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Abstract

Essays in Heterogeneous Learning
by

Anna Bogomolova

My dissertation makes a contribution to the field of heterogeneous adaptive learning in
macroeconomic models. This contribution is presented in the form of three research papers
that constitute different chapters of my thesis.

In the first chapter of my dissertation, "E-stability That Does Imply Learnability", I
provide criteria and sufficient conditions for the stability of a structurally heterogeneous
economy under the heterogeneous learning of agents, extending the results of Honkapohja
and Mitra [36], Bogomolova and Kolyuzhnov [5], and Kolyuzhnov [40]. I provide general
criteria (in terms of the corresponding Jacobian matrices) for stability under heterogeneous
mixed RLS/SG learning for four classes of models: models without lags and with lags of
the endogenous variable and with ¢- or t — 1- dating of expectations, and provide sufficient
conditions for stability for some simpler cases, where simplifications include either the
diagonal structure of the shock process behaviour or the heterogeneous RLS learning.
I also provide sufficient conditions for stability in terms of the structural heterogeneity
independent of heterogeneity in learning (d-stability) in terms of E-stability of a suitably
defined aggregate economy for all four classes of models considered. In addition, I have
found a very useful criterion for stabilty for all types of models in the general (non-
diagonal) shock process case under mixed RLS/SG learning with equal degrees of inertia
for each type of learning algorithm in terms of the stability of a suitably defined average
economy with two agents.

In the second chapter, "Heterogeneous Learning: Beyond The Aggregate Economy Suffi-
cient Conditions for Stability", I extend the results of the first chapter and of Honkapohja
and Mitra [36], Bogomolova and Kolyuzhnov [5], and Kolyuzhnov [40]. Using the alter-
native definition of the D-stability approach, I provide alternative (to criteria written in
terms of the corresponding Jacobian matrices in Kolyuzhnov [40] and in the first chap-
ter of my thesis) general criteria for stability under mixed RLS/SG learning for the four
classes of models considered and alternative sufficient conditions for stability for some sim-
pler cases. This approach also allows me to provide criteria for §-stability for univariate
models without lags of the endogenous variable under mixed RLS/SG learning in econom-
ically meaningful terms, such as the "same sign" conditions and E-stability of a suitably
defined average economy and its subeconomies, and to provide quite weak sufficient condi-
tions for J-stability for univariate models with a lag of the endogenous variable using the
same economic terms. Using the characteristic equation approach, I provide quite strong,
economically tractable, necessary conditions that can be used as an easy quick test for
non-d-stability.



The fundamental nature of the approach adopted in the papers presented in the first two
chapters of my thesis allows one to apply its results to a vast majority of the existing and
prospective linear and linearized economic models (including estimated DSGE models)
with the adaptive learning of agents.

The third chapter of my dissertation is presented by the paper "Optimal Monetary Policy
Rules: The Problem of Stability Under Heterogeneous Learning" (a joint work with Dmitri
Kolyuzhnov). In this paper, we extend the analysis of optimal monetary policy rules in
terms of the stability of the economy, started by Evans and Honkapohja [26], to the
case of heterogeneous learning, using the results on J-stability derived in Bogomolova and
Kolyuzhnov [5], and Kolyuzhnov [40], which can be derived as special cases of the results
presented in the first two chapters of the thesis.



Abstrakt

Eseje o heterogennim ucent

Anna Bogomolova

Moje dizertaéni prace je piispévek v oblasti heterogenniho adaptivniho u¢eni v makroeko-
nomickych modelech. Tento piispévek je prezentovan ve formeé t¥i vyzkumnych praci, které
predstavuji kapitoly mé dizertace.

V prvni kapitole mé dizertacni préce, ,E-stabilita implikujici naucitelnost®, stanovuji
kritéria a postacujici podminky pro stabilitu strukturdlné heterogenni ekonomiky s he-
a Kolyuzhnova [5], a Kolyuzhnova [40]. Stanovuji obecnd kritéria (na zékladé Jacobiho
matic) pro stabilitu pii heterogennim smiseném RLS/SG uéeni pro ¢tyfi t¥idy modelid: mo-
delti bez zpozdénych a se zpozdénymi endogennimi proménnymi a s t- nebo t—1-¢asovanim
ocekdvéani, a stanovuji postacujici podminky pro stabilitu u nékterych jednodussich pii-
padi, kde zjednoduseni zahrnuje bud diagondlni strukturu chovdni Sokového procesu,
nebo heterogenni RLS uceni. Stanovuji také postacujici podminky pro stabilitu, pokud
jde o strukturdlni heterogenitu nezdvislou na heterogenité v uceni (d-stabilita) na za-
kladé FE-stability vhodné definované agregitni ekonomiky pro vSechny ¢tyfi uvazované
typy modelt. Navic jsem nalezla velmi uziteéné kritérium pro stabilitu vsech typd modelu
v piipadé obecného (ne-diagonélniho) procesu pro Soky, pfi smiseném RLS/SG uceni se
stejnym stupném inercie pro kazdy typ uéictho algoritmu, na zédkladé stability vhodné
definované prumeérné ekonomiky se dvéma agenty.

Ve druhé kapitole, “Heterogenn{ uceni: za postacujicimi podminkami stability pro agregatni
ekonomiku”, rozgifuji vysledky prvni kapitoly, Honkapohji a Mitri [36], Bogomolové a
Kolyuzhnova [5], a Kolyuzhnova [40]. Pfi pouziti alternativni definice D-stability, stanovuji
alternativni (ke kritérifm zapsanym na zdkladé odpovidajicich Jacobiho matic v Kolyuzh-
novi [40] a v prvni kapitole mé prace) obecnd kritéria pro stabilitu pii smiseném RLS/SG
ucen{ pro ¢tyfi uvazované kategorie modeld a alternativni postacujici podminky pro stabi-
litu pro nékteré jednodussi piipady. Tento piistup mi také umoziiuje stanovit kritéria pro
d-stabilitu pro modely s jednou proménnou a bez zpozdénych endogennich proménnych
pii heterogennim smiseném RLS/SG uceni na zdkladé ekonomicky interpretovatelnych
podminek ,stejného znaku“ a FE-stability vhodné definované agregétni ekonomiky a jejf
podekonomik, a stanovit pomérné slabé postac¢ujici podminky pro J-stabilitu pro mo-
dely s jednou proménnou a se zpozdénymi endogennimi proménnymi za pouziti stejnych
ekonomickych koncepti.Pouzitim piistupu charakteristické rovnice, stanovuji pomérné
silné, ekonomicky interpretovatelné, nezbytné podminky, které mohou byt pouzity jako
jednoduchy, rychly test d-nestability.



Zakladni podstata pifstupu pouzitého ve ¢ldncich prezentovanych v prvnich dvou kapi-
toldch mé dizertacéni préace umoznuje aplikaci jejich vysledkid na velkou vétsinu existu-
jicich a budoucich linedrnich a linearizovanych ekonomickych modeli (véetné odhadnutych
DSGE modelil) s adaptivné uéicimi se agenty.

Treti kapitolu mé dizertacni prace predstavuje ¢ldnek “Optimélni ménove-politickd pravidla:
problém stability pii heterogennim uceni” (spolec¢nd prace s Dmitrim Kolyuzhnovem). V
tomto ¢lanku rozsifujeme analyzu optimdlnich ménové-politickych pravidel pokud jde o
stabilitu ekonomiky, zapocatou Evansem and Honkapohjou [26], na pfipad heterogenniho
uceni, pouzitim vysledkt ohledné -stability odvozenych v Bogomolové a Kolyuzhnovi [5],
a Kolyuzhnovi [40], které mohou byt odvozené jako specidlni piipady vysledki prezento-
vanych v prvnich dvou kapitoldch prace.



To Dmitri, Egor, Adelaida, and Artur
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E-stability That Does Imply Learnability
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Abstract

I provide criteria and sufficient conditions for the stability of a structurally heterogeneous
economy under the heterogeneous learning of agents, extending the results of Honkapohja
and Mitra [36], Bogomolova and Kolyuzhnov [5], and Kolyuzhnov [40]. I provide general
criteria (in terms of the corresponding Jacobian matrices) for stability under heterogeneous
mixed RLS/SG learning for four classes of models: models without lags and with lags of
the endogenous variable and with the ¢- or ¢ — 1-dating of expectations, and sufficient
conditions for the stability in some simpler cases, where simplifications include either
the diagonal structure of the shock process behaviour or heterogeneous RLS learning.
I also provide sufficient conditions for stability in terms of the structural heterogeneity
independent of heterogeneity in learning (-stability) in terms of E-stability of a suitably
defined aggregate economy for all four classes of models considered. In addition, I have
found a very useful criterion for the stabilty for all types of models in the general (non-
diagonal) shock process case under mixed RLS/SG learning with equal degrees of inertia
for each type of learning algorithm in terms of the stability of a suitably defined average
economy with two agents. The fundamental nature of the approach adopted in the paper
allows one to apply the results to a vast majority of the existing and prospective linear
and linearized economic models (including estimated DSGE models) with the adaptive
learning of agents.
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1.1 Introduction

Contemporary macroeconomic models include expectations that influence the
dynamics of endogenous variables. The main question that always arises in this respect
is how to model these expectations. Historically, moving from naive (static) and adaptive
expectations to rational expectations, the most widely used expectation formation function
implied, until some time ago, was the rational expectations (RE) of agents. However, it has
been pointed out that this assumption does not always produce appropriate results in terms
of simulated model data behaviour. One of the reasons for that is the serious restrictions
imposed on the knowledge of agents under this assumption. One argument against the
RE assumption was formulated by Sargent [50]: If economists (who are naturally assumed
to know economics better than other agents) themselves do not know the exact economic
models and have to estimate the model parameters econometrically, then we may think
that economic agents behave no better themselves. Thus, it makes sense to consider agents
as econometricians or statisticians who update their beliefs (loosely speaking, regression
coefficients) as a new data point arrives, thus trying to learn the underlying true economic
model better as new information arrives. This approach is a specific form of bounded
rationality and represents adaptive learning — namely, adaptive econometric learning.

Adaptive econometric learning has become widely used in the literature, see e.g.,
Bray [7]; Bray and Savin [8]; Fourgeaud, Gourieroux, and Pradel [28]; Marcet and Sargent
[43]; Evans and Honkapohja [19, 20, 21]; Cho and Sargent [14]; Marimon [44]; Giannitsarou
[31]; Adam [1]; Honkapohja and Mitra [36]; Carceles-Poveda and Giannitsarou [11]; Cho
and Kasa [13]; Kolyuzhnov, Bogomolova and Slobodyan [41], a useful monograph by Evans
and Honkapohja [24], and many others. Adaptive learning in macroeconomics plays several
roles. First, it can be used as a testing procedure for the validity of the RE hypothesis;
second, it can be used as a selection device for a model with multiple RE equilibria; third,
the dynamics generated by learning may resemble the actual data behaviour (see e.g. the
escape dynamics papers by Cho, Williams and Sargent [15]; Sargent and Williams [51];
Kolyuzhnov, Bogomolova and Slobodyan [41]; Slobodyan, Bogomolova and Kolyuzhnov
[52]; Sargent, Williams and Zha [49]; and Cho and Kasa [13]); and fourth, the learning
algorithm may serve as a method for calculating an RE equilibrium (REE).

Despite its growing popularity, this approach to modelling expectations has

nevetherless some pitfalls. Usually when one applies the adaptive learning scheme as
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a form of expectation formation, one assumes a homogeneous type of learning, that is,
that there is some representative agent that uses some particular type of learning algo-
rithm. The most widely used learning algorithms are recursive least squares (RLS) and
stochastic gradient (SG). They differ only in one respect: the RLS algorithm updates the
second moments matrix, while the SG algorithm keeps it fixed'. The structure of a learn-
ing algorithm assumes that the current parameter (a belief, loosely speaking a regression
coefficient) equals the previous value of this parameter plus a gain coefficient sequence?
multiplied by the error correction function that depends on the most recent forecast error.
The main question that arises with homogeneous learning is whether the stability results
under homogeneous learning follow from this homogeneity, that is, whether the stability
results remain valid if one uses e.g. some mixture of different algorithms or different speeds
of updating information, different starting values, which would be, in fact, checking the
representative agent hypothesis. Among the papers that consider this question are Gian-
nitsarou [31], who assumes that agents are homogeneous in all respects but in the way
they learn; Honkapohja and Mitra [36], who consider a structurally heterogeneous econ-
omy meaning that besides heterogeneity in learning, agents may also differ in structural
parameters such as technologies and preferences, etc.; and Bogomolova and Kolyuzhnov [5]
and Kolyuzhnov [40], who consider conditions for stability of a structurally heterogeneous
forward—looking model with one lead in expectations and with the diagonal structure of
shocks — conditions independent of heterogeneity in learning.

The learning heterogeneity in these papers comes from the different type of learn-
ing algorithm used by agents: RLS or SG, where the first allows us to model "more sophis-
ticated" agents; the different speeds of reaction to innovation by different agents (usually
expressed as positive multipliers before a decreasing sequence of gain coefficients common
for all agents in the beliefs updating mechanism, called degrees of inertia); different initial

perceptions reflected in different starting points for algorithms; and different shares of

1One more type of econometric learning is Bayesian learning. I also stress that in this paper I con-
sider only the econometric type of adaptive learning. The discussion on other types of adaptive learning
approaches: the generalized expectation function approach (in nonstochastic models) considered, e.g., by
Fuchs [29]; Fuchs and Laroque [30]; Grandmont [32, 33]; and Grandmont and Laroque [34]) and the com-
putational intelligence approach in the form of classifier systems, neural networks and genetic algorithms
considered e.g., by Arifovic [2]; Kirman and Vriend [39]; and Cho and Sargent [14]), can be found in Evans
and Honkapohja [23, pp. 464-465].

2This gain sequence is usually assumed to be decreasing in time, though constant gains (the so called
perpetual learning) are also sometimes considered. The constant gain learning discounts the past by
assigning more weight to more recent data and makes sense when agents are assumed to suspect the world
around them to be non-stationary and expect sudden breaks in data.
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agents using a particular type of learning algorithm. All of the above mentioned learning
heterogeneity characteristics can be expressed by a type of adaptive learning when one
type of agents use RLS and the other one uses SG, the so called heterogeneous mixed
RLS/SG learning.

In my paper, I, following Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40],
solve the following open question posed by Honkapohja and Mitra [36]: to find conditions
for the stability of a structurally heterogeneous economy under mixed RLS/SG learn-
ing with (possibly) different degrees of inertia in terms of structural heterogeneity only,
independent of the heterogeneity in learning.

Though Honkapohja and Mitra [36] have formulated a general criterion for such
stability and have been able to solve for sufficient conditions for the case of a univariate
model (a model with one endogenous variable), they did not derive the conditions (neces-
sary, and/or sufficient) in terms of the model structure only, independent of the learning
characteristics, for the general forward-looking (multivariate) case. In turn, Bogomolova
and Kolyuzhnov [5] and Kolyuzhnov [40] consider conditions for stability irrespective of
the heterogeneity in learning. However, they consider only a forward-looking model with
one lead and without lags of the endogenous variable and the diagonal environment case
that means the diagonal structure of the AR (1) coefficients matrix in the shock process.
It leaves aside many economic models. For example, it leaves aside the DSGE models with
an endogenous variable lag. I resolve this issue in my paper.

I extend the results of Honkapohja and Mitra [36], Bogomolova and Kolyuzhnov
[5], and Kolyuzhnov [40]. I provide the general criteria for stability under heterogeneous
mixed RLS/SG learning for four classes of models: models without lags and with lags
of the endogenous variable and with the ¢- or ¢ — 1-dating of expectations, and sufficient
conditions for stability in some simpler cases, where simplifications include either the
diagonal structure of the shock process behaviour or heterogeneous RLS learning. I also
want to stress a very useful criterion I obtain for the stabilty of all types of models in
the general (non-diagonal) shock process case under mixed RLS/SG learning with equal
degrees of inertia for each type of learning algorithm in terms of the stability of a suitably
defined average economy with two agents.

Essentially, it turns out that all stability conditions written in terms of the stabil-

ity of the corresponding Jacobian matrices require D-stability of some matrix (matrices)



25

Q. Thus, all Jacobians look like D2, where D is a positive diagonal matrix. Among
the mathematical approaches to D—stability (studied, for example, in Johnson [37]) high-

lighted by Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40] are the ones based on the

3 4

Lyapunov Theorem”, on the negative diagonal dominance®, on an alternative definition of

D-stability®, on the characteristic equation, and on the Routh-Hurwitz conditions®.

In the work by Bogomolova and Kolyuzhnov [5] and by Kolyuzhnov [40], the
negative diagonal dominance approach, based on the MacKenzie Theorem”, turns out to
be useful in deriving a sufficient condition for the stability of a forward-looking model with
one lead and without lags of the endogenous variable and with the diagonal structure of
shocks, irrespective of learning heterogeneity. I also follow this approach in the current
paper, and it also allows me to find sufficient conditions for stability irrespective of the
heterogeneity in learning in terms of aggregate economies but for all model classes con-
sidered. I also have to redefine the concept of d—stability introduced in Kolyuzhnov [40]
that assumed stability independent of all types of learning characteristis: I find conditions
for stability independent of the degrees of inertia and different initial perceptions; thus,
my definition does not include different shares of agents using a particular type of learn-
ing algorithm. In this paper, using the negative diagonal dominance approach, I derive
sufficient conditions for d-stability (in my definition) in some simpler cases, where simpli-
fications include either the diagonal structure of shocks or heterogeneous RLS learning for
all types of models considered. These results are written in terms of E-stability of suitably
defined aggregate economies. The results that are based on the alternative definition of D-
stability, the necessary conditions based on the characteristic equation approach in terms
of the "same" sign conditions, and the E-stability of a suitably defined average economy
and its subeconomies are considered in a companion paper (presented in Chapter 2).

The fundamental nature of the approach adopted here allows one to apply its
results to a vast majority of the existing and prospective linear and linearized economic
models with the adaptive learning of agents. For example, the models considered include
(estimated) DSGE models with an introduced learning of agents. In this sense, the results

derived could be very helpful in terms of checking the robustness of a particular DSGE

3See Theorem A.2 in Appendix A.3.
4See Theorem A.4 in Appendix A.4.
®See Theorem A.6 in Appendix A.6.
5See Theorem A.5 in Appendix A.5.
"See Theorem A.4 in Appendix A.4.
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model® to an expectation-formation hypothesis (usually, the RE hypothesis) and checking
the validity of the representative agent assumption.

The rest of the paper is organized as follows. In Section 2, I present the four
classes of structurally heterogeneous models with the expectations of agents and describe
the REE in each of them. In Section 3, I subsequently apply the assumption of heteroge-
neous adaptive learning to each model class; I apply to each model the general results of
the stochastic approximation literature on the convergence of models under learning writ-
ten as stochastic recursive algorithms in order to provide criteria and sufficient conditions
for the stability of the REE in the general and simpler cases; and I formulate the concepts
of heterogeneous expectational stability and of d-stability. In Section 4, I provide a useful
stability criterion for all types of models considered in the general (non-diagonal) shock
process case under mixed RLS/SG learning with equal degrees of inertia for each type of
learning algorithm in terms of the stability of a suitably defined average economy with
two agents. In Section 5, I use the negative diagonal dominance approach to provide suffi-
cient conditions for d—stability in terms of the E-stability of a suitably defined aggregate

economy for all four classes of models considered. Section 6 concludes the paper.

1.2 The model classes setup. The PLM, the T-map, and
the MSV REE

1.2.1 The general setup of structurally heterogeneous linear models with

expectations

I consider models from the general setup of Evans and Honkapohja [24, ch. 8,
p. 173, eq. (8.1)] extended to allow for a heterogeneous structure and for expectations

formed at time ¢. The general class of structurally heterogeneous linear models with S

8A typical DSGE model in structural form looks like

Ao { Y1 ] + Ay { 3]’1 ] + A2 Eyyi41 + Boer = const.

Wt—1
After the estimation (for example, by DYNARE [38]), the solution of the model under rational expec-
tations is given by
{ Y ] :/L—|—T{ Ye-1 ] + Rey.
Wi Wt—1

See, for example, Slobodyan and Wouters [53].
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types of agents with different forecasts can be presented by

3

d n R
ye = a+ > Ligri+ > > > A By by g + Bwp + Cer, Afp =0, (1.1)
i=1 h=1b=0 f=b

Wy = Fwt,1+vt, (12)

S8
I

where y; is an n X 1 vector of endogenous variables, w; is a k x 1 vector of exogenous
variables; v; and e; are vectors of (independent) white noise shocks; E’f_byt,bJr s are (in
general, non-rational) expectations of the vector of endogenous variables by agent h; and
L;, Agf, B, and (¢ are conformable matrices. It is also assumed that F' (a k x k matrix)
is such that w; follows a stationary VAR(1) process, with M,, = lim;_, . wyw; being a
positive definite matrix.

The model presented above is a linear (or linearized) model describing the whole
economy written in a reduced form, that is, it corresponds to the intertemporal equilibrium
of the dynamic model. In this model, the expectations of endogenous variables formed by
different agent types linearly influence the current values of these variables.

Structural heterogeneity of the model, similarly to the original setup of Honkapo-
hja and Mitra [36], is expressed through matrices Agf, which are assumed to incorporate
the mass (;, of each agent type with > ¢, = 1. That is, A}b’f =y flgf, where fl{jf’s are
defined as describing how agents of type h respond to their own forecasts. So fllgf’s contain
the structural parameters characterizing a given economy, such as the basic characteristics
of agents, like those describing their preferences, technology, and endowments. Subscript
b shows the lag in time from the current time t for the information set, which is used to
calculate conditional expectation Efﬁb, while f shows how the predicted variable is far in
time from the information set used to form its conditional expectation, the minimal value
of f is equal to b as at time ¢ all the previous lags of the endogenous variable are known.
Structural heterogeneity means that all fl?f’s are different for different types of agents.
When fl;}f = Ayy for all h, the economy is structurally homogenous.

Though the discussion is easily extendable to this general case, in order to simplify
the exposition of the results, I restrict my analysis to the examples mostly used in the
literature: d =0, m = 1,n — any, Agf =0 (ModelI);d=1,m=1,n=2, Agf = 0 (Model
IT), d =0, m = 0,n — any (Model III); and d =1, m = 0,n =1 (Model IV).
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1.2.2 The class of structurally heterogeneous models without endoge-

nous variable lags and with ¢ — 1-dating of expectations (Model
I)

The first class of models considered is the class of structurally heterogeneous
models without endogenous variable lags and with ¢ — 1-dating of expectations. Hereafter,
I will refer to this formulation as Model 1.

S R S . S .
v = a+ Y AVE ye+ Y AVEM jy 4+ o+ Y APE Jyir + Bwy + Cey, (1.3)
h=1 h=1 h=1

and (1.2),

where the definitions of variables and matrices are the same as for the general class of
structurally heterogeneous linear models with S types of agents with different forecasts
above.

Agents of each type h are assumed to form their expectations Ef_lyt+r, r =
0,1,...,7, about the endogenous variables, believing (perceiving) that the economic system

follows the model called the agents’ perceived law of motion (PLM)

Yt = ap 41+ bp1wi1.

Note that I consider here and through the rest of the paper only such PLMs that corre-
spond to the fundamental or minimal state variable (MSV) rational expectations
equilibrium (REE) solution®.

The forecasts of each agent type h based on this PLM can be written as follows

El yyp = ang—1 + bhe—1wi (1.4)
EM vyi1 = apg1 b1 Fwi g
El \yir = ang—1+bps1F w1

After plugging the forecasts of each agent (1.4) into the reduced form (1.3), one obtains the
actual law of motion (ALM) of the model, given the PLM. The corresponding mapping

9The concept of the MSV solution for linear rational expectations models was introduced by McCallum
[45]. As is defined in Evans and Honkapohja [24, ch.8, p. 176], this is a solution that depends linearly on
a set of variables and is such that there does not exist a solution that depends linearly on a smaller set of
variables.
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from the parameters of the PLM to the parameters of the ALM (called the T-map) is

_ 0 -
5 /

b1t |:oz + > [Agah,t + Alfahvt + ...+ A};ah,t]] To(Py)
o] = h=1 =
= s s 5 || m@

a KZ A(})Lth) + | > A}fbh,t> F+..+ <E Aﬁbh,t> FT A BF] n

Syt h=1 h=1 h=1
| bt ]
(1.5)

Thus, the MSV REE solution can be found as

SN Ql
S Ql

S Ql

Similar procedures are then applied to each class of models considered.

1.2.3 The class of structurally heterogeneous models with one lag of the
endogenous variable, t — 1-dating of expectations, and one forward-

looking term in expectations (Model IT)

The second class of models considered (hereafter Model II) is a class of struc-
turally heterogeneous models with one lag of the endogenous variable, ¢ — 1-dating of

expectations, and one forward-looking term in expectations:

S . S N
ye = atLya+ > AGEL e+ Y AVER yern + Buwg + Cer, (1.6)
h=1 h=1

and (1.2),

where the definitions of the variables and the matrices are as before defined to be the same
as for the general class of structurally heterogeneous linear models with S types of agents
with different forecasts above.

Each agent type h forms its expectations EA[Llyt, EAZLlyHl using a PLM (corre-

sponding to the MSV solution y; = a + by;—1 + cwy + Bvy + (e¢) that looks like

Yt =apy 1+ bht—1Yt—1 + Chp—1Ws—1.
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The forecast functions based on this PLM are, in turn, given by

El jyr = apg—1+br—1¥i-1 + Chy—1Wi—1 (1.7)
EM jyer1 = ang1 +bng1 By + chg1 By (Fwir + ) =
= (In+bpi—1)ani—1 + b%,t71yt—1 + (bnt—1¢ht—1 + chp—1F)we—1.

The ALM, derived after plugging the forecasts (1.7) of agents into the reduced form of the
model (1.6), is

5
y = a+Ly a1+ Y ARlani 1+ b 1Yi-1 + chi1wi_1] +
h=1
S h 2
+ 22 AV[(Ln +bng—1)ant—1 + by s 1Yt-1 + (bni—1¢nt—1 + ch—1F)wi—1] + Bwy + (e
h=1

Thus, the corresponding T-map is given by

ait
b1 [ 5t an h h I ]
o+ Z [Aoa;m + Al ahﬂg + Al bh7tah7t]
C1t h=1 g S , Ta(q)t)
h=1 h=1
as: S, s s Te(Dy)
bS,t L h=1 h=1 h=1 ]
L. cs’t -
(1.8)

As a result, the MSV REE of Model II can be derived from the following system of

equations
S —
a+Z(A’3+A’f+A?b)a _— (1.9)
h=1
s S
L+) Apb+ (ZA{I) ¥ o= b
h=1 h=1
5 B 5
<2A8+A?b) c+Y AeF+BF = e
h=1 h=1

1.2.4 The class of structurally heterogeneous models without lags of the

endogenous variable and with ¢-dating of expectations (Model IIT)

The third class of models considered (hereafter Model III) is the class of struc-
turally heterogeneous models without lags of the endogenous variable and with t-dating

of expectations:
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S . S .
Yy o= a+ Y. AlethytH + ..+ > AQEfyHT + Bw; + (ey, (1.10)
h=1 h=1

and (1.2),

where the variables and the matrices are defined as before.
The PLM (corresponding to the MSV solution of this Model) of agent type h has

the form

Yt = apt + bppwy,

and the forecast functions are presented by

Efyr = ang + by Fwy (1.11)

i
E'yirr = apt+ bpF wy.

After plugging them into the reduced form (1.10), one obtains the corresponding T-map:

- » -
b S /
1.,t [a + f;1 [Aban; + ...+ Aﬁah,t]:| T.(3))
T : = S = . =
[(Z A?bh,t) F+ ..+ <Z Aﬁbh’t> F™ + B] Tp(Py)
as, iz =
L bSVt .

(1.12)
The MSV REE is then defined as usual.

1.2.5 The class of structurally heterogeneous models with a lagged en-
dogenous variable, ¢-dating of expectations, the (1,y; ;;w;) infor-
mation set, and one forward-looking term in expectations (Model
IV)

The fourth (the last one in this paper) class of models considered (hereafter Model
IV) is the class of structurally heterogeneous models with a lagged endogenous variable,

t-dating of expectations, the (1,y,_;;w}) information set'’, and one forward-looking term

%Tn order to keep the presentation of results concise I do not consider the case of the (1,}; w}) informa-
tion set (considered, for example, in Evans and Honkapohja [22] for a structurally homogeneous economy
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in expectations:

S .
Y = o+ Lytfl + Z A?E?yt+1 + Bw; + Cst, (113)
h=1

and (1.2)

with the same definition for the variables and the matrices as above.
The PLM (corresponding to the MSV solution for Model IV) of agent type h has

the form

Yt = apt + bp Y1 + cppwy,

and the corresponding forecast functions based on this PLM are given by

EMyiyr = apg +bng(ans + bpsye1 + cnpwr) + cnFuy = (1.14)

= (In+bny) ans + b%,tyt—l + (bnecht + ch e F)wy.

