = v +O(z).
We recall here definitions introduced in [H, Q]. A grading-restricted vertex algebra

satisfies the following conditions:
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(1) Grading-restriction condition: For n ∈ Z, dimV(n) < ∞, and when n is
sufficiently negative, V(n) = 0.

(2) Lower-truncation condition for vertex operators: For u, v ∈ V , YV (u, x)v
contain only finitely many negative power terms, that is, YV (u, x)v ∈ V ((x))
(the space of formal Laurent series in x with coefficients in V and with finitely
many negative power terms).

(3) Identity property: Let 1V be the identity operator on V . Then YV (1, x) = 1V .
(4) Creation property: For u ∈ V , YV (u, x)1 ∈ V [[x]] and limx→0 YV (u, x)1 = u.
(5) Duality: For u1, u2, v ∈ V , v′ ∈ V ′ =

∐
n∈Z V

∗
(n), the series

〈v′, YV (u1, z1)YV (u2, z2)v〉,
〈v′, YV (u2, z2)YV (u1, z1)v〉,

〈v′, YV (YV (u1, z1 − z2)u2, z2)v〉,

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0,
|z2| > |z1 − z2| > 0, respectively, to a common rational function in z1 and z2

with the only possible poles at z1, z2 = 0 and z1 = z2.
(6) LV (0)-bracket formula: Let LV (0) : V → V be defined by LV (0)v = nv for

v ∈ V(n). Then

[LV (0), YV (v, x)] = YV (LV (0)v, x) + x
d

dx
YV (v, x),

for v ∈ V .
(7) LV (−1)-derivative property: Let LV (−1) : V → V be the operator given by

LV (−1)v = Resxx
−2YV (v, x)1 = Y(−2)(v)1,

for v ∈ V . Then for v ∈ V ,

d

dx
YV (u, x) = YV (LV (−1)u, x) = [LV (−1), YV (u, x)]. (6.1)

We denote (v) = k for v ∈ V(k). One also defines a special operation o(v) = v(wtv−1).
One also has

YV (1V , z) = 1, lim
z→0

Y (u, z)1V = u.

Correspondingly, a grading-restricted generalized V -module is a vector space W
equipped with a vertex operator map

YW : V ⊗W → W [[x, x−1]],

u⊗ w 7→ YW (u, x)w =
∑
n∈Z

(YW )n(u)wx−n−1

and linear operators LW (0) and LW (−1) on W satisfying the following conditions:

(1) Grading-restriction condition: The vector space W is C-graded, that is, W =∐
n∈CW(n), such that W(n) = 0 when the real part of n is sufficiently negative.

(2) Lower-truncation condition for vertex operators: For u ∈ V and w ∈ W ,
YW (u, x)w contain only finitely many negative power terms, that is, YW (u, x)w ∈
W ((x)).
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(3) Identity property: Let 1W be the identity operator on W . Then YW (1, x) =
1W .

(4) Duality: For u1, u2 ∈ V , w ∈W , w′ ∈W ′ =
∐
n∈ZW

∗
(n), the series

〈w′, YW (u1, z1)YW (u2, z2)w〉,
〈w′, YW (u2, z2)YW (u1, z1)w〉,
〈w′, YW (YV (u1, z1 − z2)u2, z2)w〉

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0,
|z2| > |z1 − z2| > 0, respectively, to a common rational function in z1 and z2

with the only possible poles at z1, z2 = 0 and z1 = z2.
(5) LW (0)-bracket formula: For v ∈ V ,

[LW (0), YW (v, x)] = YW (L(0)v, x) + x
d

dx
YW (v, x).

(6) LW (0)-grading property: For w ∈ W(n), there exists N ∈ Z+ such that

(LW (0)− n)Nw = 0.
(7) LW (−1)-derivative property: For v ∈ V ,

d

dx
YW (u, x) = YW (LV (−1)u, x) = [LW (−1), YW (u, x)].

Note also the L(−1)-translation property [K] of vertex operators which we will make
use later

YW (u, z) = e−ζL(−1)YW (u, z + ζ)eζL(−1). (6.2)

where ζ ∈ C.

7. Appendix: Properties of matrix elements for grading-restricted
vertex algebra

Let us recall some facts about matrix elements for a grading-restricted vertex
algebra [H, Q]. For a function of V ⊗n inside the matrix element, L(−1)-derivative
property means

∂

∂zi
〈w′, (Y (v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉

= 〈w′, (Y (v1 ⊗ · · · ⊗ vi−1 ⊗ LV (−1)vi ⊗ vi+1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉,

for i = 1, . . . , n, v1, . . . , vn ∈ V and w′ ∈W ′ and (ii)(
∂

∂z1
+ · · ·+ ∂

∂zn

)
〈w′, (Y (v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉

= 〈w′, LW (−1)(Y (v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉,

and v1, . . . , vn ∈ V , w′ ∈ W ′. Note that since LW (−1) is a weight-one operator on
W , for any z ∈ C, ezLW (−1) is a well-defined linear operator on W .