The ALM, derived by plugging the forecasts (1.14) of agents into the model’s reduced
form (1.13), is

S
y = a+Lyi1+ >, Alf((fn + bpt) ang + bi7tyt—1 + (bntcht + chF)we) + Bwy + Cey =
h=1
S

S
= a+ Y (A’f (In + by) ah,t> + (Z (A’fb%,t> + L) Vi1 +
h=1 h=1

+ <§: (Alfbh,tcm) + f: (Affch,tF> + B) wy + Cey.

h=1 h=1

Finally, the T-map is presented by

ait
bl,t i S b ! 7]
a+ > (AY (In 4 bug) any)
C1t h:; , Ta(q)t)
T| : = [Z (A’fbit) +L] = | Tp(®) |, (1.15)
h=1
as.t S S ! TC(‘I)t)
[z (Albsens) + 30 (AlcnF) + B}
bs,t L =1 h=1 i
- Cs7t -

under homogeneous learning) in this paper. Instead, I consider a realistic situation when the value of
the endogenous variable at time ¢ cannot be used to predict the future value of this variable since it is
not known yet. It allows me to avoid simultaneity between y; and EfyHL The case of the (1,y;;w;)
information set clearly falls under this paper’s technical constructions with some modifications and is a
matter for my future research.
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and the MSV REE of Model 1V is given by

S _ S
<In - AN- A’f) a = a (1.16)
h=1 h=1

S _ _
SSCAM? b+ L = 0
h=1

S _ S
<In -3 A?b) c— > AveF = B.
h=1 h=1

1.3 Heterogeneous adaptive learning, the SRA, the associ-
ated ODE, and the criteria for stability under hetero-

geneous learning for various classes of models

1.3.1 Heterogeneous adaptive learning and the general setup of a sto-

chastic recursive algorithm and the associated ODE

In all classes of structurally heterogeneous linear models with the expectations
presented above, it is assumed that agents use the adaptive learning procedure to form and
update their forecast functions. They use the so-called heterogeneous mixed RLS/SG
learning, when a part of agents, h = 1, Sp, is assumed to use the RLS learning algorithm,
while others, h = Sy + 1, S, are assumed to use the SG learning algorithm. Heterogeneity
in learning comes in the form of different types of learning algorithms used by agents (RLS
and SG), different speeds of reacting to innovations, different initial perceptions (presented
by different starting values for learning algorithms for each agent), and different shares
of agents using a particualr type of learning algorithm. Different speeds of reacting to
innovations (or different degrees of responsiveness to the updating function) are presented
by different degrees of inertia 05 > 0, which, in the formulation of Giannitsarou [31],
are constant coefficients before the deterministic decreasing gain sequence in the learning

algorithm, which is common for all agents.'!:

Qpt = dnov,

where oy is a deterministic, decreasing and positive gain sequence that satisfies the usual

conditions:

"Honkapohja and Mitra [36] use the generalized form of degrees of inertia (see Honkapohja and Mitra
[36, Ch.3]). For the ease of the exposition, I prefer to stick to the definition by Giannitsarou [31] though
the results derived are easily extendable to the generalized formulation.
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Assumption A io: oy = 00 and iO: a? < oo, and lim sup K ! ) — (1” < oo (an
t=1 t=1 t—oo | \ ®t+1 Qg
additional technical assumption).

These conditions on «; are standard and always assumed to hold in order to
guarantee convergence to a REE of the model under learning written in the form of a
stochastic recursive algorithm (SRA). All classes of models considered in this paper
(as well as the majority of economic models under learning) can be written in a standard
form of the SRA, the convergence properties of which can be studied using the stochastic
approximation techniques developed in Benveniste, Métivier and Priouret [3], adapted
and presented for economic (in particular, linear) models under learning, for example, by
Evans and Honkapohja [22] and Evans and Honkapohja [24]. According to this approach,
the majority of linear economic models under learning can be written in the form of a

SRA that has the following representation.
0 = 01 + H (011, X¢) + aipy (011, X2)

X = A(Gt_l)Xt_l + B(Qt_l)Wt, (117)

where 6, is a vector of recursively updated parameters (called beliefs), which in typical
adaptive learning algorithms (RLS, SG) includes the regression coefficients and elements
of the second moments matrix. The second equation gives the law of motion for the state
in the model, where W; is a random disturbance term.

Under the regularity conditions on H (0;—1, X;) and p; (6;—1, X¢), under Assump-
tion A on oy, and under assumptions on the properties of the law of motion for the state
(1.17) (specified in Evans and Honkapohja [24, pp.124-125] and in Evans and Honkapohja
[22, pp. 26-27] and presented here for the reader’s convenience in Appendix A.1), condi-
tions for the convergence of #; to an equilibrium @ (that in this case is considered to be
the MSV REE) are determined by the conditions for stability of the associated ODE:

Z—f_ = h(0), where h(0) = tlggloEH (0, X:(0)) . (1.18)
After writing the model in the standard form of an SRA and deriving the associated
ODE, one may start using the local stability properties of this ODE as the local stability
properties under learning of the model’s equilibrium (in this case the MSV REE).

Due to different time-dating and the corresponding differences in updating al-

gorithms, it is convenient to consider adaptive learning and the corresponding SRAs for
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the classes of models grouped by the dating of expectations: models with ¢ — 1-dating of
expectations (Model I and Model IT) and models with ¢-dating of expectations (Model III
and Model IV).

1.3.2 Heterogeneous adaptive learning in models with ¢ — 1-dating of
expectations with information available up to ¢t — 1 (Models I and
IT)

First, I consider heterogeneous adaptive learning in models with ¢ — 1-dating
of expectations with information available up to ¢t — 1'? (that is, in Models I and II).
After denoting z; = (1,w;) for Model I (similarly in Model II, when a lag is included,
z; = (1,y;,w;) ) and (I);z,t = (ant,bny) (if a lag is included, then <I>’h7t = (ant,bnt,cnt))
P} = (74, ..., P,), the formal representation of the learning algorithms in these classes
of models can be written as follows.

RLS: for h =1, S,

q)h,t—i-l = (I)h,t + Oéh,t+1R,;%+1Zt (yt+1 - @Z,tzt), (1.19a)

Rpiv1 = Ry + angyr (2021 — Ruy) (1.19b)
SG: for h=5y+1,8

i1 = Pry + angy12e (Y1 — q’Z,tZt)I- (1.20)

Agents use <I>’h7t71 = (aht—1,bn¢—1) in Model T (or <I>§L7t71 = (aht—1,bnt—1,Chi—1)
in Model IT when a lag is included) and z;—1 to make their forecasts Ef_lyt and Ef_lyt+1.

The actual law of motion will be
yr = T(Pi-1)'ze-1 + Bvy + (e,

where T'(®;_1)" is defined in (1.5) for Model I and in (1.8) for Model II above.

To convert the system into the standard form of an SRA, I make a change in
the timing of the system for Ry, ;. I set Sy, ;—1 = Rp . Thus, the beliefs updating algorithm
of Models I and II will have the following SRA representation

RLS: for h =1, Sy

Ppi11 =P+ g1 OZZ:I (5}?%2152{ [T(P;) — Pp ] + S};%Zt (Bryr + C€t+1)/)

12Gimilar technical constructions can be found in Evans and Honkapohja [24, ch 10.2.2] but for a struc-
turally homogeneous economy under homogeneous learning.
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A2 — O]
Sht+1 = Sttt (6p) (Zt-i‘lZz,tJrl - Sh,t)+a%+1 <t+2t+> (0n) (Zt+122+1 - Sh,t)

Qi1
SG: for h=5y+1,8

h,t+1 « 1

Qp, ht+
Ppip1 = P + a1 ———22; [T(Py) — Ppe] + 1 2t (Brig1 + Cere)
Qi1 Ot+1

For the case without lags (Model I), the law of motion for the state can be

written as
X, = AX;_1 + BW,,
where
X{ = (1,w£,w£71,1/2,€;) ,
Wi = (1,v,¢),
and where
0O 0 0 0O 1 0 0
0O F 0 0O 0 I 0
A= 0 I 00O0O],B= 0 0 O
0O 0 00O 0 I O
0O 0 00O 0 0 [

For the case with a lag and one forward-looking term in expectations (Model II),

the law of motion for the state can be written as

where

where

Xi = A(01-1)Xi—1 + B(0r—1) Wy,
92 = ( ,1,t7 ey fS',t) )

;m = (vec (@%ﬂf)', vec(Shvt)/> ,h =1, 80,

’h7t = vec(@’h’t),h:Sg—i—l,S,

/ roo / ro
X = (Lyt,wt,yt,l,wt_l,ut,st) )

Wi = (1,v},e),
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and where

0 0 0 00 00 1 0 0

Ta(01—1) Ty(0i—1) Ti(6i—1) 0 0 0 O 0 B ¢

0 0 F 00 00 0 I O

A= 0 I 0 000O |,B=|000

0 0 I 00 00 0 0 O

0 0 0 00 00 0 I O

0 0 0 00 00 0 0 I

The associated ODEs for these SRAs (for the proof see Appendix A.7.1) are

given by
% — 5 (T(D) —®p),h =T, 5 (1.21a)
=
% = OpM. (T(®) — @), h =8 +1,5. (1.21b)
=

1.3.3 General criteria for stability under heterogeneous learning for
Models I and II

The next step is to take the derivatives of the T-maps: (1.5) for Model I and
(1.8) for Model II, and to compose the Jacobians for the right-hand side of the associated
ODEs (1.21).

For the SRA of Model I, the system of the associated ODEs (linear by the setup)

after dropping the inessential constant terms is written by components as

a1 al oL, --- 0

= D10 : , where Dy = : : )
as as 0 - s,

Aj+ AL+ AL -1, . AS+ A7+ AS
Q= : ' :

Ay + AL+ AL ASH AT+ AS T,

vecbl vechy Dy - 0
= DQp : , where D,, = T ;

Uecbg vechg 0 -+ Dygs

Dyh = 0pdnk, h =1,5
Dun = 6p (My® 1), h =5 + 1,8
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FroAlr +F @ A4, @ Ay-Ty, -+ FT@QA4+ 4+F @ AJ+1, @ Aj

FroAlv +F @ A+, @ Ay -+ FT@ AP+ 4+F @ A +1y ® AS-Ly

For the SRA of Model II, the system of the associated ODEs linearized around
the MSV REE given by (1.9) after dropping the inessential constant terms is written by

components as

al ai
vecl}l vechby
vecey vecey Diyw1 -+ 0
= Dlywﬂle , where Dlyw = . )
as as 0 to DlywS
vecbg vechbg
veccs veces

Dlywh = 6hIn+n2+nk7 h=1, So
Dlywh = 5h (Mlyw & ]n) 5 h = SO + 17 S

[ R — Iyn2ink Rl . R
R? R — I in2ime - R?
Qupr = )
L R® R® o R = Lyyn2 i |
Al + (Ab + Alb) a ® Al 0
Rh = 0 V@Al +1, ® (Af + ALb) 0
: d @ Al F'@ Al + I © (Af + Alb)

Using the above, I derive general criteria for stability under mixed RLS/SG
learning (a la Honkapohja and Mitra [36, Prop. 5]) for Models I and II.

Criterion 1.1 In economy (1.3) and (1.2), Model I, mized RLS/SG learning converges
globally (almost surely) to the minimal state variable (MSV) solution if and only if the

corresponding matrices D1} and D,,Qr have eigenvalues with negative real parts.
Proof. See Appendix A.7.3. O

Criterion 1.2 In economy (1.6) and (1.2), Model 11, in which all roots of b defined in
(1.9) lie inside the unit circle, mized RLS/SG learning converges (almost surely) to the
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minimal state variable (MSV) solution if and only if the corresponding matric D1y, Qipr

has eigenvalues with negative real parts.
Proof. See Appendix A.7.4. [J

Note that these conditions are written in terms of mixture of structural and learn-
ing heterogeneity. In order to be able to write down economically meaningful conditions
in terms of structural heterogeneity only, one has to consider several simplifications of the
general setup. For example, it is easy to obtain more pleasant sufficient conditions for
stabiltiy of the MSV REE of Model II under heterogeneous RLS learning, which allows

for a further elaboration of sufficient conditions.

Corollary 1.3 (Sufficient conditions for stabiltiy of the MSV REE of Model II under
heterogeneous RLS learning). In economy (1.6) and (1.2), Model 11, in which all roots of
b defined in (1.9) lie inside the unit circle, heterogeneous RLS learning converges (almost
surely) to the minimal state variable (MSV) solution if the corresponding matrices D1,
Dy, and D,Qp (below) have eigenvalues with negative real parts; thus, the MSV REE

is a locally stable point of the following system

a1 a1 o1, --- 0
=D:Q| |, where D; = PR )
ag as 0 - dgl,
A+ AL+ AT, - AF+ AT+ AT
Q= : . :
A+ A+ Al o A+ AT+ ATD -,
vechy vechy 0112 - 0
=D, : , where D, = : : )
vechg vecbg 0 cee 0gl2
VoA + 1, ® (AL + Ajb) — L2 - V@AY + 1, ® (A5 + A7D)
Oy = : - :
V@A +1,® (A + Ath) - V@AY + I, ® (A5 + ATD) — I,2
vecey vecer o1l - 0
= D,Qp : ,where D,, = : : ,

vectg veces 0 coo Oglnk
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F'o Al + 1, @ (A§ + ALb) — Ly, - F'® A} + I, ® (A5 + A7b)

F'® A} + I, ® (A} + A}b) o @AY + Iy © (A5 + ATD) — Ly,

Proof. See Appendix A.7.5. [J

1.3.4 Conditions for stability in the diagonal environment case for Mod-
els I and 1II

Another simplification that can be used to derive economically meaningful con-
ditions in terms of structural heterogeneity only, is to assume a diagonal structure of the

shocks process. Now, I will obtain a criterion for the following diagonal environment case

2
F = diag(py, ..., p), My = lim wyw, = diag ( 0%2,..., U—’g) . (1.22)
t—o0 1—p7 1-pg

For Model I in the "diagonal" environment, the problem of finding conditions
for the stability of both D12 and D,,Qr under any (possibly different) degrees of inertia
of agents, ¢ > 0, is simplified to finding stability conditions for D12 and D12, ,where 2,
is obtained from €2 by substituting all of A} + A?.. + AP for A} + p A} + plTAﬁ, where

lp;| < 1 as w; follows a stationary VAR(1) process, by the setup of the model.

Dy = SR ; (1.23)
0 - &g,
Ab+p Al 4+ pTAL L, - A5 p AT+ pT A
Q,, = : : V=0, ...k (pg
Ay +p AL+ pTAL o AS g AT+ pT AR - T,

Proposition 1.4 (A criterion for the stability of Model I under mized RLS/SG learn-
ing for the diagonal environment case under any (possibly different) degrees of inertia of
agents, 6 > 0). In the structurally heterogeneous economy (1.3), (1.2), and (1.22), mized
RLS/SG learning (2.8), (1.20), and (1.4) converges globally (almost surely) to an MSV
REE solution for any (possibly different) degrees of inertia of agents, 6 > 0, if and only
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if matrices D18y are stable for any 6 > 0, where D1 and (), are defined in (1.23) and
(1.24), respectively.

Proof. See Appendix A.7.6. [J

For Model II with heterogeneous RLS learning in the "diagonal" envi-
ronment, the problem of finding conditions for stability for D:2, D €Y, and D,,{2r under
any (possibly different) degrees of inertia of agents, 0 > 0, is simplified to finding stability

conditions for D€, and D1, , where Q,, is given by

P>
AL+ p A+ Ao -1, - A5+ p A7 + AT
Qpl: ,VZIO,,/{I,([)Uzl),

Aj+p AL +ADD e AF+ AT + AT - I,
(1.25)

where |p;| < 1 as w; follows a stationary VAR(1) process, by the setup of the model.

Proposition 1.5 (Sufficient conditions for the stability of Model II under heterogeneous
RLS learning for the diagonal environment case under any (possibly different) degrees of
inertia of agents, 6 > 0). In the structurally heterogeneous economy (1.6), (1.2), and
(1.22), in which all roots of b defined in (1.9) lie inside the unit circle, heterogeneous RLS
learning (2.8), (1.20), and (1.7) converges (almost surely) to an MSV REE solution for
any (possibly different) degrees of inertia of agents, § > 0, if matrices Dy and D1,
are stable for any § > 0, where Dy and ), are defined in (1.23) and (1.25), respectively.

Proof. See Appendix A.7.7. O

1.3.5 Adaptive learning in models with ¢-dating of expectations (Models
ITT and IV)

A similar approach to writing down the corresponding SRAs and the associated
ODEs can be applied to models with ¢-dating of expectations (that is, Models III and
IV)!3 under heterogeneous mixed RLS/SG learning.

After denoting z; = (1,w;) for Model III (z; = (1,y;_,,w;) for Model IV) and
P}, ; = (ant,bne) (if a lag is included, then @} , = (ant, bnt, cnt) )y D3 = (P14, -y Pgy)s

the formal presentation of the learning algorithms in this model can be written as follows.

13Similar technical constructions can be found in Evans and Honkapohja [24, ch. 10.5] but for a struc-
turally homogeneous economy under homogeneous learning.
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RLS: for h =1, 5y

q>h,t+1 = ‘I)h,t + ah,t+1R]:’i+1zt (yt — @;l’tzt)l (126&)

Rh,t+1 = Rh,t + ap i1 (thllf — Rh,t) (1.26b)
SG: for h=5,+1,8

i1 = Pry + 12 (ye — @Z,tzt)/- (1.27)

Agents use (I)%,t = (apt,bpt) (or @?m = (ant,bnt, cht) when a lag is included)

and z; to make their forecasts EfyHT. The actual law of motion will be
yr = T(®y) 2z + Cet,

where T'(®;_1)" is defined in (1.12) for Model IIT and in (1.15) for Model IV above.

To convert the system into the standard form of an SRA, again, as for the first
group of models, a change is made in the timing of the system for Ry ;. I set Sy, ;1 = Rp ;.
Thus, the beliefs updating algorithm of Models III and IV will have the following SRA
representation

RLS: for h =1, 5y

Dp i1 = Ppy + arpr a;;:l (S’,;%ztzg [T(®:) — Pp 4] + S,:’tlzt (CEQ')

Q42 — Q4]
Shiat1 = Shatair (68) (2412141 — Sht)+ai 4 <+2+> (6n) (ze412{41 — Shit)

A1
SG: for h=5y+1,8

Op 41 Qh,t+1

22 [T(®t) — P ] + g1 PACHE
o1 (072N

For the case without lags (Model IIT), the law of motion for the state can

Ppi11 =Py + a1

be written as

Xy = AXy_1 + BW;,

where
Xé = (1’w1/57w7,t—175:5—1) )
Wt/ = (1,62_1,112),
and where
0O 0 0O 1 00
0O F 0 0 0 0 I
A: ’B:
0 0 I 0 0 0 O
0O 0 0O 0 I O
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For the case with a lag and one forward-looking term in expectations, the (1, y;_;, wj})

information set (Model IV), the law of motion for the state can be written as

Xi = A(0;-1)Xi—1 + B(0y—1) W,

where
02 - ( ll,tv ) /5715) )
where
;z,t = (vec (Cbﬁm)’, ’UGC(Shﬂg)/) ,h =1,5,
Ih,t = vec (<I>§L7t) ,h=5y+1,85,
XI{ = (17yzi,flaw;?yz{/f%w;fl?&::‘,fl) ’
th = (lvgf‘flvyé)v
and where
0 0 0 0 0O 1 00
To(0r-1) Ty(0r—1) Te(0r—1) 0 0 0 0 ¢ 0
0 0 F 0 00 0 0 I
A= ,B =
0 I 0 0 0O 0 0O
0 0 I 0 0O 0 00
0 0 0 0 0O 0 I 0

The associated ODEs for these SRAs (for proof see Appendix A.7.2) again
look like (1.21).

1.3.6 General criteria for stability under heterogeneous learning for
Models IIT and IV

Again, the next step is to take derivatives of the T-maps: (1.12) for Model III
and (1.15) for Model IV, and to compose the Jacobians for the right-hand side of the
associated ODEs (1.21).

For the SRA of Model III, the system of the associated ODEs (linear by the

setup), after dropping the inessential constant terms, is written by components as
dl al 5 1In e 0

= D0 : , where Dy = : : )

as as 0 <o gl
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Al + AL -1, A7+ AS
Q= : :
Al + AL A7+ AY -1,
06061 veeby Dy 0
= Dy,Qp , where D,, = ,
vechg vecbg 0 Dys
Dy = 6nlnk, h = 1,50
Dyh = 6p (My®1,) ,h =59+ 1,5 ’
FTQAL+ ..+ F @ Al — L FToAS+..+ F'® A7
Qp = : :
FTRAL+ ..+ F @ Al FTRAS+ .+ F ® A7 — Iy

For the SRA of Model IV, the system of associated ODEs linearized around the

MSV REE given by (1.16), after dropping the inessential constant terms, is written by

components as

ay ai
vechy vechy
veceéy vecey Diyuw1 0
= Di1ywQur , where Dy, = 7
as as 0 Diyws
vecbg vechg
veccs veces
Diywh = 0nlyyn2 i b =1,50
Diywh = 6p (Miyw ® 1) ;h = So + 1,8
[ R = L2k R R! |
Qur = i R? = Iy R?
- R® R? R® — Inin2ing |
Al + ALD a ® Al 0
Rh = 0 V@Al + 1, @ (Alb) 0
d @A} F'@ Al + I, @ (AD)

The steps below are similar to those for Models I and II. Using the above, the
general criteria for stability under mixed RLS/SG learning (& la Honkapohja and Mitra
[36, Prop. 5]) for Models IIT and IV may be written as follows.
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Criterion 1.6 In economy (1.10) and (1.2), Model I11, mized RLS/SG learning converges
globally (almost surely) to the minimal state variable (MSV) solution if and only if the

corresponding matrices D1 and D,,Qr have eigenvalues with negative real parts.
Proof. See Appendix A.7.8. [J

Criterion 1.7 In economy (1.18) and (1.2), Model 1V, in which all roots of b defined in
(1.16) lie inside the unit circle, mized RLS/SG learning converges (almost surely) to the
minimal state variable (MSV) solution if and only if the corresponding matric D1y,Qipr

has eigenvalues with negative real parts.
Proof. See Appendix A.7.9. OJ

Again, as in the case of the other model with a lag (Model II), it is easy to
obtain more handy sufficient conditions for stability of the MSV REE of Model IV under

heterogeneous RLS learning, which allows for a further elaboration of sufficient conditions.

Corollary 1.8 (Sufficient conditions for stability of the MSV REE of Model IV under
heterogeneous RLS learning) In economy (1.13) and (1.2), Model IV, in which all roots of
b defined in (1.16) lie inside the unit circle, heterogeneous RLS learning converges (almost
surely) to the minimal state variable (MSV) solution if and only if the corresponding
matrices D18, Dy, and DQp (below) have eigenvalues with negative real parts; thus,

MSV REFE is a locally stable point of the following system:

ay ap orl, -~ 0
=D : |, where D; = e )
as as 0 .- g1,
Al +Alb—-1, -+ AT+ ATD
Q= : . :
A4 Ay . AS 4 ASH— 1,
vechy vechy 01l,2 - 0
=D, : , where D, = )
vechg vecbg 0 cee gl
VoAl +1,® (A1b) — L --- V@AY + I, ® (A7D)
O = : ' : ;

VoAt e (A) o Ve AT L ® (A5 - Ls
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vecey vecey o1l - 0
= D,Op : ,where D,, = )
vects veccs 0 s Oglpg
Fl'@ Al + 1, @ (A1b) — Ly - F'® A7 + I, ® (A7D)
Qp = : ' :
F'@ Al + I ® (Afb) o 'R AY 4+ 1y @ (ATD) — Lk

Proof. See Appendix A.7.10. [J

1.3.7 Conditions for stability in the diagonal environment case for Mod-
els III and IV

The diagonal shock process simplification for Models III and IV yields results
similar to the ones for Models I and II.

For Model III in the "diagonal" environment, the problem of finding conditions
for the stability of both D12 and D,,QF under any (possibly different) degrees of inertia
of agents, 0 > 0, is simplified to finding stability conditions for D1{2 and D1£,,, where €,
is obtained from § by substituting all of A7.. + A" with p A%.. + pT AL, where |p;| < 1 as

wy follows a stationary VAR(1) process, by the setup of the model.

p AL+ AL T, - PLAT + o+ pf A7
Qp = 7vz:05'"ak’(p0:1)’

1

p AL+ pT AL p AT T AT - T,

Proposition 1.9 (A criterion for the stability of Model IIT under mized RLS/SG learn-
ing for the diagonal environment case under any (possibly different) degrees of inertia of
agents, 0 > 0). In the structurally heterogeneous economy (1.10), (1.2), and (1.22), mized
RLS/SG learning (2.10), (1.27), and (1.11) converges globally (almost surely) to an MSV
REE solution for any (possibly different) degrees of inertia of agents, 6 > 0, if and only
if matrices D18, are stable for any 6 > 0, where Dy and Q,, are defined in (1.23) and

(1.28), respectively.

Proof. See Appendix A.7.11. [J
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For Model IV with heterogeneous RLS learning in the "diagonal" envi-
ronment, the problem of finding conditions for the stability of DiQ, Dy, and D,QF
under any (possibly different) degrees of inertia of agents, § > 0, is simplified to finding

stability conditions for D, and D12, , where 2, is given by

pAT+ A~ T, - p AT+ ATD
QPZ = V=0, k, (pO = 1)’ (129)
pAT+AD e p AT+ ATD - I

where |p;| < 1 as w; follows a stationary VAR(1) process, by the setup of the model.

Proposition 1.10 (Sufficient conditions for the stability of Model IV wunder hetero-
geneous RLS learning for the diagonal environment case under any (possibly different)
degrees of inertia of agents, & > 0). In the structurally heterogeneous economy (1.13),
(1.2), and (1.22), heterogeneous RLS learning (2.10), (1.27), and (1.14) converges (al-
most surely) to an MSV REE solution for any (possibly different) degrees of inertia of
agents, 6 > 0, if matrices Dy and D1, are stable for any 6 > 0, where D1 and €2,
are defined in (1.23) and (1.29), respectively.

Proof. See Appendix A.7.12. [J

1.3.8 The concepts of i-stability and heterogeneous expectational sta-
bility
I will refer to the stability of a REE under ODE (1.21) as heterogeneous

expectational (HFE—) stability (or stability in heterogeneous expectations). I also

redefine the concept of §-stability in the following way.

Definition 1.1 d-stability is the stability of a REE under heterogeneous (either RLS,
SG, or mized RLS/SG) learning for any positive values of degrees of inertia and for any
starting values; that is, it is the stability of the system under heterogeneous learning that
is provided by structural heterogeneity only and is independent of the heterogeneity in

learning mentioned above.

In this sense, the general stability criteria and the conditions mentioned above

refer to H E-stability as they depend on ds. It is also clear that all necessary and sufficient
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conditions for H E-stability of all types of the models considered have the same algebraic
representation.

We have to have stability of a matrix

S1 (R —1) - 51R% 61 R%+1 51 RS
55, R s by (R —1T) 55, R%0HL e 55, R°
Qxr = S S s
5SO+1KR1 ce 05,41 KR dg,41 (KR ol _ K) ce ds,+1KR
55KR1 55KRSO (55KRSO+1 <o dg (KRS—K) i

where matrices K and R" for each model are defined as follows.

Model 1

1 0 1 0
K = ,RM = @Al + ..+ ® AP 4 I @ A

0 M, 0 F'7 0 F
Model 11

My, 0

K = (Ml w®In)aMl w —

Yy Yy 0 M,

Al (A} + Alb) a ® A} 0
Rh = 0 V@AY + 1, ® (AR + Abb) 0

: ¢ ® Al F'e Al + I, ® (A} + Alb)

Model II1

1 0 1 0 1 0
K= ,Rh = ® Ah 4+ .+ ® Ah.

0 M, 0 F'7 0 F
Model IV

M, 0
K = (Mlyw &® In) ,Mlyw = Y 5
0 M,

Al + Alp a @ Al 0

Rh = 0 V@ AL+ I, @ (ALb) 0
: d oAl F'@ Al + I, ® (A7D)

1.4 Stability under mixed RLS/SG learning with equal de-

grees of inertia for each type of learning algorithm

It is possible to obtain a criterion for H E-stability for all types of models in terms

of an average economy in case d; = d, Vi. It looks like a very strong result meaning that
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stability issues for a vast class of structurally heterogeneous models can be substituted
with just one type of a structurally heterogeneous economy with heterogeneous learning
of two agents. This criterion serves as an initial check for the possibility of J-stability in
an economy since it provides a very general necessary condition for it. If the economy is
not stable for equal Js, then it is not d-stable. To write down this criterion, let us first

make the following natural definition.

Definition 1.2 For general model setup (1.1) and (1.2) with mized RLS/SG learning
with equal degrees of inertia for each type of learning algorithm, §; = %9 Vi = 1,8,
6; = 6°Y, Vi = Sy + 1,5, the average economy with mized RLS/SG learning with
equal degrees of inertia for each type of learning algorithm, 675 for RLS and 6°¢ for SG,
is defined as

d m n So R
yr=a+ > Liyi—i+ (Z Ai}) Ef g g+ (1.30)
i=1 b=0 f=b \h=1

m n S .
+ > >0 ( > Agf) ESyi—vrp + Bwe + Cey,
b=0 f=b \ h=So+1

and (1.2), Aby =0,
So
where the agent with coefficients (Z Agf> learns by RLS, while the agent with coefficients
h=1

S
( > A@) learns by SG.

h=Sp+1

Now, I can formulate the criterion.

Proposition 1.11 (The criterion for stability under mized RLS/SG learning with equal
degrees of inertia of agents for each type of learning algorithm, 6 > 0). In the structurally
heterogeneous economy (1.3) and (1.2), Model I ((1.10) and (1.2), Model III) or (1.6)
and (1.2), Model IT ((1.13) and (1.2), Model IV), in which all roots of b defined in (1.9)
for Model II and in (1.16) for Model IV lie inside the unit circle, mized RLS/SG learning
with equal degrees of inertia of agents for each type of learning algorithm, §; = 7%,
Vi =1,....,80, 0; = 0°¢, Vi = So+ 1,..., S, converges globally, for Models I and III, or
locally, for Models II and IV, (almost surely) to an MSV REE, if and only if the REE
is a locally asymptotically stable fixed point of the corresponding average economy (1.30)
under mized RLS/SG learning of two agents with equal degrees of inertia for each type of
learning algorithm, 6755 for RLS and §°¢ for SG.
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Proof. See Appendix A.7.13. [J

1.5 Aggregate Economy Sufficient Conditions for )—stability

It turns out that for models without lags of the endogenous variable (Model I
and III), it is possible to derive economically tractable sufficient conditions for J-stability
in terms of an aggregate economy constructed for the original one. It is possible to derive
these conditions for the general mixed RLS/SG learning but with the diagonal structure
of the shock process (1.22), diagonal F' and consequently, M.

For the general non-diagonal case (F-any) it is possible to obtain economically
tractable sufficient conditions for §-stability for all types of models (Models I, II, III, and
IV) but in terms of aggregate economies constructed for the associated set of models that
have equivalent stability properties of the MSV REE of the original model. It is possible

to derive these conditions for the heterogeneous RLS learning case.

1.5.1 Aggregation for models without lags of endogenous variables un-
der general heterogeneous mixed RLS/SG learning in the diagonal

environment case

First, note that the stability properties of the MSV REE under mixed RLS/SG
learning of Model I in the diagonal environment case are equivalent to the ones of the

MSV REE of the set of the associated current value expectations models

s .
v = a+ > (AG+p AL + o+ p ADEL 1y + Buwt + Cer, (1.31)
h=1

d (1.2).

Similarly, stability properties of the MSV REE under mixed RLS/SG learning of
Model III in the diagonal environment case is equivalent to the ones of the MSV REE

of the set of the associated current value expectations models

S .
ye = a+ > (AL + .+ pf ADE! y: + By + Cey, (1.32)
h=1

and (1.2).

To proceed with aggregation, I start with the original Model I and employ the

same approach to aggregation used by Bogomolova and Kolyuzhnov [5] and Kolyuzhnov
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[40] 14

n
Given the weights of aggregation across endogenous variables ¢, > 0, > ¥, = 1,

i=1
and across agent types ¢ > 0, Z ¢p, = 1 (and denoting a - the element in the i*" row

-th

and 7" column of matrix Ay), I aggregate the economy in the following way.

— ;wiyit = ;zﬁiai + % Sy, ;@bi ; al BNy + o+
800 T v Sl By + (w8 ws (Svist) =
= S it 59 (6,0) B (1) .+ 52 (0,0) BLS (1) + (b ) we
+ <; wid’) e¢, where

BAG (v, 9) = S;qﬁhzmzaﬁij,r:o,l,...n (1.33)
i J
. S .
B (wlS) = (ﬂﬁ“”(zp,cb))—l};1S¢hzwizaﬁijEf_1yﬁ+r, (1.34)
e 1 ]

and B and ¢’denote the i*" row of B and ¢, respectively. So, using the derivations above,

I formulate the following definition.

Deﬁnition 1.3  Given the weights of aggregation across endogenous variables 1; > 0,
S

sz 1, and across agent types ¢, > 0, Z(bh =1, the aggregate economy for

the economy described by (1.3) and (1.2), Model I, is defined as
' = S+ B (4,0) B (') + o+ B2 (0, 0) B (i) +
+ (Z szl) wy + (Z 1/JZ§Z> Et,
(1.2),

where BAC (1, ¢) and EAC (yAG) ,r = 0,1,...,7 are defined in (1.33) and (1.34), respec-
tively.

It turns out that it is also useful (the reason for it will become clear later) to
consider an economy that bounds above all possible economies with all possible combi-

nations of signs of a?j aggregated using weights ¥ and ¢. This is the original aggregate

YEor the idea and discussion of such aggregation, please see Bogomolova and Kolyuzhnov [5] and
Kolyuzhnov [40].
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model written in absolute values. When all elements of the model, azhj, endogenous vari-
ables, and their expectations are positive, this limiting model exactly coincides with the
model considered. So, this is an attainable supremum. Thus, I have the following limiting
aggregate model:

y = i < g =30 |yul <

K2 (2
< 4 el + B0 (1, 0) EAG™ (5 9m0%) + ot
(2

, Where

+5£Gmod (1/}7 ¢)) EﬁGlmod (yﬁGTmod) + ‘ (Z thz) wy

|(zee)=

h

Tij

ap::l,r=0,1,...,7 (1.35)

Bremed (i, ¢) = DILIDIDD

J

R S .
B0 (ygmet) = (5107 0))7 2 S6n X0 S [ally| B Iyl - (1:30)

J

h
Qi
Definition 1.4 Given the weights of aggregation across endogenous variables ¢; > 0,

n S

Y4, = 1, and across agent types ¢, > 0, > ¢, = 1, the limiting aggregate
i=1 h=1

economy for an economy described by (1.3) and (1.2), Model 1, is defined as

O =5 ]+ R, 6) B (o) 4
(z W) "

+B26 o (,6) B (yGme) +

(1.2),

Y

|

where BmeOd (¥, ¢) and E{‘Gm"d (yﬁgm"d) ;v = 0,1,....,7, are defined in (1.35) and

(1.36), respectively.

Remark 1.1 If this limiting aggregate economy is E—stable, then all corresponding aggre-

gate economies with various combinations of signs of a?j are E—stable.

The same aggregation techniques may be applied to Model IIT and to the set of
associated current value expectations models corresponding to Models I and III. I present

the final results in the following definitions.

Definition 1.5 Given the weights of aggregation across endogenous variables 1¥; > 0,

n S
Y4, = 1, and across agent types ¢, > 0, >, ¢, = 1, the limiting aggregate
i=1 h=1
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economy for an economy described by (1.10) and (1.2), Model 111, is defined as

yzéleod — Zd}z |Oéz| + 5114Gm0d (1/}’ ¢) E{leod <yAGmod) .+
i

(o) (o)

where BmeOd (¥, ¢) and E’iAGmOd (yég,m"d) ,7=0,1,...,7 are defined as

_i_B;ﬁleod (¥, ¢) Efxamod <y£gmod> n

(1.2),

’

pAemed (y, ¢) = Szmzwzz =1,..,7 (1.37)

T"L]

E? ’yjt+r|' (1.38)

T

EGmod (yAGmod) - — - (gAGmod (. )] hzls¢hzwiz a
= 7 J

Definition 1.6 Given the weights of aggregation across endogenous variables ; > 0,
S

Yo, = 1, and across agent types ¢, > 0, > ¢, = 1, the limiting aggregate

i= h=1

economies for the set of associated current value expectations models corresponding to

Model I (Model II1) described by (1.3) and (1.2) ((1.10) and (1.2)) is defined as

y?Gmod _ sz ’az’ + 624Gm0d (/(/} (b) EAGmod (yiAGmod> + (139)
(el )|
(1.2),
where Bf‘GmOd (1, ¢) and Ef‘ﬁﬁnw (yf‘GmOd), are defined as
for Model I:
pomed (4 ¢) = S;% 2 Vi ‘agij + plaillij + ..+ pz—aﬁij (1.40)
i J

EAG mod (y;&G mod)

= (BN (g, 0) 7

Ef Jyj| (1.41)

S
X th Soy, Z ¥; Z ’a(})lij"i_pla}llij'i_"‘"i_p[agij
= 7 i
for Model III: agij = 0 above.
The structure of this limiting aggregate coeflicient ﬁf‘G mod (4 $) is as follows.
2 Ui a&-j + pla}fij +..+ pfaﬁij (in the case of Model I1I, af)‘ij = 0) is the coefficient before
(2

the expectation of endogenous variable j in the aggregate economy composed of one single

agent type h. Notice that this coefficient is calculated for the expectation of endogenous
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variable j, that enters the aggregate product with coefficient ;. So for each I =0, 1,..., k,

following Kolyuzhnov [40], I may name the ratio
<Z (4

tions relative coefficient. By looking at the values of these coefficients I will be able

h h 7 b
gij T P1O145 T+ - & Py Oryj

. the endogenous variable j "own" expecta-
; g j

to judge the weight a particular agent type has in the economy in terms of the aggregate
[B-coefficient. The next proposition that follows from the criteria for the d-stability of
models without lags under mixed RLS/SG learning in the diagonal environment (1.22)
(Propositions 1.4 and 1.9) and the McKenzie Theorem (1960) (see the Appendix) is for-
mulated in terms of these relative coefficients and stresses the fact that weights of agents
in calculating aggregate expectations have to be put into accordance with this economic

intuition in order to have stability under heterogeneous learning.

Proposition 1.12 In the case of the diagonal environment (1.22), if for each economy
from the set of associated current value expectations models corresponding to Model I
(II1) there exists at least one pair of vectors of weights for the aggregation of endogenous
variables ¢ and weights ¢ for the aggregation of agents such that for each agent, every
weighted endogenous variable’s "own" expectations relative coefficient corresponding to the
limiting aggregate economy (1.39) and (1.2) is less than the weight of the agent used in

calculating aggregate expectations, i.e.

Zwi (‘agij + plalfij +ot pz-a?ij ) /i < op, (sz <‘Pl@?ij +ot pz-a?ij ) [ < ¢p)V3, Vh, VL,

then the economy described by (1.3) and (1.2), Model 1, ((1.10) and (1.2), Model III) is
d-stable under mized RLS/SG learning.

Proof. See Appendix A.7.14. [J

The results for Models I and I1I and the derivations may be rewritten not in terms
of the aggregate economy to the associated models, but in terms of the aggregate model
to the original one. In this sense, these results largely resemble the ones derived in Bogo-
molova and Kolyuzhnov [5] and Kolyuzhnov [40] except for the weighting of expectations
of different leads of expectations.

The procedure is as follows. Let us return to the definition of the aggregate

economy for the original Model I. It is also possible to simplify matters even further and
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to construct the weighted coefficient for ,Bfem"d and the corresponding one-expectation

(Z ;B ) ‘ (Z wici) &

where the weights for summing the coefficients before expectations of different leads of y

model in the form

)

AG mod AG mod AG d AG mod
Yt e Z wz ’al’—i_ﬁweignfl;ed (1/}7 ¢) wezgr?L(t)edt 1 < "o )

can naturally be taken to be the autocorrelation coefficients of w or 1 (no discounting);

that is, p;, { = 0,1, ..., k. Thus, I may formulate the following definition.

Definition 1.7 Given the weights of aggregation across endogenous variables ; > 0,
sz = 1, and across agent types ¢ > 0, Z ¢, = 1, the corresponding set of
the current value aggregate ea:pectatzon models for the limiting aggregate

economy for an economy described by (1.3) and (1.2), Model 1, is defined as

AG mod AG mod AG mod AG mod
gROmd = Syl + BaGmed ) (0,0) BASmed oy (s9m0) + (142)
(2

| ()] | ()

and (1.2),

AG mod n
where Byeiohtea 1 (Vs ®) and Eﬁgﬁ?gd”_l (yfGmed) 1 =0,1,...,1 are defined as

B 1 (0, 0) = ™Y (¢, ¢)+1p| 8™ (0, ¢)+...+|py |7 BLC™N (0, 6) 1 =0,1,.... k

" AG mod AG mod AG mod AG d AG d (, AGmod
Eweigrg?ed 1t—-1 (yt e ) = (/Bwei;fﬁedl ) Z/B e 1/} ¢) E e (ytJrrmo ) :
The structure of this weighted limiting aggregate coefficient Bﬁg;ﬁ?gd ; is as fol-
lows. > 4, ag‘ij + ‘a’&ij >, a}fij + o " D00 || is the coefficient before the

expectation of endogenous variable j in the aggregate economy composed of one single
agent type h. Notice that this coefficient is calculated for the expectation of endogenous

variable j, that enters the aggregate product with coefficient ;. So for each 1 =0,1,..., k,

)1

as the weighted endogenous variable j "own" expectations relative coefficient.

following Kolyuzhnov [40], I may interpret the ratio

h h
Qg A1ij

(5

+ ol 2o

ot ol S0 [l
A

Tij

The next proposition is formulated in terms of these relative coefficients and stresses the
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fact that the weights of agents in calculating aggregate expectations have to be put into
accordance with this economic intuition in order to have stability under heterogeneous

learning.

Proposition 1.13 In the case of the diagonal environment (1.22), if for each economy
from the corresponding set of current value aggregate expectation models for the limiting
aggregate economy for an economy described by (1.3) and (1.2), Model 1, there exists
at least one pair of vectors of weights 1 for the aggregation of endogenous variables and
weights ¢ for the aggregation of agents such that for each agent every weighted endogenous
variable’s "own" expectations relative coefficient corresponding to the limiting aggregate
economy (1.42) and (1.2) is less than the weight of the agent used in calculating aggregate

expectations, i.e.

+ .. 4o

s (Jobi| + oty aliy|) ey < @i, Vi,

then the economy described by (1.8) and (1.2), Model 1, is d—stable under mized RLS/SG

learning.
Proof. Follows directly from Proposition 1.12 [

It is clear that this sufficient condition is stronger than the previous one and that
the condition for [ = 0 alone is sufficient for the result to hold true. For Model III, one

has to set a&-j to zero everywhere in Definition 1.7 and Proposition 1.13 above.

1.5.2 Aggregation for models in the general (non-diagonal) case under

heterogeneous RLS learning

In the general, non-diagonal case, sufficient stability conditions for the MSV REE
of Model I and Model IIT under heterogeneous RLS learning may again be written in terms
of the stability of models from the corresponding set of current value aggregate expectation
models for the limiting aggregate economy of Model I and Model III, but now the
definition of this set has to be extended to account for the non-diagonal structure of matrix

F.

Definition 1.8 Given the weights of aggregation across endogenous variables ; > 0,
n S

v, = 1, and across agent types ¢, > 0, > ¢, = 1, the corresponding set
i=1 h=1
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of current value aggregate expectation models f or the limiting aggregate
economy for an economy described by (1.3) and (1.2), Model 1, ((1.10) and (1.2), Model
I11) is defined as

AG mod AG mod hAG mod AG mod
GO = S | + BAGEeL (0,0) BASESS oy (51O 4 (143)
(2

(o) |5

and (1.2),

_I_

AG mod [
where Biyeighted 1 (¥s @) and Eﬁg;‘ﬁfﬁd”_l (y{‘GmOd) ,J1=0,1,....k are defined as

for Model I:
Barciandy 1 (1, 0) = BEO™Y (1, ) + psBLE ™Y (1, 8) + .+ pp BRI (1, 6) 1= 0,1,k
. cighted 1 -1 (ytAGmOd) = ( weighted 1 (¥, ¢>)>71 iﬁ?GmOd (¥, ¢) EAGm (yﬁgm()d) ;
for Model III: -
Baacionasa 1 (1, 6) = ppBLo™d (1, ¢) + .. + pp BN (1, 6) 1= 0,1, .., k,
2 oo () = (85 090) 3 B (1, 0) B8 (4G,
r=1
where py =Y r_y | firl or So0_y |full -

Again, the index

h h
Q145 Qrij

<Z (5 agij

)

(for Model III agij = 0) may be called, as before, the weighted endogenous variable

j "own" expectations relative coefficient and has the same meaning as before.

As for Models IT and IV, complications arise due to the presence of one endoge-
nous variable lag in the model. To alleviate the complications and to return the discussion
to the "unlagged" structure of Bogomolova and Kolyuzhnov [5], Kolyuzhnov [40], and
Honkapohja and Mitra (2006), I construct an economy without a lag corresponding to
the model considered that has the same asymptotic behaviour around the REE. I call
this model (by analogy to the associated ODE) the associated "unlagged" economy. With
respect to Models IT and IV, the assoctated ”unlagged” model corresponding to

M odels II and I'V is defined in the following proposition.
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Proposition 1.14 The associated ”unlagged” model corresponding to M odel
II (IV) (that is, the model that has the same asymptotic behaviour as Model II (IV)
where the component for the lag coefficient is fized at the MSV REE wvalue) is the model:
for Model I1

S A S R
+ >0 (Ag + A?b) El yy+ Y AYE! Jyeq + By + ey,
h=1 h=1

and (1.2),

for Model IV

+
M

NG s .
(A?b) El g+ Y ARED Jypi1 + BF Ly + Cey,
h=1 h=1

and (1.2),

where b is defined in (1.9) for Model II and in (1.16) for Model IV.
Proof. Follows directly from a comparison of the associated ODEs.

Now it is possible to employ the same aggregating procedures as for Model I and

Model IIT to obtain the aggregate economy stability result.

Definition 1.9 Given the weights of aggregation across endogenous variables ; > 0,
ZT/% = 1, and across agent types ¢, > 0, f: ¢, = 1, the limiting aggregate
Zeclonomy for the associated ”unlagged” economy of the economy described
by (1.6) and (1.2), Model 11, ((1.13) and (1.2), Model 1V ) is defined as

for Model II:

yAGmod sz |az|+z 5AGm0d ¢ (b) EAG mod <yé§mod)
r=0

()

()

and (1.2);

for Model IV:

yAGmod Z% |az|+z BAGmod (W, ) EAGmod (yﬁgmod>
r=0

()

(zee)=

and (1.2),

where FAG™d (4 ) and Eﬁ({m‘)d (nymOd) r=20,1 are defined as

Bo O (,6) = S s 2 at; + (Ahb)
i J
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ﬁ,léleod (,¢) =S Zh: o Z V; Z )alfij
i J

A S
BAGm (45m) = (507 (0.6) 7 - 500 005
= 7 7

aOZJ (Ahb) ’ EAtzl |yjt

E | |y -

~ S
B (o) = (510 007 L 50, S0, 5 ol
= 1 7
For Model IV: agl-j =0.

The corresponding sets of current value aggregate expectation models

for these limiting aggregate economies are given by Definition 1.10.

Definition 1.10 Given the weights of aggregation across endogenous variables ; >
0, Z Y; = 1, and across agent types ¢, > 0, i ¢, = 1, the corresponding set
of current value aggregate expectation models for the limiting aggregate
economy for an associated "unlagged” economy of the economy described by
(1.6) and (1.2), Model 11, ((1.13) and (1.2), Model IV ) is defined as

for Model II:

s = Sl + BLEN (0.0 Baghity e (sOT) + (La9)
+ (Z @biBi) wy| + ’ <Z ¢i§i> &t
; i
and (1.2);
for Model IV:
ylOm = Slal + BN (0,0) BUGH e (™) + (145)
+ (Z Y, (BF_I)i) we| + ' <Z %?i) Et|,
- i
and (1.2),
where p =1 or q, ﬁﬁgﬁ?gdp (1, @) and Eﬁg;ﬁ?ﬁdpt 1 (y,{‘GmOd) , are defined as

Biscinoea 1 (1, 6) = BaO™ (1, 0) + pp BN (,6) ,1 = 0,1, k,

and

Baamed o (W, 0) = BaO™Y (1, 6) + p, B1™ (1, 0) . =1,...,m,
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1
-1
nAG mod AG mod AG mod AG mod nAG mod AG mod
weigr;lz?edp t—1 (yt e ) = ( wei;ll‘:,(zedp (w7¢)> Z/BT e (1/}7 ¢) Etflmo <yt+rm0 ) ’
r=0

k k 7 7
where py = > oret el or Y20y | frl 1 Pq = D et ‘qu‘ or Y iy }brq‘ .

The second part of the definition using > _,_; ‘Eqr‘ as weights for the leads in

expectations reflects the dependence of y; on y;_1 at the REE for endogenous variable j.

AG mod

The structure of these weighted limiting aggregate coeflicients 5;,c; hteq p» Simi-

larly to the ones of Model I and Model III, allows for the ratios
> Ui (pf ‘a}fij + ‘a’(}lj + (AbD).. ) /¥ and 3¢, (pq + }a}olij + (A’fl_))ijD /%, (for Model

h
ij 14
v agij = 0) to be interpreted as the weighted endogenous variable j "own" expec-

tations relative coefficients. Again, as above, the existence of a similar correspondence
between the values of these coefficients and the weight of a particular agent type that fol-
lows from the criteria (Criteria 1.1 and 1.6) for the stability of models without lags of
the endogenous variables or from the sufficient conditions (Corollaries 1.3 and 1.8) for the
stability of models with lags of the endogenous variable, with both model types being un-
der heterogeneous RLS learning in the general (non-diagonal) environment, and from the
McKenzie Theorem (1960), the existense of this correspondence allows for the J-stability

of the original economies.

Proposition 1.15 In the general (non-diagonal) case, if for all economies from the cor-
responding set of the current value aggregate expectation models for the limiting aggregate
economy for the economy described by (1.3) and (1.2), Model I ((1.10) and (1.2), Model
I1I) under heterogeneous RLS learning, there exists at least one pair of vectors of weights
¥ for the aggregation of endogenous variables and weights ¢ for the aggregation of agents
such that for each agent, every weighted endogenous variable’s "own" expectations relative
coefficient corresponding to the limiting aggregate economy (1.43) and (1.2) of the row

type is less than the weight of the agent used in calculating aggregate expectations, i.e.

<Z¢i agij +PfZ¢i a’fz’j +-~+sz¢1‘ afrlij ) [ < ¢pV3,Vh,V,

where p; = Eff:l | fir| - (for Model II1 agl-j = 0), then the economy described by (1.3)
and (1.2), Model 1, ((1.10) and (1.2), Model 111) under heterogeneous RLS learning is
d-stable.

Proof. See Appendix A.7.15. [
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Proposition 1.16 In the general (non-diagonal) case, if for each row aggregation type
(f and b -type) of economies from the corresponding set of the current value aggregate
expectation models for the limiting aggregate economy for the associated "unlagged” econ-
omy of the economy described by (1.6) and (1.2), Model II ((1.13) and (1.2), Model 1V )
under heterogeneous RLS learning, there exists at least one pair of vectors of weights v for
the aggregation of endogenous variables and weights ¢ for the aggregation of agents such
that for each agent, every weighted endogenous variable’s "own" expectations relative coef-
ficient corresponding to the limiting aggregate associated "unlagged” economy (1.44) and
(1.2), ((1.45) and (1.2)) is less than the weight of the agent used in calculating aggregate

expectations, i.e.

_l’_

k
3w, 6) — weights: v (Z oy [aly] + |aby; + (419) ]D J; < OnY3, PRV,
v r=1 k

and

_|_

3w, 6) — weights: Y v, (Z pq|ali;| + [aby; + (41D) JD J; < 6aV3, VR Va,
¢ r=1 k

where py = Zle \firls Py = 2201 !l_)qT‘ (for Model IV agij = 0), then the economy
described by (1.6) and (1.2), Model II ((1.13) and (1.2), Model 1V ), in which all roots
of b defined in (1.9) for Model II and in (1.16) for Model IV lie inside the unit circle, is

d-stable under heterogeneous RLS learning.

Proof. See Appendix A.7.16. [J

1.5.3 Sufficient conditions for J-stability in terms of F-stability of max-

imal aggregate economies

However, the propositions above do not give a real rule of thumb (as they im-
ply looking for systems of weights) that could be used to say if a particular economy is
stable under heterogeneous learning. For this purpose, I go even further looking for up-
per boundaries by considering not only any possible signs of a;;, but also the values of
weights ¢ and ¢. These boundaries can be derived for four different subsets of limiting
aggregate economies (Models I and III under mixed RLS/SG learning in the diagonal
environment) and for economies from the corresponding sets of current value aggregate

expectation models (Models I, II, III, and IV under heterogeneous RLS learning in the
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| Subset | | B = |

s=1 1—any, ¢—any mlaXS Zn}lax agij + Pla}ﬂ'j + ...+ p[aﬁij
j_mt

— _ 1 h h h
s=2 Y-any, ¢ = 3 mlaxmlaxz > ‘QOij + paty; + o plady;
h j

— _ 1 h h h
s=3 | 1=z, ¢-any mlaXSanllax agij + pat;; + - plag;
7 5J

s=4 |v=16=4% maxymaxy
h J 4

h h T h
agij + 1015 + - PP Az

Table 1.1: Maximal aggregate [S—coefficients for maximal aggregate economies for the
associated current value expectations models corresponding to models without lags (Model
I and Model IIT) under mixed RLS/SG learning in the diagonal case

general (non-diagonal) case) depending on the weights ¢ and ¢: with arbitrary weights
of agents and endogenous variables, and with either equal weights of agents, %, or equal
weights of endogenous variables, %, or both.

So, I formulate the following definitions.

Definition 1.11 Given the weights of aggregation across endogenous variables 1, > 0,
S

n

Zwi = 1, and across agent types ¢, > 0, Zgbh = 1, each aggregate economy from a
i=1 h=1

particular subset of limiting aggregate economies for the set of associated current value
expectations models corresponding to Model I (III) under mized RLS/SG learning in the

diagonal case is bounded above by the following maximal aggregate economy

for Model I:
'Y = 2 i <y =y Jya] <y =
1 KA
_ Z ¢z ’az‘ + 6?G maxEtA;Ci‘max (yiAGmax) + ' <Z szz> wy
K3 3
for Model III:

Yy = 2 iy <y =3, Jya| < yomex =
7 K

)

ne)-

)

= ZQ/JZ ’az‘ + B?Gmafo\_(imax (yfleax) + ' <Z szz> wy
where B?Gmax is defined in Table 1.1 (for Model 111 agij =0).

|

Note 1.1 This set of mazimal aggregate B— coefficients extends the set derived in Bogo-
molova and Kolyuzhnov [5] and Kolyuzhnov [40]. All of the above coefficients have the
same structure (except for discounting) as in these papers. However, I have been able to

find that it is possible to determine a lower boundary for the third set, thus obtaining a
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smaller aggregate coefficient than in these papers. This coeffcient is

h h T h
) i

It can be shown that if it is less than one, then the economy is §-stable (Take 1; = %, vy =
% in the corresponding proposition). However, this coefficient, valid for the diagonal (sym-
metric) structure, as is shown below, does not allow for the 0-stability condition (in terms
of the column type coeffcients) in the non-diagonal case, and instead, the coefficient gen-
erated in these two papers must be used.

Also though it is not mentioned in the papers cited above, it is clear that the
mazimal aggregate (B-coefficient for the second set is always no greater than the mazximal
aggregate [-coeffcient for the first set and that the maximal aggregate [-coefficient for
the fourth set is always no greater than the maximal aggregate B-coefficient for the third
set. This means that I can use only the second and fourth (-coefficients in the sufficient
conditions for §-stability, as they provide stronger conditions for §-stability and include
a set of d-stable economies generated by the conditions on greater maximal aggregate (-
coefficients. However, I prefer to mention all four mazximal aggregate B-coefficients as the
first and third aggregate [3-coefficients (namely, their structure) turn out to be quite useful
for sufficient conditions analyzed further in this paper in non-symmetric (non-diagonal)
cases.

It can also be shown that all economies from all four sets are bounded above by
the "universal” mazimal aggregate B— coefficient nSmax

i,5,h
is less than one, then the economy is §-stable (Take 1; = %, wp = % in the corresponding

a?j . It can be shown that if it
proposition). It provides the weakest sufficient condition and the narrowest set of 6—

stable economies among the ones considered.

Definition 1.12 Given the weights of aggregation across endogenous variables 1; > 0,
S

n

Zwi =1, and across agent types ¢; > 0, quh =1, each economy from a particular
i=1 h=1

subset of aggregate economies from the corresponding set of current value aggregate expec-

tation models for the limiting aggregate economy for the economy described by (1.8) and

(1.2), Model I ((1.10) and (1.2), Model 111) is bounded above by the following mazimal
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AG
Subset Type Bwei;flg}e(d s
k k
s=1 | f—tow mlaXSthaiX ( agl-j +> g | firl a]fij + o+ a?ij )
J ’

k k
s=2 | f—column mlaxm?xzz (‘a&j) + > g |l a}fij‘ + o+
h j
s=3 J—column mlaxSZmaX(agij +Zf:1|frl| a,fij +~-+Z]::1| ol al )

- hj Tij
k k
s=4 | f—row mlaXijasza&-j +> g | firl + o+
h i

)

Table 1.2: Maximal aggregate [S—coefficients for maximal aggregate economies for the
current value aggregate expectation model for models without lags (Model I and Model
III (with ag; = 0))

h h
a4 Arij

aggregate economy
v = Y i <yt = 2y fyal < g9 =
- i
= Xi:%’ |ovi| + BiaitsSs s Bapomnay 1y (™) +
)
7

where Bﬁg;ﬁ’e{d s 15 defined in Table 1.2.

_l’_

)

|5

Similar definitions can be formulated for Models IT and IV.