One has [H, Q] the following property. Let Y be a linear map having the L(−1)-
derivative property. Then for v1, . . . , vn ∈ V , w′ ∈ W ′, (z1, . . . , zn) ∈ FnC, z ∈ C
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such that (z1 + z, . . . , zn + z) ∈ FnC,

〈w′, ezLW (−1)(Y (v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉
= 〈w′, (Y (v1 ⊗ · · · ⊗ vn))(z1 + z, . . . , zn + z)〉, (7.1)

and for v1, . . . , vn ∈ V , w′ ∈W ′, (z1, . . . , zn) ∈ FnC, z ∈ C and 1 ≤ i ≤ n such that

(z1, . . . , zi−1, zi + z, zi+1, . . . , zn) ∈ FnC,
the power series expansion of

〈w′, (Y (v1 ⊗ · · · ⊗ vn))(z1, . . . , zi−1, zi + z, zi+1, . . . , zn)〉, (7.2)

in z is equal to the power series

〈w′, (Y (v1 ⊗ · · · ⊗ vi−1 ⊗ ezL(−1)vi ⊗ vi+1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉, (7.3)

in z. In particular, the power series (7.3) in z is absolutely convergent to (7.2) in the
disk |z| < mini6=j{|zi − zj |}.

8. Appendix: Definition of maps composable with vertex operators

Next we give a definition of a map composable [H, Q] with vertex operators. For
a V -module W =

∐
θ∈CW(θ) and χ ∈ C, let Pχ : W → W(χ) be the projection from

W to W(χ). Let Φ : V ⊗n → W̃z1,...,zn be a linear map. For m ∈ N, Φ is said [H, Q] to
be composable with m vertex operators if the following conditions are satisfied:

(1) Let l1, . . . , ln ∈ Z+ such that l1 + · · · + ln = m + n, v1, . . . , vm+n ∈ V and
w′ ∈W ′. Set

Ψi = (E
(li)
V (vl1+···+li−1+1 ⊗ · · · ⊗ vl1+···+li−1+li ;1))

(zl1+···+li−1+1 − ζi, . . . , zl1+···+li−1+li − ζi)
(8.1)

for i = 1, . . . , n. Then there exist positive integers N(vi, vj) depending only
on vi and vj for i, j = 1, . . . , k, i 6= j such that the series∑

r1,...,rn∈Z
〈w′, (Φ(Pr1Ψ1 ⊗ · · · ⊗ PrnΨn))(ζ1, . . . , ζn)〉,

is absolutely convergent when

|zl1+···+li−1+p − ζi|+ |zl1+···+lj−1+q − ζi| < |ζi − ζj |
for i, j = 1, . . . , k, i 6= j and for p = 1, . . . , li and q = 1, . . . , lj . and the sum
can be analytically extended to a rational function in z1, . . . , zm+n, indepen-
dent of ζ1, . . . , ζn, with the only possible poles at zi = zj of order less than
or equal to N(vi, vj) for i, j = 1, . . . , k, i 6= j.

(2) For v1, . . . , vm+n ∈ V , there exist positive integers N(vi, vj) depending only
on vi and vj for i, j = 1, . . . , k, i 6= j such that for w′ ∈W ′,∑
θ∈C
〈w′, (E(m)

W (v1 ⊗ · · · ⊗ vm;

Pθ((Φ(vm+1 ⊗ · · · ⊗ vm+n))(zm+1, . . . , zm+n)))(z1, . . . , zm)〉
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is absolutely convergent when zi 6= zj , i 6= j |zi| > |zk| > 0 for i = 1, . . . ,m
and k = m + 1, . . . ,m + n and the sum can be analytically extended to a
rational function in z1, . . . , zm+n with the only possible poles at zi = zj of
orders less than or equal to N(vi, vj) for i, j = 1, . . . , k, i 6= j.

9. Appendix: Properties of maps composable with a number of vertex
operators

Here we recall proposition 3.10 from [H]:

Proposition 2. Let Φ : V ⊗n → W̃z1,...,zn be composable with m vertex operators.
Then we have:

(1) For p ≤ m, Φ is composable with p vertex operators and for p, q ∈ Z+ such

that p+ q ≤ m and l1, . . . , ln ∈ Z+ such that l1 + · · ·+ ln = p+n, Φ◦ (E
(l1)
V ; 1⊗

· · · ⊗ E(ln)
V ; 1) and E

(p)
W ◦p+1 Φ are composable with q vertex operators.

(2) For p, q ∈ Z+ such that p+q ≤ m, l1, . . . , ln ∈ Z+ such that l1+· · ·+ln = p+n
and k1, . . . , kp+n ∈ Z+ such that k1 + · · ·+ kp+n = q + p+ n, we have

(Φ ◦ (E
(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1)) ◦ (E

(k1)
V ; 1 ⊗ · · · ⊗ E

(kp+n)
V ; 1 )

= Φ ◦ (E
(k1+···+kl1 )

V ; 1 ⊗ · · · ⊗ E
(kl1+···+ln−1+1+···+kp+n)

V ; 1 ).

(3) For p, q ∈ Z+ such that p+q ≤ m and l1, . . . , ln ∈ Z+ such that l1 + · · ·+ ln =
p+ n, we have

E
(q)
W ◦q+1 (Φ ◦ (E

(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1)) = (E

(q)
W ◦q+1 Φ) ◦ (E

(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1).

(4) For p, q ∈ Z+ such that p+ q ≤ m, we have

E
(p)
W ◦p+1 (E

(q)
W ◦q+1 Φ) = E

(p+q)
W ◦p+q+1 Φ.
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