Definition 1.13 Given the weights of aggregation across endogenous variables v¥; > 0,
S

Zn:wi =1, and across agent types ¢; > 0, Z¢h = 1, each aggregate economy from the
zc?irespondmg set of current value aggregatehe:xlpectation models for the limiting aggregate
economy for the associated "unlagged" economy of an economy described by (1.6) and
(1.2), Model I ((1.13) and (1.2), Model IV ) is bounded above by the following mazimal

aggregate economy

for Model II:

v = > iy <yt = 2 [yl < g =
i 1

AG W AG AG
= Z 1/}1 |a7«| + Bwei;}lz?zd s wei;ﬁ?;(d lt—1 (yt max) +
i

(00

+ , (1.2);
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[ Model [Type [ Subset | Facam . |
+ 515l oty

)

f—row s=1 maxSZ max <)a0” + (Alb) w

alz]

+ Z ‘le‘ ’alz]

f—column | s =2 maxmaxz Z (’aow (Ahp) U

Model II f—column | s =3 mlaXSZ max <) ag; (Ahb)” + Z | fri ‘alu >
and f—row s=4 maxz maXZ <)a0w + (Afb). ‘ + Z | fir| ahj
Model IV b—row s=1 | maxS 2 max <)a0” + (ALD), ‘ - Z |bgr | |aly;

(with agij =0) || b—column | s =2 maxmaxz Z (‘aow (Ahb). ’ + Z |brg] ‘alw

a}fz'j )
Table 1.3: Maximal aggregate S—coefficients for maximal aggregate economies for the cur-

rent value aggregate expectation model for the associated "unlagged" economy of models
with lags (Model II, IV)

b—column | s =3 | maxS). max <)a0ij + (A}fb)ij

4q i

+ ZT; ‘brq‘ ‘ah-j

ar|

b—row s=4 maxz maXZ <)%zg (Alfg)ij

for Model IV:
o = Z%yn <y = syl <yt =

= Sl + B BAGE e () +

+ (Z " (BFl)i> wi| + ’ <Z W’) et

where Bﬁg;f;ﬁds is defined in Table 1.3 .

, (1.2),

These maximal aggregate [-coefficients are actually upper boundaries for
the corresponding BAG mod (4, ) and ,Bﬁgﬁ?gdl (1, ¢) for different subsets of aggregate

economies. Formally, the result can be written in the form of the following proposition.

Proposition 1.17 Mazimal aggregate [-coefficients defined in Tables 1.1, 1.2, and 1.3
are upper boundaries for 3{¢™°4 (4, ¢) and ﬁﬁgﬁ‘;ﬁd 1 (1, @) for the corresponding subsets

of aggregate economies.

Proof. See Appendix A.7.17. [J
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Thus, I have managed to aggregate the economy into one dimension and to
find the maximal aggregate economies that bound all such aggregate economies within a
particular subset. If one of these maximal aggregate economies for each type of the current
value aggregate expectation model is E-stable (i.e. if at least one of the maximal aggregate
B-coefficients is less than one), then all aggregate subeconomies from a particular subset of
aggregate economies are F-stable. I have already mentioned the concept of a subeconomy,
and now I introduce its formal definition as this concept is convenient to use in proofs and

conditions for d-stability.

Definition 1.14 A subeconomy (hi,...,h,) of size p for economy (1.1) and (1.2) is

defined as consisting only of a part of the agents from the original economy:

d PO & by h
¥y = a+ Y Liye;i+ > > A E vy g + Bwy + Cer, Agy =0, (1.46)
i=1 k=1b=0 f=b

(12)’

where (hi,...,hy) € (1,...,5) is a set of numbers of agent types present in the subeconomy.

A single economy is the particular case of a subeconomy with only one type of agent.

Now I am ready to formulate the result in two propositions for the model without
lags and with lags, respectively, which stresses the key role of E-stability of the aggregate
economy in the stability of the original, structurally heterogeneous economy under het-
erogeneous learning with possibly different degrees of inertia (recall Proposition 2 and

Proposition 3 in Honkapohja and Mitra [36]). The key results are as follows.

Proposition 1.18 If one of the mazximal aggregate economies of the associated current
value expectations models for models without lags (Model I and Model III) under mized
RLS/SG learning in the diagonal case is E-stable (i.e., one of the maximal aggregate (-
coefficients is less than one), then the economy described by the original Model (I or III)
under mized RLS/SG learning in the diagonal case is 6-stable. Notice that all subeconomies

are also -stable under this condition.
Proof. See Appendix A.7.18. [J

It is also possible to write down sufficient conditions for d-stability for Models

without lags (I and III) under mixed RLS/SG learning in the diagonal case in terms
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of the E-stability of maximal aggregate economies of the original models (contrary to
the E-stability of maximal aggregate economies of the associated models in Proposition
1.18). These conditions, though more restrictive (stronger), are presented in the following

Corollary.

Corollary 1.19 If one of the mazimal aggregate economies for the current value aggregate
expectation model for models without lags (Model I and Model III) under mized RLS/SG
learning in the diagonal case is E-stable (i.e., one of the maximal aggregate [3-coefficients
is less than one), then the economy described by the original Model (I or III) under mized
RLS/SG learning in the diagonal case is o-stable. Notice that all subeconomies are also

0-stable under this condition.

Proof. It is easy to notice that the aggregated S-coefficients from Table 1.1 are less
than or equal to the corresponding aggregated (-coefficients for the maximal aggregate

economies of this Corollary.

h h T h h h | .
mlaXSZH}laiX ‘GOij +pat; + ot ppaz;| < mlaXSZHflLaiX (‘aoq‘ + |pil ‘alij + o lpr | |as )
i M i M
h h T h < ZZ h _’_’ h + + o7 h
mﬁXngX% >~ |aos; + patiy + -+ plagi| < maxmax 2 aggj| + 1ol |avs;| + -+ o7 | a7y
j j
maxS > max |al: + pjal. 4+ ..+ plal;;| < maxS S max (|al| + o] |k + ... + o] ok
i < h g 075 P 1ij P T = = hj 075 P 1ij P T1J
1 2 7 2
h h roh | h h | n
mlamejaxZ agij + Prai; + e PP Ary| S mlame]axZ agij| + leul (ati;| + - + o[ | |azi;
h i h i

Thus, if one of the latter coeffcients is less than one, this means that the corresponding
former coefficient is less than one, which leads to d—stability of the original economy by

Proposition 1.18. [

Remark 1.2 The E-stability condition for all p;-types of mazimal aggregate economies for
the current value aggregate expectation model for models without lags (Model I and III) is
equivalent to the E-stability condition for the maximal aggregate economies for the current
value aggregate expectation model for models without lags (Model I and III) with py = 1.
Thus, this condition alone is sufficient for the d-stability of Models I and III under mized
RLS/SG learning in the diagonal case.

Proposition 1.20 If one of the mazimal aggregate economies for the current value aggre-

gate expectation model for models without lags (Model I and Model I1I) under heterogeneous

)

)
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RLS learning in the general (non-diagonal) case is E-stable (i.e., one of the mazimal ag-
gregate [3-coefficients is less than one), then the economy described by the original Model
(I, III) under heterogeneous RLS learning in the general (non-diagonal) case is 6-stable.

Notice that all subeconomies are also §-stable under this condition.
Proof. See Appendix A.7.19. I

Proposition 1.21 If one of the mazimal aggregate economies of each type ( f-type and b-
type) of current value aggregate expectation model for the associated "unlagged” economy
of models with lags (Model II and Model 1V) under heterogeneous RLS learning in the
general (non-diagonal) case is E-stable (i.e., one of the maximal aggregate [-coefficients
is less than one), then the economy described by the original Model (II or IV), in which
all roots of b defined in (1.9) for Model II and in (1.16) for Model IV lie inside the unit

circle, is d-stable under heterogeneous RLS learning in the general (non-diagonal) case.
Proof. See Appendix A.7.20. [J

It is possible to derive less restrictive (weaker) sufficient conditions for d-stability
of models with lags under heterogeneous RLS learning in the diagonal environment case.
They could be received as a Corollary to Propositions 1.18 and 1.21 above using the suffi-
cient conditions for -stability under heterogeneous RLS models with lags in Propositions
1.5 and 1.10. First, (due to Propositions 1.5 and 1.10) the stability properties of the MSV
REE under heterogenous RLS of the associated "unlagged" economy of Models with lags
(IT, IV), similarly to the results for Models I and III, in the diagonal environment case
are equivalent to the simultaneous stability of the MSV REE of the set of the associated
current value expectations models (reflecting stability of D18,,).

Model II and Model IV (with A} = 0)

S _ A

e = a+ 3 (Ah+ (A10) + pAD By + Bui + G, (1.47)
h=1

d (1.2)

and of matrix D,€),. The first part of the conditions gives the first part of the sufficient
condition in terms of maximal aggregate economies of associated current value expectations
models for models with lags as in Proposition 1.18. The second part of the conditions gives

the second part of the sufficient conditions in terms of b-type aggregation as in Proposition

1.21. The result is reflected in the following Corollary.
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[ Model | Type | Subset | Bucighivg o [
Model II f—row s=1 mﬁXS? II}L?%X a&-j + (A?i))ij + pla?ij
and f—column | s =2 mlaxmlaxzh: ZJ: )agij + (A’l”g) gt plaﬁ-j‘
Model IV f—column | s =3 mlaXS ; H]IL%X a&-j + (A}fl_?) ij + Pla}fij
(with ag’ij =0) | f—row s=4 mlaxg mjax; ‘agij + (A?B)ij + Pza?z’j

Table 1.4: Maximal aggregate S—coefficients for maximal aggregate economies of the asso-
ciated current value expectations models under heterogeneous RLS learning in the diagonal
case for the associated "unlagged" economy of models with lags (Model IT and Model IV)

Corollary 1.22 If for the associated "unlagged" economy of models with lags (Model
II and Model IV) under heterogeneous RLS learning in the diagonal case, at least one
of the exonomies from the set that includes both the mazximal aggregate economies of the
associated current value expectations models and the mazximal b-type aggregate economies
of the current value aggregate expectation model is E-stable (i.e., one of the maximal
aggregate [(-coefficients defined in Table 1.3 (for b-type) and in Table 1.4 is less than
one), then the economy described by the original Model (II or IV), in which all roots of
b defined in (1.9) for Model II and in (1.16) for Model IV lie inside the unit circle, is

d-stable under heterogeneous RLS learning in the diagonal case.

1.6 Conclusion

In my paper I extend the results of Honkapohja and Mitra [36], Bogomolova and
Kolyuzhnov [5], and Kolyuzhnov [40]. I provide the general criteria for stability under het-
erogeneous mixed RLS/SG learning for four classes of models considered: models without
lags and with lags of the endogenous variable and with - or t — 1-dating of expectations.
I also provide conditions for stability and d-stability in some simpler cases, where sim-
plifications include the diagonal structure of the shock process behaviour, heterogeneous
RLS learning, and equal degrees of inertia for each type of learning algorithm. The results
on sufficient conditions for d-stability in terms of the E-stability of an aggregate economy
derived in this paper are primarily based upon the negative diagonal dominance approach.
The results based on the alternative definition of D-stability and the necessary conditions

based on the characteristic equation approach in terms of the "same sign" conditions and
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the E-stability of a suitably defined average economy and its subeconomies are considered
in a companion paper.
All the results of this paper can be summarized as follows.

I provide (in terms of stability of the corresponding Jacobian matrices):

e for the case of a general (non-diagonal) structure of the shock, general criteria
for stability under heterogeneous mixed RLS/SG learning in terms of structural
and learning heterogeneity for all types of models considered: models without lags

and with lags of the endogenous variable and with ¢- or £ — 1-dating of expectations.

e for the case of a diagonal structure of the shock, criteria for stability under
heterogeneous mixed RLS/SG learning in terms of structural and learning het-

erogeneity for models without lags of the endogenous variable of both types.

e sufficient conditions for stability for the case of a general (non-diagonal) struc-
ture of the shock under heterogeneous RLS learning in terms of structural and

learning heterogeneity for models with lags of the endogenous variable of both types.

For the case of a general (non-diagonal) structure of the shock, I provide cri-
teria for stability under heterogeneous mixed RLS/SG learning with equal degrees
of inertia of agents for each type of learning algorithm in terms of structural and
learning heterogeneity for all types of models considered in terms of the stability of a suit-
ably defined, structurally heterogeneous, average economy under heterogeneous learning
of two agents.

I provide sufficient conditions for §-stability (that is, the stability that does
not depend on such learning heterogeneity characteristics as different degrees of inertia
and different starting values of learning algorithms) in terms of FE-stability of suitably

defined maximal aggregate economies:

e for the case of a diagonal structure of the shock for models without lags of endoge-

nous variables under heterogeneous mixed RLS/SG learning,

e for the case of a general (non-diagonal) structure of the shock for all types of

models considered under heterogeneous RLS learning,

e and (as a mixture of the above) for the case of a diagonal structure of the shock for

all types of models considered under heterogeneous RLS learning.
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Though for the ease of exposition of models with lags, I considered the models
with one lag of the endogenous variables and one lead of expectations; the results derived
are easily extendable for models with a larger amount of lags and leads. The unconsidered
case of a forward-looking model with a lag when the information set includes current value
of the endogenous variable to be used to predict the future value of this variable clearly
falls under this paper’s technical constructions with some modifications and is a matter
for my future research.

The fundamental nature of the approach adopted in the paper allows one to apply
its results to a vast majority of the existing and prospective linear and linearized economic

models (including estimated DSGE models) with the adaptive learning of agents.
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Abstract

I provide criteria and sufficient and necessary conditions for the stability of a structurally
heterogeneous economy under the heterogeneous learning of agents, thus extending the
results of Honkapohja and Mitra [36], Bogomolova and Kolyuzhnov [5], Kolyuzhnov [40],
and Bogomolova [4]. Using the alternative definition of the D-stability approach, I provide
alternative (to criteria written in terms of the corresponding Jacobian matrices in Kolyuzh-
nov [40] and Bogomolova [4]) general criteria for stability under mixed RLS/SG learning
for four classes of models: models without lags and with lags of the endogenous variable
and with ¢- or t — 1-dating of expectations, and provide alternative sufficient conditions
for stability for some simpler cases. This approach also allows me to provide criteria for
d-stability (that is, stability in terms of the structural heterogeneity independent of the
heterogeneity in learning) for univariate models without lags of the endogenous variable
under mixed RLS/SG learning in economically meaningful terms, such as "same sign" con-
ditions and the FE-stability of a suitably defined average economy and its subeconomies,
and to provide quite weak sufficient conditions for d-stability for univariate models with
a lag of the endogenous variable using the same economic terms. Using the characteristic
equation approach, I provide quite strong, economically tractable, necessary conditions
that can be used as an easy quick test for non-é-stability. The fundamental nature of
the approach adopted in the paper allows one to apply its results to a vast majority of
the existing and prospective linear and linearized economic models (including estimated
DSGE models) with the adaptive learning of agents.
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2.1 Introduction

Adaptive learning is a form of bounded rationality that has arisen to question
the rational expectations (RE) hypothesis usually used in macroeconomic models with
expectations'. One of the widely used forms of adaptive learning is adaptive learning a la
Evans and Honkapohja or the adaptive econometric learning where agents are considered
as econometricians who update the estimated parameters of their forecast functions using
statistical (econometric) approaches each time new information arrives. The essence of
such an approach is well advocated by Sargent: If economists themselves do not know
true models and have to estimate them econometrically, then we should not expect more
from economic agents in general. Thus, it is suggested to consider them as behaving in a
way that resembles the behaviour of econometricians (or statisticians). One of the roles of
adaptive learning then, is to check the validity of the RE hypothesis, whether agents may
learn to be rational; that is, whether a particular model under adaptive learning would
converge to an RE equilibrium (REE).

Another hypothesis made in macroeconomic models that has to be questioned
is related to adaptive learning itself. Usually it is assumed that agents in the model use
the same learning procedure — the case of the so called homogeneous adaptive learning
is considered. A question arises whether the stability properties generated by homoge-
neous learning based on the representative agent hypothesis are replicated in the case of
heterogeneous adaptive learning when agents differ in the way they learn. This question
is studied e.g. in Giannitsarou [31], who assumes that agents are homogeneous in all re-
spects but in the way they learn; Honkapohja and Mitra [36], who consider a structurally
heterogeneous economy meaning that, other than heterogeneity in learning, agents may
also differ in structural parameters such as technologies, preferences, etc.; Bogomolova and
Kolyuzhnov [5] and Kolyuzhnov [40], who consider conditions for stability independent of
heterogeneity in the learning of a structurally heterogeneous forward-looking model with
one lead in expectations and with the diagonal structure of shocks; and in a companion
paper by Bogomolova [4].

Heterogeneity in learning in these papers comes in the form of different types
of learning algorithms used by agents, different speeds of reacting to innovations, differ-

ent initial perceptions and different shares of agents using a particualr type of learning

Yincluding DSGE models



77

algorithm. The structure of a typical learning algorithm assumes that the updated be-
lief parameter (in the simplest case, it is the regression coefficient, and in a recursive
least squares (RLS) algorithm, it also includes elements of the second moments matrix)
equals the previous value of the parameter plus the gain coefficient (usually presented by
a decreasing-in-time sequence) multiplied by the error correction function that depends
on the most recent forecast error. The different types of learning algorithms are presented
by the RLS (derived as a recursive formulation of usual least squares) and the stochastic
gradient (SG) algorithms, where the former differs from the latter only by the fact that
it updates the second moments matrix, while the latter keeps it fixed, which allows us
to model "less sophisticated" agents. The different speeds of reacting to innovation in
the simplest case are modeled as relative weights before the gain sequence common for
all agents. Different initial perceptions, in turn, are modeled as different starting values
for learning algorithms for different agents. The type of heterogeneous learning that en-
compasses all types of learning heterogeneity is presented by learning when some agents
use RLS and others use SG, and all of them have different degrees of inertia and different
starting values for learning. This type of learning is called heterogeneous mixed RLS/SG
learning with different degrees of inertia.

In my paper, I, following Bogomolova and Kolyuzhnov [5], Kolyuzhnov [40], and
Bogomolova [4], solve the open question posed by Honkapohja and Mitra [36]: to find
the conditions for stability of a structurally heterogeneous economy under mixed RLS/SG
learning with (possibly) different degrees of inertia in terms of structural heterogeneity
only, independent of heterogeneity in learning.

Though Honkapohja and Mitra [36] have formulated a general criterion for such
a stability and have been able to solve for sufficient conditions for the case of a univariate
model (a model with one endogenous variable), they did not derive the conditions (neces-
sary and/or sufficient) in terms of the model’s structure only, independent of the learning
characteristics, for the general forward-looking (multivariate) case. Though Bogomolova
and Kolyuzhnov [5] and Kolyuzhnov [40] consider conditions for stability irrespective of
heterogeneity in learning, they consider only a forward-looking model with one lead and
without lags of the endogenous variable and the diagonal environment case that implies a
diagonal structure of the AR (1) coefficients matrix in the shock process. It leaves aside

many economic models, such as DSGE models with a lag of the endogenous variable. In
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the companion paper, I substantially extend the results of Honkapohja and Mitra [36],
Bogomolova and Kolyuzhnov [5], and Kolyuzhnov [40]. There I provide sufficient condi-
tions for stability under heterogeneous mixed RLS/SG learning for four classes of models:
models without lags and with lags of the endogenous variable and with ¢- or t — 1-dating of
expectations, and provide sufficient conditions for stability for some simpler cases, where
simplifications include either the diagonal structure of the shock process or heterogeneous
RLS learning. However, that paper provides only one part of the results for stability, in-
dependent of heterogeneity in learning, which follows mainly from the particular approach
to studying stability, namely, the so-called negative diagonal dominance approach.

In the current paper, I also consider the same four types of classes considered in
the companion paper by Bogomolova [4] and use the same concept of stability independent
of the learning characteristics defined there (that slightly differs from the definition in
Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40]: it does not include shares of agents
using a particular type of learning algorithm); and I study the stability properties of the
mimimal state variable rational expectations equilibrium solution (MSV REE) of these
models under heterogeneous mixed RLS/SG learning.

The stability properties of the MSV REE of the models written in the form
of SRAs (the theory on SRA representation of models and stability results for SRAs
can be found e.g. in Evans and Honkapohja [24]) can be studied using the associated
ordinary differential equations (ODEs). Studying the stability of the MSV REE under
the associated ODEs is, in turn, transformed (using first-order approximations around the
MSV REE) into studying the stability of the corresponding first-order derivatives matrices
of the right-hand side of the ODEs evaluated at the REE, that is, the Jacobians.

The problem of finding the conditions for stability of the corresponding Jacobians
results in finding conditions for stability of a matrix (matrices) of a D2 type, where
D is a positive diagonal matrix. The problem of D-stability was studied, for example,
in Johnson [37]. There are several approaches considered to tackle this problem, e.g.,
in Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40]. Among these approaches are
the negative diagonal dominance approach?, the alternative definition of the D-stability

approach®, the characteristic equation approach, the Routh-Hurwitz conditions* and an

2See Theorem A.4 in Appendix A.4.
3See Theorem A.6 in Appendix A.6.
4See Theorem A.5 in Appendix A.5.
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approach based on the Lyapunov Theorem®. The description and discussion of these

approaches can be found, for example, in Bogomolova [4]°

While in that companion paper I essentially use the negative diagonal dominance
approach, which allows me to derive a sufficient condition for the D-stability of matrices
due to the MacKenzie Theorem?, here I look at the problem from a different angle and
try to find the conditions for stability that are not possible to derive using that approach.

I use the alternative definition of D-stability approach, which means that the
problem of D-stability can be equivalently substituted with the problem of finding the
stability of {2 and checking that 7 is not an eigenvalue of some specially constructed matrix.
Moreover, matrix D in all the models considered is not only a positive diagonal matrix,
but its diagonal consists of blocks of the same numbers of equal length. It has allowed
Kolyuzhnov [40] to introduce the definition of blocked D-stability (Dp-stability). The
alternative definition of Dy-stability allows me to write down the criteria for stability
under heterogeneous mixed RLS/SG learning for all four classes of models considered in
the general (non-diagonal) case. Using this approach, I also derive simplified alternative
(to the criteria written in terms of the corresponding Jacobian matrices in Kolyuzhnov [40]
and Bogomolova [4]) criteria for the stability of models without lags of both types with
the diagonal structure of shocks. It also allows me to derive alternative (to the sufficient
conditions written in terms of the corresponding Jacobian matrices in Bogomolova [4])
sufficient conditions (in terms of structural and learning heterogeneity) for stability of
models with lags of the endogenous variable of both types with the general (non-diagonal)
structure of shocks under heterogeneous RLS learning.

Thus, combined with the blocked structure of matrix €2, this Dj-stability allows
me to obtain finer results for sufficient conditions, which in simple univariate cases turn
into the weakest possible sufficient conditions, thus becoming necessary and resulting in a
criterion. The first (companion) paper (Bogomolova [4]) does not provide a criterion for §-
stability under general heterogeneous mixed RLS/SG learning. Kolyuzhnov [40] provides a
criterion only for a univariate model of the forward-looking type with one expectation lead
and no lags of the endogenous variable. Here, I provide criteria for §-stability for univariate

models (with either ¢- or ¢ — 1-dating of expectations) without lags of the endogenous

®See Theorem A.2 in Appendix A.3.
5See Apppendix A of that paper for formal definitions.
"See Theorem A.4 in Appendix A.4
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variable under mixed RLS/SG learning in economically meaningful terms. I also provide
quite weak, economically tractable, sufficient conditions for d-stability in univariate models
with a lag of the endogenous variable. The results based on the alternative definition of
Dy-stability produce forms of the "same sign" conditions as considered by Honkapohja
and Mitra [36]. In the simplest case, these conditions mean that the endogenous variable
reacts to the same sign changes in expectations of different agents in the same direction.

In addition, for all types of models with general (non-diagonal) structure of
shocks, using the characterisic equation approach, I provide (quite strong) necessary con-
ditions (in terms of structural and learning heterogeneity) for stability and d-stability
under heterogeneous mixed RLS/SG learning written in terms of stability of a suitably
defined structurally heterogeneous average economy under heterogeneous learning of two
agents. Using the same approach, for models without lags of endogenous variables with
general (non-diagonal) structure of shocks, I provide necessary conditions for stability and
d-stability under heterogeneous mixed RLS/SG learning written in terms of subeconomies
for economies from a set of associated current value expectations models. Quite strong
necessary conditions can be used as an easy quick test for non-d-stability.

The fundamental nature of the approach adopted in the paper allows one to apply
its results to a vast majority of the existing and prospective linear and linearized economic
models with the adaptive learning of agents. For example, those include (estimated) DSGE
models with the introduced learning of agents. In this sense, the results derived could
be very helpful in terms of checking the robustness of a particular DSGE model® to an
expectation formation hypothesis, that is usually taken to be RE, and the validity of the
representative agent assumption.

The rest of the paper is structured as follows. In the next section, I present
the four classes of structurally heterogeneous models under the heterogeneous adaptive

learning of agents. Section 3 provides the starting point for my derivations in the paper

8A typical DSGE model in structural form looks like

Ao { Ye-1 ] + A { 3}’1 ] + A2Eyi4+1 + Bogr = const.

Wt—1
After estimating (for example by DYNARE [38]), the solution of the model under rational expectations
is given by
|: Y ] :u+T|: Yi-1 :| + Rey.
Wt Wt—1

See, for example, Slobodyan and Wouters [53].
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— the results of the companion paper (Bogomolova [4]) in the form of criteria and sufficient
conditions for stability under heterogeneous learning for each class of models considered
in general and simpler cases and formulates the concepts of heterogeneous expectational
stability and of d-stability. In Section 4, using the alternative definition of D-stability
approach, I provide the alternative, to those in Section 3, general criteria and sufficient
conditions for stability for the general case and for some simpler cases discussed above
for all classes of models considered. In the same section, I also provide the criteria for
d-stability for univariate models without lags of the endogenous variable under mixed
RLS/SG learning in economically meaningful terms, such as the "same sign" conditions
and the F-stability of a suitably defined average economy and its subeconomies. There I
also provide quite weak sufficient conditions for §-stability for univariate models with a lag
of the endogenous variable using the same economic terms and provide the "same sign"
sufficient conditions for d-stability for bivariate models without lags of the endogenous
variables in the diagonal environment case. In Section 5, for all model classes, using the
characteristic equation approach, I provide a set of quite strong, economically tractable,

necessary conditions. Section 6 concludes with a summary of the results.

2.2 The setup of linear model classes under heterogeneous

adaptive learning

2.2.1 Classes of structurally heterogeneous linear models with expecta-

tions

As earlier stated, I consider the same general setup of structurally heterogeneous
linear models with expectations and four classes of models: models without lags and
with lags of the endogenous variable with ¢- or ¢ — 1-dating of expectations, analyzed
in Bogomolova [4]?. The reduced form of the general class of structurally heterogeneous

linear models with S types of agents with different forecasts is given by

d m.on N

ye = at+ > Ligeit > > > ANELyyr pig + Bug+ Cery Afg =0, (2.1)
i=1 h=1b=0 f=b

wy = Fwp_1+ vy, (2.2)

9Here I provide a brief description of the setup in that paper. For a full description of models and
discussion, please see Bogomolova [4].
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where y; is an n x 1 vector of endogenous variables; w; is a k x 1 vector of exogenous
variables; v; and €; are vectors of (independent) white noise shocks; EfytH are (in general,
non-rational) expectations of the vector of endogenous variables by agent h; Lj;, Agf, B,
and ¢ are conformable matrices. Further, it is assumed that F' (a k X k matrix) is such
that w; follows a stationary VAR(1) process with M,, = lim;_,. wyw; being a positive
definite matrix.

The structural heterogeneity of the model is expressed through matrices Ag”f =
¢ h-flgf, with (;, being the mass of each agent type, where fl;}f’s (that in the general case are
different for different types of agents) contain structural parameters characterizing a given
economy, such as the basic characteristics of agents: preferences, technology, endowments,
etc. When flgf = Ay, V h, and ) (), = 1, the economy is structurally homogenous.

The four classes of models'” are obtained with the following parameter values:
d =0, m=1,n-any, Al; =0 (Model I); d =1, m = 1,n = 2, Af; = 0 (Model II); d = 0,
m = 0,n -any (Model III); and d = 1, m = 0,n = 1 (Model IV).

The first group of classes of models considered are the two classes of structurally
heterogeneous models with ¢ — 1-dating of expectations, where the first class (Model I) is

presented by models without lags of the endogenous variable

S R S . S N
y = a+ S AMEM y+ S AMED Jyii o+ Y APER gy + By + (e, (2.3)
h=1 h=1 h=1

and (2.2)

and the second class (Model II) is presented by models with one lag of the endogenous
variable and one forward-looking term in expectations

s . s .
ye = a+Ly1+ Y AGELye+ Y AVED jyi + Bug + (e, (2.4)
h=1 h=1

and (2.2),

with the definitions of variables and matrices being the same as for the general class of
structurally heterogeneous linear models with S types of agents with different forecasts
above.

The second group of classes of models considered are the two classes of struc-

turally heterogeneous models with ¢-dating of expectations, where the first class (Model

10Though my discussion here and in Bogomolova [4] is easily extendable to the general model setup, in
order to simplify the exposition of the results, I restrict my analysis to the examples used the most in the
literature.
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III) is presented by models without lags of the endogenous variable

S N S .
ye = a+ 3 AVEMYa + o+ Y ALEMyr + Bug + (e, (2.5)
=1 =1

and (2.2),

and the second class (Model IV)!! is presented by models with one lag of the endogenous

variable, the (1,y;_;,w;) information set, and one forward-looking term in expectations

S N
yw = a+Ly 1+ Y AVElyi + Bug+ Cer, (2.6)
=1
and (2.2),

where the variables and the matrices are defined as above.

In all four classes of models, agents of each type h are assumed to form their ex-
pectations Ef_lyHT, r=0,1,...,7 (in the case of t — 1-dating of expectations) or E{Lyt+r,
r = 1,...,7 (in the case of t-dating of expectations) about the endogenous variables be-
lieving that the economic system follows a model called the agents’ perceived law of
motion (PLM) that corresponds to the minimal state variable (MSV) rational

expectations equilibrium (REE) solution:
Yr = aZ’t,l + bp¢—1wi—1 (for Model I),

Y = aZ,t—l +bpt—1Yi—1 + cpr—1wi—1 (for Model II),
Yi = apt + by gw; (for Model III),
Yt = apt + by yi—1 + cppwy (for Model 1V).

After plugging the forecasts of each agent based on the corresponding PLM into
the reduced form of the model and then equating the parameters of the corresponding
mapping (called the T-map) from the parameters of the PLM to the parameters of the
actual law of motion (ALM), one may obtain the MSV REE in each class of mod-

els, with our main interest being in the matrix coefficient before the lagged endogenous

"Tn order to keep the presentation of results concise, in this paper, I do not consider the case of
the (1,y;,w;) information set analyzed, for example, in Evans and Honkapohja [22] for a structurally
homogeneous economy under homogeneous learning. Instead, I consider a realistic situation where the
value of the endogenous variable at time ¢ cannot be used to predict the future value of this variable since
it is not yet known. Thus, simultaneity between y; and E‘fytH is avoided. The case of the (1,y;,w})
information set clearly falls under this paper’s technical constructions with some modifications and is a
matter for my future research.
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variables in Models II and IV
S B S ~ B
L+ Agb+ (ZA’{) b2 =b, (2.7)
h=1 h=1
where Ag = 0 for Model IV.

2.2.2 Heterogeneous adaptive learning in various classes of linear models

In all classes of structurally heterogeneous linear models with expectations pre-
sented above, it is assumed that agents use heterogeneous mixed RLS/SG learning
(discussed in the Introduction) when part of the agents, h = 1,5, are assumed to use the
RLS learning algorithm, while others, h = Sy + 1,5, are assumed to use the SG learning
algorithm.

For classes of models with ¢ — 1-dating of expectations (Model I and Model II)
RLS: for h =1, 5y

— /
Cpip1 = Ppyp+ ah,t+1Rh’1+1zt (Yer1 — @), 42t) (2.8a)

Rhit1 = Rny+ anggr (2621 — Ry) (2.8b)
SG: for h=5y+ 1,8
Ppi1 = Phy + anpy12e (Y1 — q’}L,tZt)’- (2.9)

For classes of models with ¢-dating of expectations (Model III and Model IV)
RLS: for h =1, 5y

(I)h,t+1 = ‘I’h,t + Oéh,t+1Rf7é+1zt (yt - (I)Ih,tzt)/ (2103)

Rh7t+1 = Rhﬂg + Qht+1 (thz — Rh,t) (210b)
SG: for h=5y+1,8
Ppy1 = Pry + 12 (ye — ‘I’Ih,t?«‘t)/7 (2.11)

where z; = (1,w}) (Model I and III), z; = (1,y;, w;) (Model IT ), 2z, = (1,y;_;,w}) (Model
IV); CID;M = (ant,bnt) (Model T and III), <I>;L,t = (ant,bnt,cny) (Model IT and IV); and
where

Q= Opauy,
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where oy is a deterministic, decreasing, and positive gain sequence that satisfies the usual

conditions: > oy = 00, Y. @? < oo, and lim sup K ) — ()} < 00, 0p > 0 are
t=1 t=1 t—oo [ \ Qt+1 Qg
degrees of inertia given here in the formulation of Giannitsarou [31] as constant coeffi-

cients before the deterministic decreasing gain sequence in the learning algorithm, which
is common for all agents'?.

In Bogomolova [4], I provide the criteria for stability under mixed RLS/SG learn-
ing of the MSV REE for all four classes of models in terms of the stability of the corre-
sponding Jacobian matrices. I present these results (without proof) here for the reader’s

convenience as I use them as a starting pont for the derivation of new results in this paper.

2.3 Ciriteria, sufficient conditions, and the concepts of H FE-

and J-stability

Criterion 2.1'3 In economy (2.3) and (2.2), Model 1 ((2.5) and (2.2), Model 111), mized
RLS/SG learning converges globally (almost surely) to the minimal state variable (MSV)
solution if and only if the corresponding matrices D12 and D,,Qp have eigenvalues with

negative real parts, where
Dy =diag (011n,...,051y),
Aj+ AL+ AL -1, . AS+ A7+ AS
Q= : : , (2.12)
Ay + AL+ AL o AS AT+ AT,
Dy=diag (Dy1,...,Dws) , with Dyp=0pI for h=1,Sg and D=6y (M, ® I,,) for h=Sy + 1, S,
FroAlv  AF @ A, @ Af-Ty, -+ FTQASH +F @ AT+, ® A§
Qp= : .. :
FrAlv +F @ AA+L, @ A} -+ FT@AS+. . 4+F @ A7 +1, @ AS-T

and for Model III, Ag =

Criterion 2.2 In economy (2.4) and (2.2), Model 11 ((2.6) and (2.2), Model 1V ), in
which all Toots of b defined in (2.7) lie inside the unit circle, mized RLS/SG learning

2Honkapohja and Mitra [36] use a more general form of degrees of inertia.
3that corresponds to Criteria 1.1 and 1.6 in Bogomolova [4]
Ythat corresponds to Criteria 1.2 and 1.7 in Bogomolova [4]
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converges (almost surely) to the minimal state variable (MSV) solution if and only if the
corresponding matriz Diy,Qipr has eigenvalues with negative real parts, where

Diyw = diag (Diywt, -, Diyws) , With Diywn = 01y yn2 ik for b = 1,5y and Diyyn =
§p (Myyy ® I,) for h =55+ 1, S,

R — I ino ik R! e R!
Qur = R,2 - Ié+n2+nk N R,Q ;
i R® R® o R —Iyyn2 i |
Al + (Ab + Alb) a ® A} 0
Rh = 0 V@Al +1, ® (Af + ALb) 0 :
d @ Al F'@ Al + I © (A + Alb)

and for Model 1V, AR = 0.

These necessary and sufficient stability conditions for all classes of models can

be conveniently presented as the requirement for stability of the matrix

[ 5, (Rl_]) . §1R% 5, RS0+ . 51 RS
SsoRY -+ bgy (RS0-D) 55, R0H1 e 55, R°
QKR = ;
6sgr1KRY -+ 851 KR% g1 (KROVLK) - §g,41 KRS
SsKR' -+ SgKRY 5K R -+ 05 (KRY-K) |
(2.13)
where for Model I and Model IIT (with A} = 0)
1 0 1 0 1 0
K = , Rh = QA+ ...+ ® AP + Iy ® AB,
0 M, 0 F'7 0 F
and for Model IT and Model IV (with A} = 0)
My, 0
K:(Ml w®In)a Ml w —
Y Y 0 M,
Al (A} + Alb) a ® A} 0
Rh = 0 V@AY + 1, @ (AR + Abb) 0
¢ ® Al F'o Al + I, ® (A} + Alb)

These conditions are written in terms of a mixture of structural and learning

heterogeneity. Similar to Bogomolova [4], here I refer to these conditions for the stability
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of an REE as heterogeneous expectational (HE-) stability (or stability in hetero-
geneous expectations) and refer to the stability of an REE written in terms of structural
heterogeneity only as §-stability. Formally, the definition of §-stability can be given in

the following way.

Definition 2.1 §-stability is the stability of an REE under heterogeneous (either RLS,
SG, or mized RLS/SG) learning for any positive values of degrees of inertia and any

starting values of learning algorithms.

Note that this definition does not include independence on shares of agents using
a particular type of learning algorithm, and in this sense, this definition differs from the
one introduced in Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40].

It is possible to simplify the conditions written above for the diagonal structure
of the shocks process

2

2
F =diag(py, .-y pr), My = tliglo wyw; = diag (;—;ﬁ, Tk ) , (2.14)

o TopE
and/or for the heterogeneous RLS learning (S = Sy), or for the mixed RLS/SG learning
with equal degrees of inertia for each type of learning algorithm. Later, it will allow us
to derive sufficient conditions, necessary conditions (and criteria in some cases) that have
some economic meaning in terms of structural heterogeneity only, that is, conditions for

0-stability. The results from Bogomolova [4] are as follows.

Proposition 2.3 (The criterion for the stability of Model I (Model I11) under mized
RLS/SG learning for the diagonal environment case under any (possibly different) degrees
of inertia of agents, § > 0). In the structurally heterogeneous economy (2.3), (2.2), and
(2.14), Model T ((2.3), (2.2), and (2.14), Model III), mized RLS/SG learning converges
globally (almost surely) to an MSV REE solution for any (possibly different) degrees of

inertia of agents, 6 > 0, if and only if matrices D19, are stable for any § > 0, where

Dy = diag (511, ..., 651,) (2.15)
Ab+p Al 4pT AL, o ASHp AV A pT AD
Q)= g : NI=0, ..., k, (pg=1),
Abtp i ApT AL AS4p AT T AS-T,
(2.16)

5that corresponds to Propositions 1.4 and 1.9 in Bogomolova [4]
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and for Model III, A} = 0.

Proposition 2.4!6 (Sufficient conditions for the stability of the MSV REE of Model IT
(IV) under heterogeneous RLS learning for the general (non-diagonal) environment case)
In economy (2.4) and (2.2), Model II ((2.6) and (2.2), Model 1V ), in which all roots of
b defined in (2.7) lie inside the unit circle, heterogeneous RLS learning converges (almost
surely) to the minimal state variable (MSV) solution if the corresponding matrices D12,

Dy, and D,Qp have eigenvalues with negative real parts, where Dy is given in (2.15),

A+ AL+ Alb—-1, - AF+ AT+ AT
Q= : : 7 (2.17)
A+ AL+ AL - A+ AT+ ATD- T,
Dy = diag (6112, ...,051,2) , (2.18)
V@A + I, ® (Al + Afb) — L2 -+ V® A7 + 1, ® (A5 + A7D)
VeAl+1,® (Af+ Alb) - V@A + 1, ® (Af + A7b) — L2
(2.19)
Dw = diag (51171’{:’ ceey 5Slnk) y (2.20)
F''@ Al + I, @ (A§ + A}b) — Ly -+ F'® A7 + I, ® (A5 + A7b)
F'® Al + I, ® (A} + Alb) o @AY+ I @ (Af + ATD) — Ly,
(2.21)

and for Model 1V, AR = 0.

Proposition 2.5'7 (Sufficient conditions for the stability of Model II (Model IV ) under
heterogeneous RLS learning for the diagonal environment case under any (possibly differ-
ent) degrees of inertia of agents, § > 0) In the structurally heterogeneous economy (2.4),
(2.2), and (2.14), Model II ((2.6), (2.2), and (2.14), Model 1V), in which all roots of b
defined in (2.7) lie inside the unit circle, heterogeneous RLS learning converges (almost

surely) to an MSV REE solution for any (possibly different) degrees of inertia of agents,

that corresponds to Corollaries 1.3 and 1.8 in Bogomolova [4]
7that corresponds to Propositions 1.5 and 1.10 in Bogomolova [4]
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§ > 0, if matrices Dy, and D€, are stable for any 6 > 0, where Dy is given in (2.15),

A§+p AL+ A~ Iy - A+ p AT + ATD
Ay +p A+ Al o AS 4 p AT+ AT - T,

and for Model 1V, Ak = 0.

Proposition 2.6'® (The criterion for stability under mived RLS/SG learning with equal
degrees of inertia of agents for each type of learning algorithm, § > 0) In the structurally
heterogeneous economy (2.3) and (2.2), Model I ((2.5) and (2.2), Model III) or (2.4) and
(2.2), Model II ((2.6) and (2.2), Model IV), in which all roots of b defined in (2.7) lie
inside the unit circle, mized RLS/SG learning with equal degrees of inertia of agents for
each type of learning algorithm, &; = 67, Vi = 1,..., 80, 6; = 6°C, Vi = Sy + 1,..., S,
converges globally (for Models I and III) or locally (for Models II and IV) (almost surely)
to an MSV REE, if and only if the REFE is a locally asymptotically stable fized point of the
corresponding average economy with two agents, defined for the general setup (2.1) and
(2.2) as

d m n So R
ye=a+ Y Liyt—i+ ) (Z Agf) By g+ (2.23)
=1 5=0 j=b \h=1

m n S R
+ 3> ( > Agf) EPSye—bs s + Bwy + (e,
=0 f=b \ h=So+1

and (2.2), Ak, =0,

So
where the agent with coefficients <Z Agf> learns by RLS with the degree of inertia 6%,
h=1

S
and the agent with coefficients > A{}f learns by SG with the degree of inertia §°C.
h=Sp+1

As it is clear from the Propositions and Criteria above for the general and simpler
cases, the problem of finding conditions for stability of the corresponding Jacobians results
in finding conditions for stability of a matrix (matrices) of D2 type, where D is a positive
diagonal matrix. The problem of D-stability was studied, for example, in Johnson [37].
There are several approaches considered to tackle this problem, e.g., in Bogomolova and

Kolyuzhnov [5] and Kolyuzhnov [40]. Among these approaches are the negative diagonal

8that corresponds to Proposition 1.11 and Definition 1.2 in Bogomolova [4]
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dominance approach!®, the alternative definition of D-stability approach?’, the character-

21

istic equation approach, the Routh-Hurwitz conditions®", and an approach based on the

Lyapunov Theorem??

. The description and dicussion of these approaches can be found,
for example, in Bogomolova [4] (see Apppendix A.2 of that paper for formal definitions).

While in that companion paper I essentially use the negative diagonal dominance
approach, which allows me to derive the sufficient condition for the D-stability of matrices

23 and finally allows me to obtain sufficient conditions

due to the MacKenzie Theorem
written in terms of E-stability of suitably defined maximal aggregate economies for all
four classes of models for general and simpler cases, here I look at the problem from a
different angle and try to find conditions for stability that are not possible to derive using

that approach.

2.4 The alternative definition of D-stability approach and

the “same sign” sufficient conditions for /-stability

2.4.1 Alternative criteria and sufficient conditions

I use the alternative definition of D-stability approach, which means that the
problem of D-stability can be equivalently substituted with the problem of finding condi-
tions for stability of 2 and checking that ¢ is not an eigenvalue of some specially constructed
matrix. Moreover, matrix D in all the models considered is not only a positive diagonal
matrix, but its diagonal consists of blocks of the same numbers of equal length. It has
allowed Kolyuzhnov [40] to introduce a definition of blocked D-stability (Dj-stability) and
an alternative definition of it.

Definition 2.2 (Dy-stability) Matriz A of size nS x nS is Dy-stable if DyA is stable
for any positive blocked-diagonal matrix Dy = diag(d1,...,01,...,05,...,05).

Proposition 2.7 (An alternative definition of Dy-stability) Consider My,s(C), the set of
all complex nS x nS matrices, and Dyy,g, the set of all nS xnS blocked—diagonal matrices
with positive diagonal entries. Take A € M,s(C) and suppose there is F € Dy,g such
that F A is stable. Then, A is Dy-stable if and only if A £ iDy is non—singular for all

19See Theorem A.4 in Appendix A.4.
208ee Theorem A.6 in Appendix A.6.
21Gee Theorem A.5 in Appendix A.5.
22Gee Theorem A.2 in Appendix A.3.
238ee Theorem A.4 in Appendix A.4.
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Dy € Dyps. If A € M,s(R) — the set of all nS xnS real matrices, then “+” in the above

condition may be replaced with “+7 since, for a real matriz, any complex eigenvalues come

1 conjugate pairs.

Taking F' as an identity matrix and D as diag(%, . %, e i, ey %), op>0,h =
1, .5, in the alternative definition to Dy-stability above, I obtain the following necessary and
sufficient conditions (alternative criteria) for stability under heterogeneous mixed RLS/SG

learning for all four classes of models considered in the general (non-diagonal) case:

Criterion 2.8 In the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5)
and (2.2), Model III) or (2.4) and (2.2), Model II ((2.6) and (2.2), Model IV), in which
all roots of b defined in (2.7) lie inside the unit circle, mived RLS/SG learning converges
globally (almost surely) to an MSV REE if and only if the corresponding matriz Qxr,
defined in (2.13), is stable and

So S
det < _Béh >+ > <_K}Eh>—|—l
[h:l I=5,1 h=So+1 K=5,1

S s
1 K
Ry) + Rp)+ 1|+
det [(;1 I+ %I( 2 h:%(;+1 K2+61%l[( 2 )

O S 5K
il 2 a7 (CR)+ Y @i (BR) || #0
5, i

h=1 hZS()+1

Yop > 0,h = 1,75,
where to shorten notation % means B71A.

Proof. See Appendix B.1.1. [J

The alternative definition to Djy-stability approach allows me to write down sim-
plified alternative stability criteria (to criteria in terms of the corresponding Jacobian
matrices [given in Proposition 2.3 here| in Kolyuzhnov [40] and Bogomolova [4]) for mod-

els without lags of both types (Models I and III) in the case of the diagonal structure of

the shock behaviour.

Proposition.2.9 (An alternative criterion for the stability of models without lags (Model

I and Model 111) under mized RLS/SG learning for the diagonal environment case under
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any (possibly different) degrees of inertia of agents, 6 > 0) In the structurally heteroge-
neous economy (1.3), (1.2), and (1.22), mized RLS/SG learning (2.8), (1.20), and (1.4)
converges globally (almost surely) to an MSV REE solution for any (possibly different)
degrees of inertia of agents, 6 > 0, if and only if the corresponding matriz Q,,, defined in

(1.24), is stable and

= 1+3ﬁ

S
=det || > 14 (Ag+plAff+...+p[A’;>+I +
h=1""67

=

>
+1i
=

|

4 (A’g + o A+ p[AQ)) #0,

d
:—w‘“

V(Sh > 07h = W,Vl = 07 17 "'7k7 (pO = 1)

For the univariate case (n = 1), this condition simplifies to Q, — stable and
S —1 h h T Ah S 7% h h T Ah
> o T (Ao + P AT +u-+mAT) +1) # Oor > (AO + p A —i—...+plAT) £ 0,
h=1"":s2 h=1""4s7

or both,¥§, > 0,h=1,5VI=0,1,...k (py=1),
where Ag = 0 for model III everywhere above.
Proof. See Appendix B.1.2. [J

This approach also allows me to write down alternative sufficient stability condi-
tions (to the sufficient conditions in terms of the corresponding Jacobian matrices [given in
Proposition 2.4 here] in Bogomolova [4]) for models with lags of the endogenous variable
of both types (Models IT and IV) in the case of the general (non-diagonal) structure of
shocks under heterogeneous RLS learning — conditions written in terms of structural and

learning heterogeneity.

Proposition.2.10 (Alternative sufficient conditions for stability of models with lags
(Model 11, IV ) under heterogeneous RLS learning for the general (non-diagonal) envi-
ronment case under any (possibly different) degrees of inertia of agents, § > 0) In the
structurally heterogeneous economy (2.4) and (2.2), Model II ((2.6) and (2.2), Model IV),
in which all roots of b defined in (2.7) lie inside the unit circle, heterogeneous RLS learn-

ing converges (almost surely) to an MSV REE solution for any (possibly different) degrees
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of inertia of agents, § > 0, if the corresponding matrices Q, Qp, and Qp defined in (2.17)

(2.19), and (2.21), respectively, are stable and
S —

—(Ag+A7 +A7) _

[ 5 () )

S 1 h h h
3 1+573 <A + Al 4 AP b) £0

<Ah+Ah A’fB) +I) +i (
h=1
Vo, > 0,h =1, 35;

S
= det
h¥1 1+§72L
and
o[£ (Cotselain) ]
= 1+W
S
— ! B 0 b
~ det Kh = (b AN+ I, ® <A0+A1b>>+l>
S *% 7/ h h hp
Z %(b ®A1+In®(A0+A1b)) 70
h=1""s;
Vo, >0,h=1,5;
and
= 1+E
o KZ (P oAl R (45 + A)) H) +
h=1""357
. S % / h h h
i Zl_;_i(F@A —}—Ik®(A —i-Ab)) #0
h=1""452
Vo, > 0,h=1,85.

For the case n =1, k = 1, this condition simplifies to Q, Qp, and Qp — stable and
s _1 _
e (Ag + Ab +A’fb) £0,

S —

3 (A +A§‘+A’fb)+1 £ 0or

h=1 1+62 h=1

or both,¥8, > 0,h=1,5;
and
5 h hT 5 -4+ e
> (Ah2480) +1) £ 0or pope (A4 +2415) %0,
h=1""67 h=1 g
or both,¥6, > 0,h=1,8;
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and

(531” <A0+A1p+A’fB)+1> £ 0or ; 1';( Ty p—i—Ahb);&,

or both,¥§;, > 0,h=1,5.
For Model 1V, A% =0 everywhere above.

Proof. See Appendix B.1.3. [J

Sufficient conditions written above can be simplified further by assuming also
the diagonal environment setting (2.14). This results in alternative sufficient stability
conditions (to sufficient conditions in terms of the corresponding Jacobian matrices [given
in Proposition 2.5 here| in Bogomolova [4]) for models with lags of the endogenous variable
of both types (Models IT and IV) in the case of the diagonal structure of shocks under
heterogeneous RLS learning — conditions written in terms of structural and learning

heterogeneity .

Proposition.2.11  (Alternative sufficient conditions for stability of models with lags
(Model I1, IV ) under heterogeneous RLS learning for the diagonal environment case under
any (possibly different) degrees of inertia of agents, 6 > 0) In the structurally heteroge-
neous economy (2.4), (2.2), and (2.14), Model II ((2.6), (2.2), and (2.14), Model IV), in
which all roots of b defined in (2.7) lie inside the unit circle, heterogeneous RLS learning
converges (almost surely) to an MSV REE solution for any (possibly different) degrees of
inertia of agents, § > 0, if the corresponding matrices €, and %, defined in (2.22) and
(2.19), are stable and

S —
det [Z <_(Ag’:"+l?+’4?b)> +I] =
h

h=1

S —1 h h h1 S 7% h h
=1 5}1 h=1

V(Sh > 07h = 1aS>VZ = 0717"'ak7 (pO = 1)7

:M‘

and

ot f) —WeA+1e(A5+AN)) | L | _
P 5

:detKi (b’@Ah+I <A3+A§Lb))+l>+
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(5/®A}f+[n® (A8+A’1‘B))>] £0

+
~.
VO
M
—
+
|1

V6, > 0,h =1, 5.

For the univariate case (n = 1), this condition simplifies to Q, and Q, — stable and

s - S _1 _
(z o (4 + pal + AlB) + 1> £ 0or 3 0 (Af+ paAb+ AlD) 0,
h=1""4s2 h=1""4s2

or both,¥6, > 0,h=1,8,Y1=0,1,....k,(py = 1),

and

S

S _ -1 _
(};1 =% (A8+2A’fb>+1> # 0or > 0 (A8+2A’fb> £0,

2
%

h=1""43
or both,¥6, > 0,h=1,5.

For Model 1V, AR =0 everywhere above.

Proof. See Appendix B.1.4. [J

2.4.2 The “same sign” sufficient conditions for /-stability

The alternative definition of Dj-stability approach allows me to derive "same
sign" conditions, considered by Honkapohja and Mitra [36] for lower dimension cases
n = 1,2, and necessary and sufficient conditions for §-stability for n = 1.

The first (companion) paper did not provide a criterion for J-stability in the
general heterogeneous mixed RLS/SG learning case. Kolyuzhnov [40] provides a criterion
only for the univariate model of the forward-looking type with one expectation lead and
no lags of the endogenous variable. Here, I provide criteria for §-stability for univariate
models (with either ¢- or ¢ — 1-dating of expectations) without lags of the endogenous
variable (Models T and III) under mixed RLS/SG learning in economically meaningful

terms such as subeconomies.

Definition 2.3 A subeconomy (hi,...,h,) of size p for economy (2.1) and (2.2) is

defined as consisting only of a part of agents from the original economy:

d P m n R
W= ot S Lyt XS Y AMEM g g+ Bugt e, Al =0, (224)
=1 k=1b=0 f=b

(2.2):
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where (hi,...,hy) € (1,...,5) is a set of numbers of agent types present in the subeconomy.

A single economy is a particular case of a subeconomy with only one type of agent.

Before formulating the criteria for §-stability for univariate Models I and IIT under
mixed RLS/SG learning in the diagonal environment case, first note that the stability
properties of the MSV REE under mixed RLS/SG learning of Model I in the diagonal
environment case is equivalent to the ones of the MSV REE of the set of associated

current value expectations models®*

S .
w = a+ X (Af+p AL+ .+ o] ADE! jy + By + Cey, (2.25)
h=1

and (1.2).

Similarly, the stability properties of the MSV REE under mixed RLS/SG learning
of Model III in the diagonal environment case is equivalent to the ones of the MSV REE

of the set of associated current value expectations models

S N
v = a+ S (mAM+ .+ pTAME! Ly + Bwy + Cey, (2.26)
h=1
and (1.2).

The next criterion is formulated in terms of this set of associated current value
expectations models as well.

Proposition 2.12 (A criterion for d-stability in the univariate case of models without
lags, Model 1 and Model III, under mized RLS/SG learning for the diagonal environ-
ment case) In the case of m = 1, the structurally heterogeneous economy (2.3), (2.2),
and (2.14), Model I ((2.5), (2.2), and (2.14), Model III) under mized RLS/SG learning
is d-stable if and only if each economy from the set of associated current value expecta-
tions models corresponding to Model I (III) is E-stable (that is, the corresponding matrix
Qp,, defined in (2.16), is stable) and for each economy from the set of associated current
value expectations models corresponding to Model I (III), at least one of the following
holds true: the "same sign" condition (all (A’g + oAb+ L+ plTA}T‘) are greater than or

equal to zero, and at least one is strictly greater than zero, or all (A(]Z + plA’f + ...+ plTA}T‘)

24The same definition is given in Bogomolova [4]. Tt has turned out to be useful in deriving sufficient
conditions in terms of E-stability of a suitably defined maximal aggregate economy.
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are less than or equal to zero, and at least one is strictly less than zero), or all aver-
age economies with (Ao + pjA1 + ... + plTAT)(hL_._’hp) = (hlzhp) (Ab + p AL + ...+ pT AD)
corresponding to subeconomies (hi,...,h,) of all sizes p are not E-unstable, and for each
1=0,1,....k (pg = 1) there exists at least one average economy corresponding to subecon-
omy (hi(l), ..., hy(1)) in each size p for which the stability coefficient

(A{; + o AL+t p[Aﬁ)
(R1(D),.-,h5 (D))

is strictly less than one. For Model III, Al = 0 everywhere above.
Proof. See Appendix B.1.5. [J

I also provide quite weak, economically tractable, sufficient conditions for 4-
stability for univariate models with a lag of the endogenous variable (Models II and IV)
under heterogeneous RLS learning. Before formulating these conditions for d-stability for
univariate Models IT and IV under heterogeneous RLS learning in the diagonal environment
case, I have to formulate several definitions from the companion paper as it has turned
out that "same sign" conditions can be applied to the same sets of aggregate economies
considered there.

First note that for models with a lag of the endogenous variable (Models II and
IV), one can construct an economy without a lag corresponding to the model considered
that has the same asymptotic behaviour around the REE. In Bogomolova [4], I call this
model (by analogy to the associated ODE) the associated "unlagged" economy. With
respect to Models IT and IV, the associated ”unlagged” model corresponding to

Model IT and 1V is given in the following proposition (for the proof see Bogomolova

[4])-

Proposition 2.13 The associated ”unlagged” model corresponding to M odel
II (IV) (that is, the model that has the same asymptotic behaviour as Model II (IV),
where the component for the lag coefficient is fized at the MSV REE wvalue) is the model:
for Model II:

y=a+ Y

S
h=1

N\ A ) .
(Ag + A?b) El jye+ S AYE! i1 + Bwg + (e,
h=1

and (2.2);
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for Model IV:

S N . S .
ve=a+ > (A1) By + 3 AVE yeer + BF Mwi + Ceu,
h=1 h=1

and (2.2),
where b is defined in (2.7).

The set of associated current value expectations models for this as-
sociated "unlagged" economy is then naturally defined as for models without lags
(Models I and IIT) above. This set may also be considered as the set of aggregate models
of the associated "unlagged" economy, where aggregation is done to reduce the number
of forward-looking terms in expectations using p;’s as discounting factors. However, such
discounting can also be done using elements of b instead of p,’s since the endogenous vari-
able at the REE depends on its lag with matrix coefficient b. In the univariate case, the
choice of elements of b to be used for discounting is obvious. One has to replace p;’s with
b in the definition of the set of aggregate models above to obtain the b-type current
value aggregate expectation model for the associated "unlagged" economy of
the model with a lag, Model II (Model IV). The following sufficient conditions are

formulated in terms of the properties of these aggregate economies and their subeconomies.

Proposition 2.14 (Sufficient conditions for §-stability in the univariate case of Models
with lags (Model II, IV ) under heterogeneous RLS learning for the diagonal environment
case) In the case of n =1, the structurally heterogeneous economy (2.4), (2.2), and (2.14),
Model II ((2.6), (2.2), and (2.14), Model IV), in which the value of b defined in (2.7) is
less than one, under heterogemeous RLS learning is d-stable if each economy from the
set of associated current value expectations models and the b-type current value aggregate
expectation model for the associated "unlagged" economy of the model with a lag, Model
II (Model 1V), are E-stable (that is, the corresponding matrices €2, and €, defined in
(2.22) and (2.19), are stable) and for each economy from the set of associated current
value expectations models and for the b-type current value aggregate expectation model
for the associated "unlagged" economy of the model with a lag, Model II (Model 1V), at
least one of the following holds true: the "same sign" condition (all (Ag + p Al + A?E)
(for b-type (Ag + QA?I;) ) are greater than or equal to zero, and at least one is strictly
greater than zero or all (A} + p; A} + Alb) are less than or equal to zero, and at least

one is strictly less than zero), or all average economies with (A} + p, Al + Alb) (o) =
yeelop
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S (Af+p AL+ ALD). (For b-type (A} +2400), o= S (A} +24lb)) cor-
(h17---7hp) (h17..-,hp)
responding to subeconomies (hi,...,hy) of all sizes p are not E-unstable and for each ag-
gregate economy there exists at least one average economy corresponding to subeconomy

(h1(1),-..s k(1)) in each size p for which the stability coefficient > (Al + p A} + Alb)
(R (0),-,h5 (1)
(for b-type > (Al +2A%) ) is strictly less than one. For Model IV, A} =0
(R (0),-h5 (1)
everywhere above.

Proof. See Appendix B.1.6. [J

Proposition 2.15 In the case of n = 2, the structurally heterogeneous economy (1.3),
(1.2), and (1.22), Model I (III), under mized RLS/SG learning (2.8), (1.20), and (1.4)
in the diagonal environment case is d-stable, if each economy from the set of associated
current value expectations models corresponding to Model I (III) is E-stable (that is, the
corresponding matriz Q, , defined in (1.24), is stable) and the following "same sign”

condition for each of these economies holds true:
{det (—p; (A) + p AL + ... + p[ AL)) >0,
[det miz (—p, (Al + p AL+ ..+ p[ ALY —p, (Ag + oAl 4t p;AJT')) +
detmiz (—py (A + pA] + o+ T AD) =y (A + pAL+ ot [ AY))] 20,0 £ 5,
My (—py (Af + p AL + .. + p[ AL)) > 0}

or
{det (—p; (A} + p AL + ...+ pf AL)) <0,
[det miz (—py (A + AL+ o+ pTAL)  —py (A + AL+ .+ pfAT) ) +
+detmiz (—py (A + p AL+ .+ T AL)  —py (A + pA] + .+ g AD))| 0,0,
Mi(=p; (A + AL+ ..+ p] AL)) < 0}
VI =0,1,...k (po = 1),

where mix (—p;Ai, —pA;) denotes a matrix of structural parameters of a pairwise-mized
economy and is composed by mizing columns of a pair of matrices pjA;, p;A;, for any 1,

j=1,S. For Model III Ag = 0 everywhere above.

Proof. See Appendix B.1.7. [J
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2.5 Necessary Conditions for HFE- and J/-stability

In addition, using the characterisic equation approach, for the case of the
general (non-diagonal) structure of shocks, I provide (quite strong) necessary conditions
for stability and J-stability in terms of structural and learning heterogeneity under het-
erogeneous mixed RLS/SG learning for all types of models considered in terms of stability
of a suitably defined structurally heterogeneous average economy under the heterogeneous

learning of two agents.

Proposition 2.16 (A universal necessary condition for stability under mized RLS/SG
learning) For the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5) and
(2.2), Model III) or (2.4) and (2.2), Model II ((2.6) and (2.2), Model 1V), in which all
roots of b defined in (2.7) lie inside the unit circle, under mized RLS/SG learning in the
general (non-diagonal) case, to be §-stable, it is necessary that the corresponding average
economy (2.23) and (2.2) (with the same MSV REE) under mized RLS/SG learning of
two agents, where one learns by RLS with the degree of inertia 6" and the other by SG
5SG 5RLS and 5SG.

with the degree of inertia , s stable for any positive values of

Proof. Follows directly from Proposition 2.6. O

Using the characterisic equation approach, for the case of the general (non-
diagonal) structure of shocks, I also provide necessary conditions for H E-stability and
d-stability for models without lags of the endogenous variables (Model I and IIT) under
heterogeneous mixed RLS/SG learning in terms of subeconomies for an economy from a

set of associated current value expectations models.

Proposition 2.17 A necessary condition for H E-stability of models without lags, Model I
and Model III, under mized RLS/SG learning in the general (non-diagonal) environment
case: For the structurally heterogeneous economy (2.8) and (2.2), Model I ((2.5) and
(2.2), Model III) under mized RLS/SG learning to be HE-stable, it is necessary that all
sums of the same-size principal minors of D1, (—2,) are nonnegative for all subeconomies
r = (h1, ..., hyp) for all p of the economy from the set of associated current value expectations
models corresponding to Model I (III) with py = 1 for all positive block—diagonal matrices
D7, where Dy, and Q. defined similar to Diand Q in (2.15) and (2.12) (where Ag =0

for Model III), respectively, correspond to a subeconomy r = (hq, ..., hp).
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Proof. See Appendix B.1.8. [J

The condition above can not be used as a test for non-d-stability, as it requires
checking all subeconomies’ sums of minors for all possible Dj,.. That is why I present

below a condition that has a direct testing application.

Proposition 2.18 A necessary condition for d-stability of Models without lags, Model 1
and Model III, under mized RLS/SG learning in the general (non-diagonal) environment
case: For the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5) and (2.2),
Model III) under mized RLS/SG learning to be §-stable, it is necessary that all sums of
the same-size principal minors of minus matrices corresponding to subeconomies (—§2;)
of the economy from the set of associated current value expectations models corresponding
to Model I (III) with py = 1 are non-negative for each corresponding subeconomy r =

(hi,...; hp).
Proof. See Appendix B.1.8. [J

Stronger sufficient conditions can be derived for H E-stability and §-stability for
models without lags of the endogenous variables (Model I and IIT) under heterogeneous
mixed RLS/SG learning in the case of the diagonal structure of the shock behaviour in
terms of subeconomies for economies from a set of associated current value expectations

models.

Proposition 2.19 A necessary condition for HE-stability of Models without lags, Model
I and Model III, under mized RLS/SG learning in the diagonal environment case: For the
structurally heterogeneous economy (2.8) and (2.2), Model I ((2.5) and (2.2), Model III)
under mized RLS/SG learning to be H E-stable, it is necessary that all sums of the same-
size principal minors of D1, (—Q,npl) are nonnegative for all subeconomies r = (hq, ..., hy)
for all p of all economies from the set of associated current value expectations models
corresponding to Model I (IIT) for all positive block-diagonal matrices Dy,, where Dy,
and Qr,, defined similar to Dyand Q,, in (2.15) and (2.16) (with Al =0 for Model III),

respectively, correspond to a subeconomy r = (hi,..., hp).

Proof. See Appendix B.1.8. [J
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Again, the condition above cannot be used as a test for non-d-stability as it
requires checking all subeconomies’ sums of minors for all possible Djy,.. That is why I

present below a condition that has a direct testing application.

Proposition 2.20 A necessary condition for §-stability of Models without lags, Model
I and Model III, under mized RLS/SG learning in the diagonal environment case: For
the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5) and (2.2), Model
III) under mized RLS/SG learning to be d6-stable, it is necessary that all sums of the
same-size principal minors of minus matrices corresponding to subeconomies (—Qrpl) of
all economies from the set of associated current value expectations models corresponding

to Model I (III) are non-negative for each corresponding subeconomy r = (hi, ..., hp).
Proof. See Appendix [

Quite strong necessary conditions can be used as an easy quick test for non-9-
stability. I think that this is quite a strong necessary condition, which implies that many
models will not satisfy it, and will not be §-stable. Note that the stability of each single

economy and subeconomies is a sufficient condition for the condition above to hold true.

2.6 Conclusion

In this paper, I extend the results of Honkapohja and Mitra [36], Bogomolova and
Kolyuzhnov [5], Kolyuzhnov [40], and of the companion paper by Bogomolova [4]. I pro-
vide sufficient and necessary conditions for stability under heterogeneous mixed RLS/SG
learning for four classes of models considered: models without lags and with lags of the
endogenous variable and with ¢- or ¢ — 1-dating of expectations. While in Bogomolova
[4] I essentially use the negative diagonal dominance approach that allows me to derive a
sufficient condition for the D-stability of matrices due to the MacKenzie Theorem, here
I look at the problem from a different angle and try to find conditions for stability that
were not possible to derive using that approach. The alternative definition of Dy-stability
approach allows me to derive for all four classes of models considered in the general (non-
diagonal) case, alternative stability criteria (to the criteria in terms of the corresponding
Jacobian matrices in Kolyuzhnov [40] and Bogomolova [4]) under heterogeneous mixed

RLS/SG learning. It also allows me to obtain simplified alternative stability criteria for
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both types of models without lags for the case of the diagonal structure of shocks; and for
the case of the general (non-diagonal) structure of shocks, alternative sufficient stability
conditions (to the sufficient conditions in terms of the corresponding Jacobian matrices
in Bogomolova [4]) for models with lags of the endogenous variable of both types un-
der heterogeneous RLS learning — conditions written in terms of structural and learning
heterogeneity.

The alternative definition to Dp-stability approach allows me to provide the cri-
teria for J-stability for univariate models (with either ¢- or ¢ — 1-dating of expectations)
without lags of the endogenous variable under mixed RLS/SG learning in economically
meaningful terms, such as "same sign" conditions and E-stability of a suitably defined
average economy and its subeconomies. I also provide quite weak sufficient conditions
for 0-stability for univariate models with a lag of the endogenous variable using the same
economic terms. Using the characteristic equation approach, I also derive quite strong
necessary conditions that can be used as an easy quick test for non-d-stability. Necessary
conditions are derived for the general (non-diagonal) case of the shock process.

The results for sufficient conditions for §-stability based primarily on the negative
diagonal dominance approach in terms of E-stability of maximal aggregate economies are
considered in the companion paper. All the results of this paper can be summarized in
the following way.

I provide (using the alternative definition of Dy-stability):

e for the case of the general (non-diagonal) structure of shocks, general alternative
stability criteria (to the general criteria in terms of the corresponding Jacobian
matrices in Honkapohja and Mitra [36] and Bogomolova [4]) for all types of models
considered: a model without lags and with lags of the endogenous variable and with
t- or t — 1-dating of expectations, under heterogeneous mixed RLS/SG learning

— criteria written in terms of structural and learning heterogeneity;

e for the case of the diagonal structure of shocks, alternative stability criteria
(to the criteria in terms of the corresponding Jacobian matrices in Kolyuzhnov
[40] and Bogomolova [4]) in terms of structural and learning heterogeneity for both
types of models without lags of the endogenous variable, under heterogeneous mixed
RLS/SG learning — criteria written in terms of structural and learning hetero-

geneity;
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e for the case of the general (non-diagonal) structure of shocks, alternative suffi-
cient stability conditions (to the sufficient conditions in terms of the correspond-
ing Jacobian matrices in Bogomolova [4]) for both types of models with lags of the
endogenous variable, under heterogeneous RLS learning — conditions written

in terms of structural and learning heterogeneity;

For the case of the diagonal structure shocks and a univariate endogenous

variable, I provide:

e criteria for J-stability (that is, stability that does not depend on such learning
heterogeneity characteristics as different degrees of inertia and different starting val-
ues of learning algorithms) for models without lags of the endogenous variables under
heterogeneous mixed RLS/SG learning in terms of the "same sign" conditions

and F-stability of a suitably defined average economy and its subeconomies.

e (quite weak) sufficient conditions for §-stability for models with lags of the en-
dogenous variables under heterogeneous RLS learning in terms of the "same
sign" conditions and FE-stability of a suitably defined average economy and its sube-

conomies.

For the case of the diagonal structure of shocks and a bivariate endogenous
variable, I provide sufficient conditions for §-stability for models without lags of the
endogenous variables under heterogeneous mixed RLS/SG learning in terms of the
"same sign" conditions.

For the case of the general (non-diagonal) structure of shocks, I provide:

e (quite strong) necessary conditions for stability in terms of structural and learn-
ing heterogeneity under heterogeneous mixed RLS/SG learning for all types of
models considered in terms of stability of a suitably defined structurally heteroge-
neous average economy under heterogeneous learning of two agents. These condi-
tions are also necessary (for any fixed degrees of inertia) for d-stability under

heterogeneous mixed RLS/SG leaning for all types of models considered.

e necessary conditions for stability for models without lags of the endogenous

variables under heterogeneous mixed RLS/SG learning in terms of subeconomies
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for economies from a set of associated current value expectations models. These
conditions are also necessary (for any fixed degrees of inertia) for d-stability
under heterogeneous mixed RLS/SG learning for models without lags of the

endogenous variables.

The alternative criteria and sufficient conditions for stability under heterogeneous
learning derived using the alternative definition of Dj-stability allow for further ellabo-
ration for various cases and are a subject for future research. The fundamental nature
of the approach adopted in the paper allows one to apply its results to a vast majority
of existing and prospective linear and linearized economic models (including estimated

DSGE models) with the adaptive learning of agents.
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Chapter 3

Optimal Monetary Policy Rules:
The Problem of Stability Under

Heterogeneous Learning
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3.1 Introduction

The stabilization monetary policy design problem is very often studied in the New
Keynesian model. Using the environment of this model, we may study different monetary
policy rules to find out which is more efficient in smoothing business cycle fluctuations
and also which monetary policy rule would not lead to an indeterminacy of equilibria
in our model. For a comprehensive overview of various interest rate rules in the New
Keynesian model, one can see Woodford [57]. Also, frequently cited papers on monetary
policy design are Clarida, Gali, and Gertler [17, 18]. Svensson [54] gives a clear distinction
between instrument and target rules and the implications of their use.

A number of recent studies also consider the New Keynesian model environment
with the adaptive learning of agents. Examples are Evans and Honkapohja [25, 26], Bullard
and Mitra [9], and Honkapohja and Mitra [35] on the stability of an economy under various
policy rules. Evans and Honkapohja [25, 26] take up the issue of stability under learning
for optimal monetary policies in economies with adaptive learning.

The concept of the adaptive learning of agents in economic models is introduced
as a specific form of bounded rationality advocated by Sargent [50]. According to his
argument, it is more natural to assume that agents face the same limitations economists
face (in a sense that economists have to learn the model structure and its parameter values
themselves) and view agents as econometricians when forecasting the future state of the
economy.

Using adaptive learning in an economy makes it possible to test the validity of
the rational expectations hypothesis by checking if a given dynamic model converges over
time to the rational expectations equilibrium (REE) implied by the model. It can also
be used as a selection device in models with multiple equilibria. Even if the model has
a unique REE, it is still of interest to see if the rational expectations (RE) hypothesis
holds under learning, which is done by checking if our model under learning converges to
a given REE. In both cases (multiple or unique REE), one has to check certain stability
conditions. After this analysis of stability conditions, the next step could be to study the
policy rules for effectiveness and indeterminacy, assuming or making sure that the stability
conditions on the model structure are satisfied.

Therefore, before we start analyzing particular monetary policies for efficiency

(evaluating a particular type of policy: Taylor rule or an optimization-based rule with or
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without commitment), we should take a general type of a linear policy feedback rule, plug
it into our structural form of the New Keynesian model, and obtain some general linear
reduced form (RF) of this model. All things being equal (the same structural equations:
Phillips and IS curves), we can obtain different RFs depending on the policy rule used
by the policy maker. Hence, we obtain different REEs and different stability results.
Then we should study a given reduced form for stability in order to see if a given REE
is chosen. In this paper, we study the stability of a New Keynesian model under the
following classification of policy rules introduced by Evans and Honkapohja [26].

Depending on the assumptions of the central bank about the expectations of
private agents (firms, households), Evans and Honkapohja [26] divide all policy rules into
fundamentals—based rules and expectations—based rules. The fundamentals—based rule is
obtained if the policy maker assumes the RE of private agents, while the expectations—
based rule takes into account possibly non—rational expectations of agents (assuming that
these expectations are observable to the central bank).!

We consider the stability question under the assumption of heterogeneous learn-
ing of agents. As has been shown in Giannitsarou [31] and Honkapohja and Mitra [36], sta-
bility results may be different under homogeneous and heterogeneous learning. Honkapo-
hja and Mitra [36] also demonstrate that stability may depend on the interaction of struc-
tural heterogeneity and learning heterogeneity, and Honkapohja and Mitra [35] examine
how structural heterogeneity in the New Keynesian model may affect stability results
under various types of policy rules.

Note that though Honkapohja and Mitra [35] consider heterogeneity in learning
in the New Keynesian model, their definition of heterogeneity implies a situation where
the central bank and private agents have (possibly) different learning algorithms with
(possibly) different parameters of these algorithms. They essentially consider the situation
when all private agents could be considered as one representative agent, and in this sense
learning of private agents considered by Honkapohja and Mitra [35] is homogeneous. In
some sense, the situation considered by Honkapohja and Mitra [35] could be called two-

sided learning in a structurally heterogeneous bivariate economy.

We should note here that in Taylor-type rules, the current value of the interest rate depends on the
current values of inflation and the output gap. In this paper, we study stability under feedback rules
that are derived from the policy maker minimization problem, in particular, we study their two categories
according to Evans and Honkapohja [26]: fundamentals—based and expectations—based. Stability under
Taylor-type rules, which do not fall under this classification, will be studied later in a separate work.
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In this paper, we do not consider learning of the central bank and assume, fol-
lowing Evans and Honkapohja [26], that the policy maker takes the expectations of private
agents as given or assumes and knows the exact structure of their rational expectations; at
the same time, we fully exploit the case where private agents have heterogeneous learning.
The case of internal central bank forecasting (that includes Taylor rules) in the situation
of heterogeneous learning of private agents, which develops the model of Honkapohja and
Mitra [35] since they only consider the situation of a representative private agent, is the
topic of our further research.

It turns out that under the fundamentals—based linear feedback policy rule (optimi-
zation-based), learning in our model never converges to the REE of the model. Evans and
Honkapohja [26] demonstrate this instability result for the homogeneous recursive least
squares (RLS) and for the stochastic gradient (SG) learning,? while we obtain a similar
instability result for the three types of heterogeneous learning considered by Giannitsarou
[31].

The other category of policy rules — expectations—based rules — is supposed to
react to agents’ expectations. Under certain conditions, we can have stability under such
rules. Evans and Honkapohja [26] obtain a stability result for homogeneous RLS or for
SG learning. We obtain a stability result (with conditions on the model structure) for the
case of the three types of heterogeneous learning considered by Giannitsarou [31].

Originally, when heterogeneous learning in a general setup of self-referential lin-
ear stochastic models was studied by Giannitsarou [31], the purpose of introducing the
heterogeneous learning of agents was to see if the representative agents hypothesis influ-
ences stability results, i.e., if one may always apply this hypothesis. For some cases, it is
demonstrated that it does make sense to consider the heterogeneous setup. Our paper is
about stability under monetary policy rules, so, though we, in fact, prove that the rep-
resentative agent hypothesis holds true for the New Keynesian model, the accent of our

paper is shifted away from testing the importance (influence) of the representative agent

2We in this paper and Honkapohja and Mitra [36] consider two possible algorithms used to reflect
bounded rationality of agents: RLS and SG learning algorithms (which are examples of econometric
learning). Their description can be found, e.g., in Evans and Honkapohja [24], Honkapohja and Mitra
[36], Giannitsarou [31], and Evans, Honkapohja and Williams [27]. Both are used by agents to update
the estimates of the model parameters. Essentially, the difference is as follows. The RLS algorithm has
two updating equations: one—for updating parameters entering the forecast functions, and the other—for
updating the second moments matrix (of the model state variables). The SG algorithm assumes this matrix
fixed.
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hypothesis.

We, essentially, apply the stability analysis of the model under heterogeneous
learning in the same manner the stability analysis of the model under homogeneous (when
all agents can be substituted with a representative agent) learning is applied in Evans
and Honkapohja [26].> In our paper, we link the study of stability conditions under a
certain category of linear monetary policy rules of [26] with the study of stability under
heterogeneous learning of Giannitsarou [31].

We first show that in the New Keynesian—type models, stability can be ana-
lyzed using structural parameters, whatever the type of heterogeneous learning, using the
general criterion of Honkapohja and Mitra [36]. These results are the structural matrix
eigenvalues sufficient and necessary conditions for the stability of a structurally homo-
geneous model derived in this paper, and the aggregate economy sufficient conditions
derived in Kolyuzhnov [40], where the concept of stability under heterogeneous learning,
termed as d—stability, is introduced. Then we apply these results to derive stability and
instability results under heterogeneous learning for the two categories of feedback rules:
fundamentals—based and expectations—based, in the model with an arbitrary number of
agent types.

Summarizing all the above, our work now looks, on the one hand, like a link
between the study of stability under monetary policy rules for homogeneous learning
of Evans and Honkapohja [26] and the study of stability conditions under heterogeneous
learning of Giannitsarou [31] — the link through the J—stability conditions that we derived
for the general setup of Honkapohja and Mitra [36] and through the general stability
criterion of Honkapohja and Mitra [36]. On the other hand, this study can serve as
one more economic example demonstrating the application of d—stability sufficient and
necessary conditions.

The structure of the paper is as follows. In the next section, we present the basic

New Keynesian model. In Section 3, we discuss the general stability results under hetero-

3Evans and Honkapohja [26] study stability conditions under monetary policy rules for the case of
homogeneous learning. Their major input is (both for the one-sided learning and the two-sided learning)
to have shown that under fundamentals—based rules the REE of the model is always unstable, while under
the expectations based rule there is always stability. In the two cases, the reduced form of the model is
different, which has, as a consequence, the difference in the stability results. So, the policy implication
of such a stability analysis is that, given the structure of the model (the two structural New Keynesian
equations), the central bank can influence (determine) the outcome of its policy by selecting the appropriate
optimal monetary policy: the one that guarantees convergence to a particular REE.
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geneous learning and the concept of d—stability introduced in Kolyuzhnov [40]. In Section
4, we give necessary and sufficient conditions for J—stability for structurally homogeneous
models. Section 5 describes the two types of optimal policy rules and the structure of the
reduced forms under each type. In Section 6, we provide stability and instability results
for the types of optimal monetary policies considered in application to the New Keynesian

model. Section 7 concludes.

3.2 Model

The model that we consider is a general New Keynesian model with observable

stationary AR(1) shocks. The structural form of the model looks as follows:

e = ¢ —¢ (it - Eﬂtﬂ) + Eize 1 + Xiwe (3.1)
T = c2+ Axp+ 5Et7Tt+1 + xhwt, (3.2)

where the first equation is for the IS curve, and the second equation is for the Phillips

!/
curve. wy = [ Wit . Wiy ] is a vector of observable AR(1) shocks?,
Wit = p;wir—1 + Vi, |p;| < 1,vie ~iid (0,07) ;i =1,k (3.3)
To introduce heterogeneity into the model, we assume that we have S types of
S ~
private agents characterized by their share (; > 0 in the economy, >_ (; = 1. So, Eyxi 41 =
h=1

4Typically, New Keynesian models include only an observable component, which is assumed to follow
an AR(1) process. However, there are specifications including both observable and unobservable shocks.
For example, Evans and Honkapohja [27], who study stability rules under recursive least squares learning,
include unobservable shocks to the New Keynesian model equations. In our case, a more general specifi-
cation with unobservable shocks would contain the additional term Qi¢; in the IS curve and Qs¢; in the
Phillips curve, where ¢; = [ €1, .o €Emy ], are unobservable shocks, €;, ~ iid (0,7?), i =1,...,m, not
correlated with observable shocks ge.

Of course, these unobservables do not bring a difference into the stability results (that is why we omit
them in the model analyzed), but introducing them into the setup has its own reasoning. For example,
it makes sense to introduce unobservable shocks into structural equations when we consider central bank
learning structural coefficients of the model. If we have only observable shocks (which play a role of just
another regressor — some exogenous variable) as well as other observable regressors, we will evaluate the
equations’ coefficients exactly if we have a sufficient number of observations. In this case, learning is trivial:
the convergence will be very quick if initially we did not have enough observations but gained them over
a short period of time.

If we think of how these unobservable shocks can emerge at the micro foundations level, we may think of
the following economic interpretation. For example, let us assume that preference and technology shocks
consist of observable and unobservable components. As for preference shocks, we can imagine a qualitative
change in our preferences, such that we know how the shock has changed our preferences qualitatively,
but we cannot precisely measure this change quantitatively. A similar interpretation can be given to the
technological shock. What we have measured enters as an observable component, while the measurement
error (which always exists since we assume that our quantitative measurement of any change is imprecise)
is treated as an unobservable component.
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f: ChEt}L.’L't+1, Eﬂtﬂ = f: ChEt}th+1, where E{Lwt_i_l and Eme are expectations (in
gzrlleral, non-rational) of }IL):rilvate agent of type h made at time ¢ about the next period
output gap and inflation, respectively.

The model (3.1), (3.2), and (3.3) is a general formulation of models derived from
microfoundations that are considered in macroeconomics and monetary economics litera-
ture®. The two basic equations of the New Keynesian model, which are the Phillips curve
and the IS curve, are derived from the optimal problems of the representative house-
hold and the representative monopolistically competitive firm, with the assumption of the
Calvo [10] pricing mechanism in the firms’ price-setting decision. So the two New Keyne-
sian curves are derived using the optimality conditions of the private agents (households
and firms). The derivation of these two curves for the standard New Keynesian model
setup can be found, e.g., in Walsh [55]. The description of the New Keynesian model can
also be found in Woodford [56, 57] and in Christiano, Eichenbaum, and Evans [16].

In solving their optimization problems, private agents are assumed to take the
interest rate (entering the IS curve equation) as given. The interest rate, in turn, is set
by the policy maker — the central bank. In various studies of monetary policy issues (in
the New Keynesian framework), it is normally assumed that the policy maker uses some
linear feedback rule to set the interest rate. In general, a feedback rule that is derived
from the loss function minimization problem determines how the interest rate reacts to the
expected values of the model’s endogenous variables (inflation and output gap in the New
Keynesian model) and the model’s exogenous variables (various shocks, e.g., technology,
preference, and cost-push shocks). Instrument rules, like Taylor—type rules, are designed
to respond to the target variables (e.g., inflation and the output gap). As is noted in the
introduction, Taylor—type rules will be considered in a separate study.

Plugging the feedback rule into the IS curve equation, we obtain the model
reduced form. Using the same New Keynesian equations (IS and Phillips curves), we can
obtain different reduced forms for different policy rules, i.e. other things being equal, the
reduced form structure depends on the policy rule. It depends not only on the type of it

(Taylor or optimization—based) but, as is demonstrated by Evans and Honkapohja [26],

®0Our NK model includes the standard NK model. One may have different shocks for the IS and Phillips
curves by having appropriate zeroes in x} and x5 vectors of coefficients. Learning and forecasting inflation
and the output gap, of course, use all the shocks that appear in the rational expectations equilibrium
processes of these variables.
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on the assumption of the central bank about private agents expectations, resulting either
in the fundamentals—based or in the expectations—based category of feedback rules.
After plugging in some monetary policy rule of the central bank i;, assuming that
the central bank knows the expectations of private agents or assumes and knows the form
of rational expectations of agents (we will talk about the types of optimal monetary policy
rules later), the model can be written in the reduced form that has a general representation

of a bivariate system with a stationary AR(1) observable shocks process

Yyt = « + AEtyt+1 + Bwt, (34)
!/
Yt = |: T Xt j| (35)
and (3.3).

In what follows, for the derivation of our stability results, we may allow for some general-
ization (as it is just a matter of notation compared to the bivariate model) and consider a
multivariate (not just a bivariate) system (3.4) with a stationary AR(1) observable shocks
process (3.3).

In our notation, the reduced form is written in such a way that it includes all
factors that appear in the structural form. This means that the absence of some factor
in the reduced form in our notation is expressed by the corresponding zero column of
matrix B. Note that here we adopt such a notation in order to be able later to consider
different specifications of learning algorithms that include factors from different sets.5 So
our notation is the most general possible.

In adaptive learning models of bounded rationality, it is assumed that agents do
not know the rational expectations equilibrium and instead have their own understanding
of the relation between variables in the model. The coefficients in this relation (that are
called beliefs) are updated each period as new information on observed variables arrives
(in this respect, agents are modeled as if they were statisticians, or econometricians). For
the beginning, we assume that agents have the following perceived relation among the

variables in the economy, which is called the perceived law of motion (PLM)

y, = a + M,

5An example when a model reduced form may not include all shocks that are present as factors in the
model structural form can be found in Evans and Honkapohja [26], who used the New Keynesian model
setup of Clarida, Gali, Gertler [17].
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o N B L R L PRt
with a" = [ al ag] = in the bivariate case,

731 7,52 'ng
that includes all components of w;. A bit later, we weaken this assumption. Though we
assume that the parameters of the PLM may differ across agents, we assume that the
structure of the PLMs is the same for all agents. We may also write the average (or
aggregate) PLM using the weights of agents.
S S
yi = a+ DTwy, where a = . (0", T = 3 ¢, I (3.6)

h=1 h=1

Thus, agents have the following forecast functions based on their PLMs:
Efyer1 = a" +T"diag(py, ..., p)wi,
and consequently the average forecast function is given by

N s
B = 32 G (ah + M diag(py, ..., pk)wt> = a+T'diag(py, ..., p)wr. (3.7)
h=1

After plugging the average forecast function (3.7) corresponding to the average

PLM (3.6) into the reduced form (3.4), we derive the actual law of motion (ALM):
yr = Aa + a+ (Aldiag(py, ..., p,) + Bwy) . (3.8)

The rational expectations equilibrium (REE) defined as Eiy 11 = Etyt+1 = E,fytﬂ (see,
e.g., Sargent [50] or Evans and Honkapohja [24] for the meaning of the RE concept) can be
calculated by equating the parameters of the average PLM (3.6) with the corresponding
parameters of the ALM (3.8). If we define the T-map as a mapping of beliefs from the
average PLM (3.6) to the ALM (3.8),

T(a,T') = (Aa + a, ATdiag(py, ..., pr) + B), (3.9)

we will be able to write the REE condition as T'(a,I') = (a,T").

Now, we will widen the set of PLMs considered. Let us start with the following
definition.
Definition 3.1 The active factors set is a subset of a set of histories of w;, up to time

t and a constant used by agents in their PLMs.”

"Note that by the active factors set we mean not the variables that agents are actually aware of at
time ¢, but essentially those that are used by agents in their PLMs (a subset that may be smaller than the
subset of actually available variables).
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Following the definition, we renumber the subscripts corresponding to regressors
that are included into the agents’ active factors set from 1 to &/, and denote the set of
subscripts taken from {1, ..., k} corresponding to the active factors set as I. Assuming, as
before, that all agents have the same structure of their individual PLMs, agents now are

assumed to have the following average perceived law of motion (PLM):

Yt = a -+ f@t
I~ ~ ~ Y /
with a = [ ai as } T = :Y/H 2112 Zlk in the bivariate case,
Yo1 V22 - Yok

where w; consists of the components of w; included in the agents’ active factors set.

Consequently, T-map (3.9) can be rewritten as
T(a,T) = (Aa + o, ATdiag(py, ..., p) + E) ,

where B consists of columns of matrix B that correspond to the active factors set.
Similarly, one may try to write the REE condition as T'(a,I') = (a,T'). However,
in this case, it is clear that for the existence of a REE, agents have to include into their
active factors set those factors w;, that correspond to non-zero columns of matrix B in the
reduced form. A PLM which consists only of such factors is a PLM that corresponds to
the so—called minimal state variable (MSV) solution. Also, in the above PLMs, we have

used the following assumption.

Assumption 3.1 Agents include in their PLM of each endogenous variable all factors

from their active factors set.’

Essentially, Assumption 3.1 postulates that we may write each agent’s PLM
equations in matrix form, without a priori setting coefficients at some factors to zero. In
addition, we assume that all agents use the same set of factors (which in matrix form

means that they use the same vector). We also note here that a similar assumption on

830, we exclude situations when agents do not include into the PLM equation of one endogenous variable
some factor having a zero coefficient in matrix B of the reduced form, while including the same factor in the
PLM equation of the other endogenous variable, with this factor having a non—zero coefficient in matrix B
of the reduced form. We assume that agents do not know the true structure of the reduced form and use
all the available information to form their expectations. So, if one factor is present in one PLM equation,
it is present in another PLM equation.
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the matrix formulation of PLMs has been made by Giannitsarou [31] and Honkapohja and
Mitra [36].°

The Propositions below state the necessary and sufficient conditions for the ex-
istence and uniqueness of a REE in a general multivariate model with stationary AR(1)
observable shocks. These conditions are well known, but we prefer to state them here
for the reader’s convenience. To formulate the following propositions, we return to the
initial numbering of shocks, denote the constant term in the active factors set of agents
as wo, and take py = 1 and B® = a. So now, i takes integer values from 0 to k. We will
denote this set as Iy and the corresponding set of subscripts taken from Iy = {0, 1,...,k}
as INO. Note that the constant term is always included as a factor in any active factors set;

therefore, 0 always belongs to Ij.

Proposition 3.1 (Necessary and sufficient conditions for the existence of a REE) Under
Assumption 8.1, a REFE solution exists if and only if the agents’ active factors set includes,
among others, all w; such that B* # 0 in the reduced form and rank(p;A—I) = rank(p;A—

I,BY) for i such that det (p;A —1I) =0 and B' # 0.
Proof. See Appendix C.1. [J

Proposition 3.2 (Necessary and sufficient conditions for the ezistence and uniqueness
of a REE): Under Assumption 3.1, a REE solution exists and is unique if and only if the
agents’ active factors set includes, among others, all w; such that B* # 0 in the reduced

form and for all w; included, det (p;A — I) # 0.
Proof. See Appendix C.1. [J

So in what follows, we always assume that Assumption 3.1 and the necessary

and sufficient conditions'? for the existence of a REE hold true. Basically, we assume that

9Notice that here we also do not consider situations of the restricted perceptions equilibrium (RPE), the
discussion of which may be found, for example in Evans and Honkapohja [24]. In our terminology, for the
situation of the RPE, one has to assume that agents do not include into their active factors set some of the
factors that are present in a unique REE, that is, factors that correspond to non-zero coefficients in matrix
B. Here, we introduce the notion of the active factors set only to allow for a considering of the PLMs
not only corresponding to the MSV, but also those that include more factors than enough to determine a
unique REE. It is done to derive the "strong d—stability" or "strong d—instability result." (Compare to the
notion of the "strong E-stability" in the homogeneous learning literature.)

0T he propositions above have a similar meaning to Proposition 1 of Honkapohja and Mitra [36]: again,
the condition requires matrices participating in the derivation of the RE values of beliefs to be invertible.
So, the above propositions stress that we are aware of cases when an REE may not exist and of the
conditions that are required for its existence (and uniquness).
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in both equations of their PLM, agents use at least all the regressors that appear in the
right-hand side of the reduced form (3.4), and that the REE solution (either unique or
multiple) exists under this PLM. That is, in principle, we consider all possible PLMs that
satisfy these conditions.

After specifying PLMs of agents and conditions for the existence and uniqueness
of the REE, we are ready to introduce heterogeneous learning of agents into the economy
considered and derive conditions for the stability of the REE under this learning. Then,
we use these conditions to study stability under heterogenous learning in the general New

Keynesian model when optimal monetary policy rules are applied.

3.3 Heterogeneous Learning and the Concept of /—stability

The model (3.4) and (3.3) that we consider belongs to the class of multivariate
forward—looking economic models. Thus, we naturally employ the general framework and
notation from Honkapohja and Mitra [36], who were the first to formulate the general
criterion for the stability of a multivariate forward—looking economy under heterogeneous
learning.

Honkapohja and Mitra [36] consider the class of linear structurally heterogeneous
forward-looking models with S types of agents with different forecasts presented by

S .
ye = a+ Y AyEMy. + Buy, (3.10)
h=1

wy = Fwi_1+ vy, (3.11)

where y; is an n X 1 vector of endogenous variables, w; is a k x 1 vector of exogenous
variables, v; is white noise, E’fytﬂ are (in general, non-rational) expectations of the en-
dogenous variable by agent type h, M,, = lim;_,o, wyw; is positive definite, and F' is such
that wy follows a stationary VAR process.

The PLM is presented by (3.6). A part of agent types, h =1, Sp, is assumed to
use the RLS learning algorithm, while the rest, h = Sy + 1, S, are assumed to use the SG
learning algorithm.'’ Moreover, all of them are assumed to use possibly different degrees

of responsiveness to the updating function that are presented by different degrees of inertia

"Essentially, the part of agents using RLS are assumed to be more sophisticated in their learning
because from an econometric point of view, the RLS algorithm is more efficient since it uses information
on the second moments.
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d; > 0, constant coefficients before the common for all agents decreasing gain sequence in
the learning algorithm.!?

It is worth noting that the model (3.4) and (3.3) we consider belongs to the sub-
class of models considered by Honkapohja and Mitra [36], namely, a class of structurally
homogeneous forward—looking models. Structural heterogeneity in the setup of Honkapo-
hja and Mitra [36] is expressed through matrices Ay, which are assumed to incorporate
mass (;, of each agent type. That is, Ay = (}, - Ap,, where Ay, is defined as describing
how agents of type h respond to their forecasts. So these are the structural parameters
characterizing a given economy. Those may be basic characteristics of agents, like the ones
describing their preferences, endowments, and technology. Structural heterogeneity means
that all A),’s are different for different types of agents. When Ap = A and > (¢, =1, the
economy is structurally homogenous.

When we apply the conditions for a structurally homogeneous economy, A, =

S

(pA, where ZCh =1, and 1 > (; > 0, to the model (3.10) and (3.11) considered by
h=1

Honkapohja and Mitra [36], we get

s s
y=o+> AyEly+Buw=a+) (AEy 4 + By =
h=1 h=1
S .
=a+ AZ ChEtyt1 + Buwy,
h=1
——_———
Egvery i

which is exactly the formulation of the structurally homogeneous model considered by
Giannitsarou [31].13 Thus, the conditions for stability valid for the (more general) class
of structurally heterogeneous forward—looking models remain valid for the class of struc-
turally homogeneous models.

After denoting z; = (1,w;) and ®p; = (aps, I'n ), the formal presentation of the

learning algorithms in this model can be written as follows'.

12Honkapohja and Mitra [36] use a more general formulation of the degrees of inertia.

3Heterogencous learning in the structurally homogeneous case was considered by Giannitsarou [31]
for a more general class of self-referential linear stochastic models, which includes in itself the case of
forward—looking models. Since our setup does not assume lagged endogenous variables, we concentrate on
the structurally homogeneous case of forward-looking models that are a subclass of models considered by
Giannitsarou [31] and at the same time are a special case of the setup of Honkapohja and Mitra [36].

14%We assume that the elements of matrix F are known to agents. Adding the learning of the shocks
process will basically not change anything in case agents do not misspecify the structure of the shocks
process as learning (through expectations) does not influence the behaviour of the exogenous shocks process,
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RLS: for h =1, .5
Qpi1 = Ppypt ah,t—}—lR;;%Zt (yt — ‘I)%,tzt), (3.12)
Rhiy1 = Ry + angir (z-12i_1 — Ray)
SG: for h=5Sy+1,8
Ppyr1 = Phy + a1z (v — (I);Ltzt),- (3.13)

Honkapohja and Mitra [36] show that the stability of the REE, ®;, in this model is
determined by the stability of the ODE!:

dd

TThe o (T((I),), - (I'h) yh=1,50

dr

d(I)h _ N —

T — 5th (T(@) —(bh),h—S()‘i_l,S,
T

where M, = limy_, Fz2}.

The conditions for the stability of this ODE give the general criterion for the
stability result for this class of models presented in Proposition 5 in Honkapohja and
Mitra [36]. In the economy (3.10) and (3.11), the mixed RLS/SG learning (3.12) and
(3.13) converges globally (almost surely) to the minimal state variable (MSV) solution if

and only if matrices D12 and D,,Q2r have eigenvalues with negative real parts, where

ol, --- 0 Ay =1, --- Ag
Dy = Lo L= : : (3.14)

0 - 6bgl, A Ag—1,

Dun 0 L
D, — Dun=8lwsh=T5%

Dyp = 0p (My @ 1) ,h =S+ 1,8

0 Duys

FreoA —Iy - F'® Ag
Qr = : : :

FreoAd - FoAs— Iy

and after some iterations the estimates of the elements of matrix I’ will almost converge to their true values.
Since we consider local convergence properties of the REE, one may say that we consider learning from
the point in time when these values are already known.

15T the general case, to obtain the associated ODE, one has to take the math expectation of the RHS
term (at the gain sequence) from the stochastic recursive algorithm (SRA) specification of a learning algo-
rithm, with respect to the limiting distribution of the state vector. See Ch. 6.2 in Evans and Honkapohja
[24] for assumptions on the learning rule and state dynamics that have to hold so that we are able to apply
the theory on SRA and local convergence analysis and the general formula for ODE (6.5) on p. 126.
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with ® denoting the Kronecker product.

Note that agents in the setup of Honkapohja and Mitra [36] are assumed to use
PLMs that correspond to the MSV solution, i.e., include all factors that appear in the
right-hand side of the reduced form. However, Honkapohja and Mitra [36] in their proof of
conditions for the stability of the system do not have restrictions on matrix B. This means
that we may, in principle, consider additional factors in learning that enter the reduced
form with zero coefficients in matrix B for all agents. This means that we may consider
the criterion conditions for all possible PLMs that include (among others) all factors that
appear in the right-hand side of the reduced form, satisfying conditions for the existence
specified in the previous chapter.

Kolyuzhnov [40] shows that in the "diagonal" environment, namely

( ) 7 i (3.15)
F =diag(py, ..., pr)s My = diag( )y ) , 3.15
' ¢ 1—p2 "7 1—p?

which we consider in this paper, the problem of finding stability conditions for both D2
and D, is simplified to finding stability conditions for D€ and D1, where €2, is
obtained from by substituting all A, with p; Ay, where |p;| < 1 as w; follows a stationary
VAR(1) process.

pAL— L, - pAs
Q= : : NU=0,..,k, (pg = 1). (3.16)
pr A1 e pAs — I
Kolyuzhnov [40] uses a special blocked—diagonal structure of matrix D;, which
is the feature of the dynamic environment in this class of models. In a sense, these
positive diagonal D—matrices may now be called positive blocked—diagonal J—matrices.
This makes it possible to formulate the concept of d—stability by analogy to the terminology

of the concept of D—stability about matrices that remain stable under multiplication by a

diagonal matrix with positive elements, studied for example in Johnson [37].

Definition 3.2 Given n, the number of endogenous variables, and S, the number of agent
types, d—stability is defined as the stability of the economy under structurally heterogeneous

mizxed RLS/SG learning for any (possibly different) degrees of inertia of agents, § > 0.

0—stability, thus formulated, has the same meaning in models with heterogeneous

learning described above as the E—stability condition in models with homogeneous RLS
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learning. The FE—stability condition is a condition for the asymptotic stability of an
REE under homogeneous RLS learning. The REE of the model is stable if it is locally
asymptotically stable under the following ODE:

db
i () -9,

where 0 are the estimated parameters from agents PLMs, T'() is a mapping of the PLM
parameters into the parameters of the actual law of motion (ALM), which is obtained
when we plug the forecast functions based on the agents’ PLMs into the reduced form of
the model, and 7 is a "notional" ("artificial") time. The fixed point of this ODE is the
REE of the model.

Note that the d—stability concept comprises stability under the three types of
heterogeneous learning considered by Giannitsarou [31]. It is worth noting that in the case
of heterogeneous learning in a structurally homogeneous economy, which we employ in the
current setup, the criterion of Honkapohja and Mitra [36] is simplified to conditions on
the Jacobians considered by Giannitsarou [31]. First, to get the structurally homogeneous
economy as discussed earlier, one has to replace A; in the setup of Honkapohja and Mitra
[36] with (;A. After that, one has to make the following simplifications in the setup
corresponding to a particular type of heterogeneous learning considered.

The first type of heterogeneous learning is characterized by different initial per-
ceptions of agents and equal degrees of inertia. This type is termed transiently hetero-
geneous learning by Honkapohja and Mitra [36]. The condition for stability under this
learning is easily derived from the criterion above by setting all ’s to be equal, and setting
So to S or to 0 in order to get transiently heterogeneous RLS or SG learning, respectively.

The second type of heterogeneous learning considered by Giannitsarou [31] is
such that agents use different degrees of inertia and the same type of learning algorithm
(RLS or SG). This is what Honkapohja and Mitra [36] call persistently heterogeneous
learning in a weak form. The Jacobians, for this case, are easily derived by setting Sy to S

or to 0 in order to have heterogeneous RLS or SG learning, respectively, and by allowing

16Notice that d-stability conditions on the Jacobian in the general forward-looking model of Honkapohja
and Mitra [36] do not depend on the particular equilibrium point (in the case of multiple equilibria) because
the system of differential equations is linear in this setup, in which case the first derivatives of the RHS
of the associated ODE do not depend on a particular value of a RE equilibrium. So if stability conditions
are satisfied for a given Jacobian, then all equilibrium points are stable. Convergence to a particular point
depends on the initial conditions. In this paper, we do not consider how equilibrium selection is made.
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Type of heterogeneity Type of learning | Assumptions in the general
H&M (2006) model
structurally structurally
heterogeneous | homogeneous
Ap = GAn Ap = (A

I Different initial perceptions RLS op =9 forall h, Sg =S5
(transiently heterogeneous SG 0p =09 forall h, So =0
learning)

IT Different degrees of inertia RLS So=5

(persistently heterogeneous SG So=0

learning in a weak form)
IIT Different learning algorithms | RLS and SG
(persistently heterogeneous
learning in a strong form)

Table 3.1: Types of heterogeneity in learning.

for possibly different §’s.

The third type of heterogeneous learning considered by Giannitsarou [31] is char-
acterized by possibly different initial perceptions, possibly different degrees of inertia, and
by different agents using different learning algorithms (RLS or SG). Such type of learning
Honkapohja and Mitra [36] call persistently heterogeneous learning in a strong form. The
stability Jacobians for this case are derived by writing the general criterion for stability
for the structurally homogeneous case, i.e., by setting A; = (;A.

The relation between the above—described formulations of the types of heteroge-
neous learning by Giannitsarou [31] and by Honkapohja and Mitra [36] can be conveniently
summarized in the following table!7:

Notice that in the "diagonal" case (3.15), d—stability does not depend on Sp.
Thus, if the economy (3.10), (3.11), and (3.15) is d—stable, it is stable under all three

types of heterogeneous learning and under RLS and SG homogeneous learning.

"Note that there is one type of heterogeneous learning that was not introduced by Giannitsarou [31]
but is introduced here. It is heterogeneity in the degrees of inertia under which all types of agents use the
SG learning algorithm. Although Honkapohja and Mitra [36] have the general criterion for stability in this
case (as discussed above), their formulation includes only forward-looking models. In the general setup of
self-referential structurally homogeneous models of Giannitsarou [31], the stability conditions under such
a type of learning (in Giannitsarou [31] notation, naturally extended from her proofs) would depend on
the stability of matrix J5¢ (®;) = diag (1, ...,05) @ I @ M (®5) J&¥ (®;), where ®; is an REE, M (®;)
is defined similarly to M., and J&° (@) is a Jacobian that defines stability in case of the first type of
heterogeneity (different initial perceptions of agents) when all agents use RLS learning. For details, see
Giannitsarou [31] . Again, it is clear that in the forward-looking case these conditions for stability fall
under the general stability criterion of Honkapohja and Mitra [36] with So = 0 (see the table above).



126

3.4 Conditions for /—stability of Structurally Homogeneous
Models

After establishing the universal role of the concept of d—stability for stability
under all three types of heterogeneous learning discussed above, we present necessary and
sufficient conditions. First, we provide the reader with a set of sufficient conditions for
d—stability applicable to our setup, that is, for a class of structurally homogeneous models.
We present (without proofs) the so—called aggregate economy sufficient condition for the
case of a structurally homogeneous model and the "same sign" sufficient condition for the

case of a structurally heterogeneous bivariate economy that were derived in Kolyuzhnov

[40]

Proposition 3.3 For the structurally homogeneous economy (3.4) and (3.3) to be §—
stable, it is sufficient that at least one of the following mazximal aggregated B—coefficients
(which are the coefficients before the expectation term of a one—dimensional forward-—

looking aggregate economy model, for details see Kolyuzhnov [40]): maxZ|aij] and
i
J

max E |a;j| are less than one, where a;; denotes an element in the i'" row and the j*

column of A.

Proposition 3.4 In case n = 2, the economy (3.10), (3.11), and (3.15) is §—stable if
the corresponding matriz 2, defined in (3.14), is stable and the following "same sign”

condition holds true:

det (—p4;i) = 0, [det miz (—p Ai, —pA;j) + det miz (—pjAj, —pAi)] 2 0,4 # j, Ma(—pi4i) 2 0
or
det (—pAi) < 0, [det miz (—pAi, —pAy) + det miz (—pAj, —pAi)] < 0,1 % J, Mi(—pAi) <0,
Vl - 0, 1, ceey k, (po — 1),
where miz (—pAi, —pA;) denotes a matric of structural parameters of a pairwise-mized

economy and is composed by mizing columns of a pair of matrices pA;, p;A;, for any 1,

j=1,8.

It is also possible to derive some necessary conditions and sufficient conditions

for d—stability in the structurally homogeneous case in terms of eigenvalues of the matrix
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of structural parameters of the reduced form, A. It is possible by a direct application of
the characteristic equation approach, where one requires all roots of the polynomial (that
are eigenvalues of the Jacobian matrix) to be less than zero for stability, the latter being

equivalent to the well-known Routh—Hurwitz conditions.

Proposition 3.5 If all eigenvalues of A are real and less than one, then the structurally
homogeneous system (3.4) and (3.3) with two agents is d—stable, that is, stable under the
three types of heterogeneous learning: agents with different initial perceptions with RLS or
SG learning, agents with possibly different degrees of inertia with RLS or SG learning, and
agents with different learning algorithms, RLS and SG. For the structurally homogeneous
system (8.4) and (3.3) with any number of agents to be d—stable, it is necessary that all

real Toots of A be less than one. This gives a test for non—0—stability.
Proof. See Appendix C.1. [J

In the proof of the proposition above, using the structure of the Jacobian matrices
in our setup, we have derived a sufficient condition for stability under all three types of
heterogeneous learning with two agent types. We did this using the criterion for stability
of Honkapohja and Mitra [36]. For the case of real roots of A, we have shown that in this
setup, the analysis of stability of a particular Jacobian turns into the analysis of stability
of A, which gives us very simple eigenvalues conditions. Also, using the general criterion
of Honkapohja and Mitra [36], we have proved here the necessary conditions for J—stability
(the failure of which is sufficient for non—d—stability) for the case of an arbitrary number

of agent types.

3.5 Optimal Policy Rules and the Structure of the Reduced

Forms

After deriving and stating the conditions for stability under the three types of
heterogeneous learning discussed in the previous section, we are ready to study the general
New Keynesian model (3.1), (3.2), and (3.3) for stability under heterogenous learning when
optimal monetary policy rules are applied. Here we describe the types of optimal policy

rules that are analyzed in this study.
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The policy maker is assumed to use the loss function minimization problem,
which comes from the flexible inflation targeting approach (a policy regime adopted in
several countries in the 1990s), described and defended by Svensson [54]. The central
bank here has two options: adopt a discretionary policy, by solving the problem every
period, or commit to a rule that is once and for all derived from the minimization of the
infinite horizon loss function. Svensson [54] and Cecchetti [12] advocate the first option,
which is essentially commitment to a certain behavior (minimizing the loss function) with
a reconsidering of the optimal rule every period to take new information into account.
They provide various arguments, like inefficiency (in general) of instrument rules designed
to respond only to target variables or the way monetary policy decisions are made in
practice.

The infinite horizon loss function of the policy maker for the flexible inflation

targeting approach looks as follows:
1_ o= i
5 B 2351 [a (@i — )% + (mopi — 7?)2} :
=

According to the discussion above, we assume the discretionary policy of the policy maker

and the problem of minimizing the loss function simplifies to solving each period

min % oz~ 27 + (i — 7] + B, (3.17)

subject to
T = c2 + Az + Fy

(the central bank takes the remainder terms of the loss function Ry, and the constraint
F = 5Etﬂ't+1 + Xow; as given).

The classification of the loss—function—optimization—based rules into fundamentals—
based and expectations—based rules provided below is due to Evans and Honkapohja [26].
The derivation of these rules and of the corresponding reduced forms is done by Evans
and Honkapohja [26] for a slightly more narrow setup than is assumed here (we assume
a general structure of autoregressive shocks); therefore in the derivations that follow, we

basically repeat their steps extending them for our setup.

3.5.1 Expectations—based Optimal Policy Rules

The expectations—based policy rule implies the central bank’s reaction to (pos-

sibly non-rational) expectations of private agents, assuming that these expectations are
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observable (or can be estimated). Its general form is i; = &g +57rEAt7rt+1 +5$Etmt+1 + 00, w.
The coefficients of this rule are obtained by solving the equilibrium conditions: struc-
tural equations with non-rational expectations of private agents (3.1) and (3.2) and
the first-order conditions (FOC) of the optimization problem of the central bank (3.17),

A(my — ) + a(xy — ) = 0. Thus, the expectations—based policy rule is as follows:
i = 0g + (sﬂEﬂTt_;,_l + (5xEAtSUt+1 + 5ith, where (3.18)
0g = — ()\2 + a)71 o1 ()\7? + aZ — ey — (a + /\2) cl) ,
dr=1+(02+0) 7N e =071 du=0"xs+ (M +0a) 6T M

After plugging this policy rule into the IS curve equation, we get the following

reduced form.

y =+ AP By + xPw,
wy = Fwi_1+ vy,
/
Yo = |: Tt Tt ] ) where F' = dzag(p,), ’pl| < 17Vit ~ tid (07012) 7i = 17”7

2 -1
P R (3.19)
—BA(N+a) 0

)\2
Eo c2 + A(c1 — ¢do) B _ X2 [1—m}
) 2
c1 — ¢do — X

Note that the REE solution is not needed either for deriving matrix A® or for
deriving the coefficients of the optimal expectations—based policy rule. The REE solution
will be needed for deriving the optimal fundamentals—based policy rule and, therefore, will

be derived in the corresponding part of the text.

3.5.2 Fundamentals—based Optimal Policy Rules

In general, the fundamentals—based policy rule (not necessarily optimal) has the

form

i =Py + > Pywi, = g + Wwr. (3.20)
=1

Later, we show that there exists a unique fundamentals—based optimal policy rule in this

setup and derive this rule.



130

Plugging this policy rule into structural form (3.1) and (3.2), we get the following

reduced form:

y =l + AFEtyt—i—l + xFwy,

wy = Fwy_1 + vy,

!/
Yt = |: Tt Tt :| ) where F' = dmg(pl), ’pZ’ < 17V’it ~ tid (07012) 77: = 17”7

AR | PAe A (3.21)
¢ 1
F c1 — Py A (—ovh, +X1) + Xb
¢ = y XF = ’ ,
ca + A(er — ¢ihy) — ¢y, + X4

The optimal fundamentals—based rule, under the central banks’ discretionary
policy, is obtained from the loss function minimization, with the central bank assuming
that private agents have RE. With the REE structure being y; = a + I'wy, its general form
is i; = 1o + %, we, where w; is a vector of exogenous variables. Using the equilibrium con-
ditions (economy’s structural equations (3.1) and (3.2), with the REE structure entering
them and the FOC of the central bank’s optimization problem), we obtain the coefficients
of the REE and of the optimal fundamentals—based policy rule.

To get the REE, one has to write the ALM using the Phillips curve (3.2), the FOC
of the central bank’s optimization problem and the PLM in the general form, y; = a+Twy,
and then according to the RE principle, equate coefficients of the resulting ALM (7-
mapping) with the corresponding coefficients of the PLM. The resulting ALM looks like

co + AAT + aZ] aff

a !
T = + a1 + w1t + ... + Wnt| + —5——Xow
¢ 1o o [a1 + y11p101e VinPnWnt] FRECLL
AT +axr A
Ty = —— — Ty,
o o
and the REE looks like
n
o= A+ ) Ywi (3.22)
i=1
n
xy = a5+ Zﬁiwit, where
i=1
o H+AM+az] , M+ai A, —2c+(1—B)[\7+az]
= 70; = — — —Q pry s
! Mia(l-p"" a  al M+a(l-p)
* X 2;P; * A AX2iP; .
")/. = s L= —— L= — ,Z:LTL.
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To get the optimal fundamentals—based policy rule, one has to express i; using
the IS curve (3.1), plugging into it the REE solution (3.22) derived above.
1 = = 1 = 1
i = 5 <a§ + Zﬁiwit> + (Cf{ + Z ’ﬁi/)iwit> + P (a§ + Zﬁz’ﬂiwit> + gxllwt-
i=1 i=1 i=1

As a result, the optimal fundamentals—based policy rule is

iv = g+ Yiw, where (3.23)
Yo = aj, ¥, :; {( Yo (p1—=1) oo vau(pp — 1) >+X1} + < Y11P1 -+ VinPn )

In both cases of optimal monetary policy rules, we plug the corresponding policy
rule into the structural equations and obtain the corresponding reduced form of the model.
These reduced forms were studied for stability under homogeneous RLS learning in the
Clarida, Gali, and Gertler [17, 18] formulation of the New Keynesian model by Evans and
Honkapohja [26] , who derived the stability results for the expectations—based rule and
the instability results for the fundamentals—based rule. We study stability and instability
for the two categories of rules under the heterogeneous learning of private agents in the

general setup of the New Keynesian model (3.1), (3.2), and (3.3).

3.6 Stability Problem in the New Keynesian Model

After deriving the reduced forms corresponding to the optimal monetary pol-
icy rules, we are ready to check them for d—stability. To do this, we have to test the
resulting matrix A of the reduced form (3.19) or (3.21) for the applicability of the suffi-
cient and necessary conditions for d—stability. For the optimal expectations—based policy

rule, we have the following result.

Proposition 3.6 The general New Keynesian model with a stationary AR(1) observable
shocks process (3.1), (3.2), and (3.3) is d—stable when the optimal expectations—based policy
rule (8.18) is applied.*®

Proof. We know that the corresponding A matrix in the optimal expectations—based pol-
2 —1

Ba (>\ + a) 0

BN +a) 0

tion 3.4, we have that € is stable since its eigenvalues are determined from the following

icy rule case is AF = . Using the sufficient condition in Proposi-

8 This result is not very surprising as Evans, Honkapohja, and Williams [27] have a convergence result
under the optimal expectations—based policy rule when all agents use SG learning.
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characteristic equation det (A% — I (1 + p)) (1 + 1)25~Y = 0 and, therefore, are equal
to —1 and fSa ()\2 +a)_1 — 1, i. e., are negative, and we have that det (—p;4;) = 0,
[det miz (-pAi,-p1Ay) + det miz (- Aj,-pAi)|=0, i # j, Mi(-pAi)=-piCpBa (A2+a) ™ >
()0, for all [ = 0,1,....,k (py = 1), so the "same sign" condition holds true. Notice
that using the "aggregate economy" sufficient condition from Proposition 3.3, we can

write two aggregate S—coeflicients in the expectations—based policy rule case. These are
2 -1 2 -1
nax = mzaxz |a;;| = max {ﬁa ()\ + a) , BA ()\ + a) } and 5% = mjaxz |laij| =
J 7

B(a+A) ()\2 +a)71. It is clear that both coefficients are less than one if A > 1. So,
the "aggregate economy" sufficient condition for J—stability is a more restrictive condition
compared to the "same sign" condition since it requires additional assumptions on the
structure of the economy. However, it can be with success applied in more than two di-

mensional economies, where similar "same sign" conditions are not sufficient for d—stability

(see Kolyuzhnov [40]). O

Note that Evans and Honkapohja [26] have a similar result for homogeneous
learning. The proposition below presents the instability result for the fundamentals—based

monetary policy rule.

Proposition 3.7 The general New Keynesian model with a stationary AR(1) observable
shocks process (3.1), (3.2), and (3.83) is non—0—stable when the fundamentals—based policy

rule (3.20), as well as the optimal fundamentals—based policy rule (3.23), is applied.

Proof. We know that the corresponding matrix A in the fundamentals—based policy rule

+Ao A
case is A = & ¢ . Using the "eigenvalues" necessary condition from Proposi-

0] 1

2
tion 3.5, we get the eigenvalues of this matrix:.p; o = 1+ % + \/(B'H‘;H> + Ao

2
Both of these eigenvalues are real, and eigenvalue p; = 1+ % + \/ (%) + Ao

is greater than one. So, the sufficient condition for non—d—stability is satisfied. [J

Again, Evans and Honkapohja [26] have a similar result for homogeneous learning.

9Tn principle, we could also use our necessary conditions for §-stability (derived in Kolyuzhnov [40])
to show the instability of the fundamentals—based rule. However, these may be more difficult to check
than the necessary conditions on eigenvalues derived in this paper. Besides, the necessary conditions on
eigenvalues work for the case of an arbitrary number of agent types.
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Proposition 3.6 means that the REE in this model, resulting after implementing
the optimal expectations—based policy rule, is stable under the recursive least squares
and the stochastic gradient homogeneous learning and the three types of heterogeneous
learning: agents with different initial perceptions with the RLS or SG learning, agents with
different degrees of inertia with RLS or SG learning, and agents with different learning
algorithms, RLS and SG. Proposition 3.7 claims that the REE of this model with the
fundamentals—based policy rule is always unstable under any type of heterogeneous and

homogeneous learning of agents.

3.7 Conclusion

We have used the environment of the New Keynesian model to explore the ques-
tion of stability of two categories of optimal monetary policy rules under the assumption
of heterogeneous learning of private agents.

These two categories were introduced by Evans and Honkapohja [26], and this
division is based on the assumption about the central bank’s perception of private agents’
expectations: RE or possibly non-rational. Under the central bank assuming private agents
have RE, the fundamentals—based rule is obtained, while the case of the central bank
assuming possibly non-rational expectations of private agents results in the expectations—
based rule.

The purpose of this research was, on the one hand, to explore whether, given
structural homogeneity of the model, heterogeneity in the learning of agents influences the
stability results implied by the application of either of the two categories of policy rules.

Using the general criterion for stability of Honkapohja and Mitra [36] and the
sufficient d—stability conditions derived in Kolyuzhnov [40] for the case of heterogeneous
learning, we obtain results similar to those obtained by Evans and Honkapohja [26] for
the case of homogeneous learning. In particular, under the fundamentals—based policy
rule, the model economy is always unstable, so there is no convergence to the associated
REE of the model, while there is stability under the optimal expectations—based rule, and
the economy converges to the REE corresponding to the optimal monetary policy without
commitment.

The above—described results have been obtained using only the structure of the

model, so there is no dependence on heterogeneity of any type considered. This implies
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that in the New Keynesian model, the stability results are independent of heterogeneity
in learning, so the representative agent hypothesis is applicable in this setup.

The method of analysis presented in this paper allows us to check the applicability
of this hypothesis in the case of the heterogeneous learning of private agents in the New
Keynesian economy under Taylor—type rules (the case of internal central bank forecasting),
which do not fall under the classification of Evans and Honkapohja [26]. This issue will

be considered in a separate study.
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A.1 Assumptions on the SRA from the stochastic approx-
imation literature (Benveniste, Métivier and Priouret
[3]) as they are given in Evans and Honkapohja [24, pp.
124-125]

(A.1) Assumption A in the paper

(A.2) For any compact subset @ C D, there exist C1,C3, g1, and g2 such that V0 € @ and
Vit :

(i) [H(0,2)| < Cr (1 +[x["),

(ii) [pe(6,2)] < Co (1 + |2[™).

(A.3) For any compact subset @ C D, the function H(f,z) satisfies V0, ' € Q and z,

:L'QERk:

(i) ‘ang’wl) - 3H§£;””2)>} < Ly |wy — x|,

(ii) |H(0,0) — H(¢',0)| < Ly |6 — ¢’

.o |0H(Ox)  OH(O )
(111)‘ T T oz

)

<Ly|6—¢

)

[2)

for some constants L1, Lo.

(B.1) W; is iid with finite absolute moments.

(B.2) For any compact subset Q C D:

sup |B (#)] < M and sup [A(0)] < p <1,
0cQ 0€Q

for some matrix norm ||, and A (#) and B (0) satisfy Lipschitz conditions on Q).

Here, I provide the reader with definitions and theorems adapted from the math-
ematics literature that I used for deriving conditions for §-stability. These results are

structured according to the approach that is used for deriving stability conditions.
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A.2 The general definition of stability and D-stability of a
matrix

Definition A.1 Matriz A is stable if all the solutions of the system of ordinary differential

equations (t) = Az(t) converge toward zero as t converges to infinity.

Theorem A.1 Matriz A is stable if and only if all its eigenvalues have negative real

parts.

Definition A.2 (D-—stability) Matriz A is D—stable if DA 1is stable for any positive

diagonal matriz D.

A.3 The Lyapunov theorem approach

Theorem A.2 (Lyapunov) A real n x n matriz A is a stable matriz if and only if there

exists a positive definite matriz H such that A'H + HA is negative definite.

Theorem A.3 (Arrow-McManus, 1958) Matriz A is D-stable if there exists a positive
diagonal matriz C such that A'C + CA is negative definite.

A.4 The negative diagonal dominance approach

Definition A.3 (introduced by McKenzie) A real n x n matriz A is dominant diagonal
if there exist n real numbers d; > 0,5 =1,...,n, such that dj|a;;| > > di|aj| - i # j), j =
1,...,n. This is called the “column” diagonal dominance. The “row” diagonal dominance

is defined as the existence of d; > 0 such that d;|a;| > ) djla;|:j #i),i=1,...,n.

Theorem A.4 (a sufficient condition for stability, McKenzie, 1960): If an n X n matriz
A is dominant diagonal and its diagonal is composed of negative elements (a; < 0, all

i=1,...,n), then the real parts of all its eigenvalues are negative, i.e., A is stable.

Corollary A.1 If A has negative diagonal dominance, then it is D—stable.
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A.5 The characteristic equation approach

Theorem A.5 (Routh-Hurwitz necessary and sufficient conditions for the negativity of
eigenvalues of a matriz) Consider the following characteristic equation:

N — Al = N+ N+ by A+ b= 0

determining n etgenvalues A of a real n X n matriz A, where I is the identity matrix.

Then eigenvalues X\ all have negative real parts if and only if A1 > 0,A5 >0,...,A, >0,

where
b1 1 0 0 0 0
b3 bo b1 1 0 0
Ap =1 bs by b3 by by 0
bok—1 bog—2 bog—3 bog—a bap—s5 --- by

A.6 The alternative definition of D—stability approach

Theorem A.6 (From Observation (i) in Johnson [37]). Consider M, (C), the set of
all complex n X n matrices, and D, the set of all n x n diagonal matrices with positive
diagonal entries. Take A € My (C) and suppose that there is an F € D,, such that FA
is stable. Then A is D—stable if and only if A +iD is non—singular for all D € D,.
If A € M,(R), the set of all n X n real matrices, then “+” in the above condition may
be replaced with “+7 since, for a real matriz, any complezr eigenvalues come in conjugate

pairs.

A.7 Proofs of propositions in Chapter 1

A.7.1 Proof for the form of the associated ODE for models with ¢ —
1-dating of expectations and information available up to ¢t — 1
(Models I and II)

I have that Models I and II under mixed RLS/SG learning are presented in the
standard form of SRA

0p =01+ o H (0,1, Xy) +aZp, (001, X1)
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Xi = A(01-1)Xi—1 + B(0r—1) Wy,

where for the law of motion of beliefs for the RLS part for agent type h, I have
RLS: for h =1, 5y

Hg, () = on |:Sl;tl—lzt—1’zzlf—1 [T(®1-1) = Pr1] + S 4y 21 (Bre + Cﬁ)'} 03, () =0,

Hs, () = (0n) (2024 — Sns1) , ps, () = (‘”‘0‘) (6n) (202 — Shi1)

o
Q] — 1 1.

3 — — 18
(& (072N ] Qi

bounded due to the additional technical assumption ? in Assumption A

w e [(a) - ()
limsup [ — | — [ — )| < o0
t—00 41 Qi

thus, Assumtion A2 (ii) is satisfied, and other required assumptions for the derivation of

the associated ODE of SRAs, see Apendix A.1 (conditions A1-A3, B1-B2 for Models I and

IN

where pg, () is bounded since (z;2; — Sp¢—1) has a limit, and

IT are also satisfied).

So, the right-hand side of the associated ODE % = h(0), where h(0) = E&EH (0, X:(0)),
for the RLS part looks as

RLS: for h =1, 5y

Jlim Hy, (0, X)) = on Sy IM, [T(®) — @]

Jlim Hs,, (0, X;) = 0n [(M: —Sn)].-

Similarly, for the SG case
SG: for h=5,+1,8

Hg, () = 0n [2e-121_1 [T(Pe—1) — Br—1] + 2e-1 (Bre + Cer)'] 1 pa, () = 0

lim EHa, (0, X,) = 3,M. (T(®) - @).

So, the associated ODE looks as

i)

O 58 M. (T(@) ~ 1) h =T, )
.

dSh

dsn - _ o

I On [(M; — Sp)]

? = M, (T(®") — @) ,h =25+ 1,5.
=

See footnote 24 on p.42 in Evans and Honkapohja [22].
%imposed as well by Evans and Honakapohja [22, p.32]
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As S, — M., this ODE asymptotically behaves as (can be proved along the lines of
Evans and Honkapohja [22, p. 42] by using Marcet and Sargent [43, Prop. 3]):

®

B 5 (T(®) — &) h =T, 5

dr

—djh = 0, M, (T(®) — @), h =S+ 1,5,
=

Q.E.D.

A.7.2 Proof for the form of the associated ODE for models with ¢-dating
of expectations (Models IIT and IV)

The proof is essentially similar to the proof for models with ¢ — 1 dating of
expectations. Models III and IV under mixed RLS/SG learning are presented in the
standard form of SRA

0p =01+ arH (0,1, Xy) +aZpy (0-1, X1)

Xi = A(Oi—1) X1 + B(0—1) W,

where for the law of motion of beliefs for the RLS part for agent type h, I have
RLS: for h =1, .5

Ha, () = 0n [Spt 211211 [T(®1o1) = D] + S50 1201 (C20) | s, () = 0

Hs, () = (6n) (512} — Sna) 05, () = (C”‘O‘) (6n) (217} — Shes)

aj

Q41 — 0y 1 _i3is
Oé% (672N Qi

bounded due to the additional technical assumption  in Assumption A

men () - ()]
lim sup —— ]| < o0
t—00 Q41 8%

thus, Assumtion A2 (ii) is satisfied, and other required assumptions for the derivation of

the associated ODE of SRAs, see Apendix A.1 (conditions A1-A3, B1-B2 for Models III

IN

where pg, () is bounded since (z;2; — Sp¢—1) has a limit, and

and IV are also satisfied).
So, the right-hand side of the associated ODE % = h(6), where h(6) = tlim EH (0, X:(0))
—00
for the RLS part looks as

3See footnote 24 on p.42 in Evans and Honkapohja [22].
“imposed as well by Evans and Honkapohja [22, p.32]
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RLS: for h =1, 5y

Jlim Hy, (0, X) = on Sy M, [T(®) — @]
—00

Jlim Hs, (0, X¢) = 0n[(M: = Sp)].

Similarly, for the SG case
SG:for h=5y+1,8

Ha, () = 0n (2121 [T(P1-1) — @] + 21 (Cer)'] , pa, () = 0
lim EHa, (0, X1) = 64M. (T(®) — ).

So, the associated ODE looks as

—dfh = 6,5, ' M, (T(®") — @) ,h =1,5,
=

dsh,

— = Onl(Mz—5n)]

d® -
dTh = §,M, (T(®") — @), h =255 +1,5.

As S, — M., this ODE asymptotically behaves as (can be proved along the lines of
Evans and Honkapohja [22, p. 42] by using Marcet and Sargent [43, Prop. 3]):

P

aen - _ 5p (T(®) — @), h=1,5

dr

P I

% = M. (T(®) — &), h =S+ 1,5,
=

Q.E.D.

A.7.3 Proof of Criterion 1.1

The associated ODE for the SRA of Model I looks like

dd
Th = o | T((@), ... ®)) — @, | ,h=T1,5
T N———

[
Ao,

— = &M, | T((®), ... ®) )~ @, | ,h =S, + 1,85,
dr ——
P
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where the T-map is given by

_ . }
S /

b1 [a + > [Agah,t + A’fam + ...+ A}Tlah,t}]

T : _ h=1 , —
S s s
a KZ Agbmt) + (Z A?bh,t) F+ ..+ (2 Aﬁbh,t) F™ + BF}
Sit h=1 h=1 h=1
- bS7t -

First, transpose the ODE

dd’

dTh = 6, (T'(®) — @) ,h=1,5

d(I);‘L / / ! o, 1 O
dr = 5h(T<@)—@h)M27h:So+1,S,

then vectorize with the vec operator using the rules vec(AB) = B'® I,vec(A), where A has

dimension n x [ and B - [ x m, take (T"(®) — ®}) as A, M - as B, d (vec(X)) = vec(dX)

(I),
dvez(h) = dpvec (T'(®) — ®},) ,h =1, 50
-
o o
dw;(h) = WM. ® Lyvee (T'(®) — ®}) ,h =55 + 1, 5.
-

After substituting for 7"(®), I obtain:

for h =1,5y
dvec (D, S . d
d7('h) = dpvec < a + ;TZOALL&/W, ;} (}; A:«lbh,t> F"+BF| — [ah,ta bh,t])

forh=5+1,5

dvec(®},)
dr

S - T S
at > 3 Alans, (Z Aﬁbhﬂg) F" + BF

= 0, M, ®1I,vec <
h=1"=0 r=0 \h=1

Using vec(ABC) = (C' @ A)vec(B):

for h =1,5)
_ s -
S T S 1
dvec () T O ¢
Th =0p | |+ Z rgo A?ahyt, Z F"® Z A,}fvecbh,t + vecBF | —
h=1 r=0 h=1
k
bt

forh=5+1,5

- [ah,t, bh,t]) .
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_ o i
dvec (P’ 5.z - > b}l‘
d7('h) = 0p M1 | |a+ Z rgo A?ahﬂf’ Z F7'® Z Av@ved’h,t +vecBE| — !
h=1 r=0 h=1
[ by

Now, I have to compute the Jacobian of the right hand side of this ODE, that is, to
/ N’/
take the derivative with respect to dvec(®’)= ((al,t)' , (bit), yeees (blf,t)/ soes (ast)’ (bg,t) yeers (b§t> > .

1 0

0 My
It will have the following structure.

The first Sy row blocks look like

Use M, =

51 [Z A;_Jn] 0 51 > A0 0
r=0 r=0
0 1 [2 F"® A};Ink} 0 61> Fm @ A0
r=0 r=0
55, > AL 0 ce 3, [Z Afo-ln} 0
r=0 r=0
0 §sg S F" @ AL ... 0 850 [Z F" @ AS-I1
r=0 r=0

The last S — Sy row blocks look like

550“@0 ASot1_] 0 O . io A8 0
_0 550+1K[i0 Fr'@ AS+Lg) ... o_ 55041 K iOF“ ® AS
5o io ASo+1 0 55[2) AS-T] 0
i 0 §sK io Fr' @ ASot! . _o 55K[i0 Fr' @ AS-1]
K=M,®I,.

From the blocked structure, it is clear that the stability of this Jacobian can be
studied using two unrelated matrix blocks — for a’s and for b s — the ones stated in

Criterion 1.1, Q.E.D.
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The associated ODE for the SRA of Model II looks like

e,

= 6, | T((®),....9)) =@, | .h=1
dr h (( JEEREY s) ) h]> ’SO
[}
dd T 11 ¢
diTh = onMiyw T(( ,1""’(1);)/)_(1)}1 yh="5+1,5,

———
P

where the T-map is given by

ait
by I S ' i
’ {OH— > [Aoah v+ Arap +Alby, yayp t]]

C1t h=1 S g ; Ta(ét)

T = [L+ <Z A bh,t> + (Z A?bz,tﬂ = | Tp(Py)
h=1 h=1
as.t S S n / TC(CI)t)
|:<Z AOCh t) —+ <Z A thChJ) —+ <Z Alch7tF> +BF:|
bs,t L h=1 h=1 i
- CS7t -

First transpose the ODE

dd)

Trh = 6, (T'(®) — @) ,h =
d®;

o= (@)=

then vectorize with the vec operator using the rules vec(AB)

where A has dimension nx [ and B - [ xm, take (T"(®) —

vec(dX)

dvec ()

T = Ghvee (T(9) — @) h =

dvec(®

”6;(’1) = 0y My ® Lyvee (T'(®) —
.

After substituting for 77(®), I obtain:
for h=1,5)

1,5,

®,) My, h = So+1,5,

= B' ® Lyvec(A),

Pl)as A, M, as B, d(vec(X)) =

1’50

o), h="95+1,85.
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|:Oz+ Z [A}OLah,t+A}11ah,t+A]11bh,tah,t]:|
h=1
dvec (P S ) '
s S /s !
|:< Z Agch7t> + (Z A?bh#ﬁh’t) + (Z A?Ch#/F) +BF:|
L h=1 h=1 h=1 _

for h=5+1,S

dvec(®},)
dr

=0pM1yw®I,vec

— s / -/
[a—i— > [Aga;m+A}1‘ah,t+A{Lbh7tah7t]}
h=1
S S /
() (Em)] |
h=1 h=1 ,

S S
|:Z (A6L+A}llbh7t)6h’t+ ( Z A?Ch7tF> +BF:|
L Lh=1 h=1

Using vec(ABC) = (C' @ A)vec(B):

for h=1,5,

dvec (®},)
dr

forh=5Sy+1,5

dvec(®},)

dr :5hM1yw®In

S S
[Ik ® Y (A + Alby,) + F' o Y A?] vecep, + vecBF
h=1

S

o 3 [Afan + Afon+ Afbnan]|
h=t S S

vec {L + (Z Agbh,t> + <Z A?bi,t)] -

h=1 h=1

h=1

s
[oﬂ— > [Agah,t+A}11ah,t+A]11bh,tah,t]:|
h=1
s s
vec [IA— <Z Agbh7t> + <Z A?b%’tﬂ
h=1 h=1

S S
|:Ik ® > (A8+A’fbh7t) +F'® > A}f} veccy, +vecBF
h=1 h=1
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Qht

Qp
/
bt

)

Chit

apt




153

Now, I have to compute the Jacobian of the right-hand side of this ODE, that is, /
to take the derivative with respect to dvec(®')= <(a17t)' , (bit)/ yees (bft), ooy (ast)’ (bé',t>/ yeres (b’§7t),> )
Using (as d(AX?) = A[(dX) X + XdX], vec(AB) = (B’ ® I,) vec(A) = (I, ® A) vecB,
where A has dimension n x [ and B - | x m) d(vec(X)) = vec(dX), vec(ABC) =
(C' @ A)vec(B))

dvec

S S
L+ (Z Agbh,t> + (Z A?bit)] Jdvec (bys) =
h=1

h=1

= vecd

S S
L+ (Z Ang) + (Z A?bit)] Jdvec (by ;) =
h=1

h=1

S
= (U@C Z Ag‘dbh,t + vec

h=1

S
A dbht bht + Al bht (dbh t)] ) /dvec (bhﬂg) =
h=1

S
<Z I ® (AO + Ay, t) dvecby ; + Z ( 1 ® A ) dvecbm) Jdvec (b)) =

h=1

=L, o (4h + A’fbh,t) + b, ® A

I arrive at the following structure of the Jacobian

51 [Rl _ [] . 51350 51R50+1 o 51RS
g (550R1 e 0 [SORSO —I] (550RSO+1 (550RS
Ssor1 KR - b5 KR% S K [R%T 1] ... g5 KRS |
SsKRY -+ SgKRY Ss KR! o OgK [RS—1] |

Where I I n+n2+nk>s K M]_yw ® In7

Al + (A + Alb) a © A} 0
R = 0 V@Al + 1, ® (AR + Abb) 0
d o Al F' @ A} + I, @ (Al + ALD)

This Jacobian is clearly the same as the one stated in Criterion 1.2, Q.F.D.
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A.7.5 Proof of Corollary 1.3

From the proof of Criterion 1.2, it follows that under heterogeneous RLS learning,

the stability of the MSV REE of Model II is governed by the stability of the Jacobian

61[RY = Lyppeins] 51 RS
where
Al + (A} + Alb) a ® A} 0
R = 0 V@ Al + I, ® (AR + Ahb) 0
d @ Al F'@ Al + I, ® (A} + Alb)

It is clear that since the stability part for b’s does not depend on a’s and ¢’s, one

may require this part to be stable.
61 [V ® Al + I, ® (A} + Afb) — L2] - 61 [0 ® A} + I, ® (A5 + A7D)]
D&y = : . :
6s [V @ AL+ 1, ® (A + Alb)] -+ S5 [V ®@ AY + I, ® (A + APb) — I,2]

This would mean that b converges to b. And given this convergence of b’s, the convergence

of a’s and ¢’s is provided by the remaining "own" Jacobian subsystems for a’s and ¢’s,

respectively

51 [AF+ AL+ Alb—1,] -+ 61 [Af + AT + Afb]

D1 = : : ;
os [Ab+ AL+ ALb] - S5 [A§ + AT+ ATD -1,
61 [F' @A+ Iy @ (A + Afb) —I] -+ 61 [F'® A} + I @ (A§ + A7Db)]
DyQp = : :
6s [F'@ Al + Iy @ (A§ + Alb)] -+ 6s [F' @ A7 + I ® (A5 + ATb) — I

I =TI

These are the sufficient conditions of Corollary 1.3, Q.E.D.
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A.7.6 Proof of Proposition 1.4

I have to consider conditions for stability for any positive (d1,...,dg) of the fol-

lowing matrices:

61l, - 0 Ay + o+ AL -1, - A5+ .4 AY
D1Q = : : . :
0 - s, Ap+ AL AL AT
and
Dy1 - 0
D,Qp = : : X
0 - Dyg
FroAl+  + FoAl+ L, Al — Lk -+ FTRA+ .  +F @A + I, @ A
X : . :
FrT@Al+ . +F @Al + I, @ A} o FTRQASH+ L+ F @A+ I ® AF — Lk

Duh = 0nIop,h = 1,8 . )
where " hink 0 , F =diag(py, ..., py), My = diag (%,,%) .
Dyp =0p (My® 1) ,h =S+ 1,5 ; Ok

The expression for D, in the diagonal case looks as follows:

. 65 +1O'2 65 +102 65 +1O’2 65 +1O’2
D,Qr = diag(61,...,01,...,05,,...,0 o1, = Sk 2k
webetR g( 1 3 01, » 080y 5 0S50 171)% ) ) 1*P§ P ) 17/)% P ) 17/)% )
550% 550% 650% 650%
..,1_p%,...,1_p%,...71_p%,...,1_,0%)
n n
T . 1 T . S
7 7
=0 =0
T A 1 T . S
(2 V]
=0 i=0
X
~ il ~ i 4S
7 7
=0 =0
T 1 T g
V] (2
0 pi Al 0 pLAS — 1,
=0 i=0

After some permutations of rows and columns that do not change the absolute value of

the determinant of D,,Qpr — ul, I obtain that the following characteristic equation for
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eigenvalues p of D,,Qp
det [D,Q2p — ul] =0

is equivalent to

_ . 550“0% 650“0% 5502 5502
0 = det[dzag((él,...,51,...,650,...,(550, l—pf ) l—p% ""’l—p%""’l—pf)""
n n ~~
n n
ds +10'i ds, +10'% dgo? §g02
(015 0100 080, O 10—/1% B lo—pi ""’1—/)%7---:1—;;%))
n n
n n
- X ; T -
i I i
%MAZ'— n— %5 %plAi
1= 1=
xdiag( : : Yo
T T 2
i gl i 4S (1=p})pln
> P14; ZplAi_In_W
L =0 i=0 1 ]
- . _
St A — 1, B 77 I A S pi AS
k*% n n 01 Pr
i=0 i=0
: : ),
T T 2
i A1 i AS (1_pk)NIn
Zp;cAi_In ZP}{Ai _In_v
| =0 =0 _

or, in matrix form:

[)IQpl - ,UfInS &
0 = det =TI det [ DS, — s
. =1
Dkak - :UJInS
where
611, 0
~ 5SoIn
Dy = 5SO+1Ul2[ : ’
l—pl2 n :
Fy 2
0 o
Ay +pAd 4+ pTAL I, - AS AT 4+ pT AT
Qpl = ’
Ay +p AL+ o+ pT AL A+ p AT+ pTAS -,
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Thus, the analysis of the stability of D,,Q2F is equivalent to the analysis of the stability of
DSy, V1 =1, k.

So, the analysis of the stability of D,,Q2r can be split into the analysis of the
> 0 for h =

5h0'l2
1—p%

So + 1,8 for each case I = 1,k, I obtain that the analysis of stability of D, Qp for any

stability of the unrelated matrix blocks. Changing notation d; :=

0 > 0 is equivalent to the analysis of stability of k matrices D1(2,,. Introducing notation
po = 1, I can write the general criterion for stability of a structurally heterogeneous
economy under mixed RLS/SG learning for the diagonal environment case under any
(possibly different) degrees of inertia of agents, 0 > 0, as follows: D;(),, is stable for all
1=0,1,...,k Q.E.D.

A.7.7 Proof of Proposition 1.5

I have to consider the conditions for stability for any positive (d1,...,05) of the
following matrices D12 , Dy and D, Qp, where F' = diag(py, ..., py)-

The analysis of stability of D,,Qr and D12 is equivalent to the analysis of sta-
bility of D1Q,,, VI = 0,k (py = 1) — the result follows from the proof of Proposition 1.4
above, where one has to replace Ag with Ag + A’fl_), set A?,i > 1 to zero, and set S = Sj.
Q.E.D.
A.7.8 Proof of Criterion 1.6

The proof directly follows from the proof of Criterion 1.1, setting Ag =0.Q.E.D.

A.7.9 Proof of Criterion 1.7

The proof directly follows from the proof of Criterion 1.2, setting Ag =0.Q.E.D.

A.7.10 Proof of Corollary 1.8

The proof directly follows from the proof of Corollary 1.3, setting A% = 0. Q.E.D.

A.7.11 Proof of Proposition 1.9

Follows directly from the proof of Proposition 1.4. Set Ag to zero.Q).E.D.
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A.7.12 Proof of Proposition 1.10

Follows directly from the proof of Proposition 1.5. Set Ag to zero. Q.E.D.

A.7.13 Proof of Proposition 1.11

The characteristic equation for eigenvalues of Qg is given by

For equal degrees of inertia of agents for each type of learning algorithm, &; = ', Vi =

1,...,80, 8; = 6%, Vi =Sy +1,..., S, it simplifies to

R'—T— £1 .- RS0 RSo+1 RS
R! RS0 — T — 1 RSo+1 RS .
0 = 0.
KR! KR KRS+t g — £ T KR®
05041
KR! K RS0 K RSot+1 KRS — K — %I

R'—I— 41 R%0 RSo+1 RS
Rl RSO — [ — L] RSo+1 RS
5 =0.
KR! K RS0 KRS+ — K — 5%1 KRS
KR! KRS0 K RSot1 KR® — K — &1

Then, it is possible to obtain the following equivalent algebraic representations for this

characteristic equation

—I— 41 0 I+ 4 0 0 0
0 —I- 41 I+ k1 0 0 0
Rl RSO—I RSO —J— 5%] RSo—i-l RS—l RS
0 0 0 —K - &1 0 K+ ul
0 0 0 0 —K — 41 K+ ul
KR! K RS0—1 KRS0 K RSot1 KR! KRS -K - LI




159

_I_(Sﬂl e 0 0 0 e 0 0
0 - -I-kI 0 0 0 0
S S
Rl .. RSo—1 ZO Rh—f—%f RSo+1 . RS-1 Z Rh
1 So+1 — 0
0o .- 0 0 -K-bT - 0 0
0 e 0 0 0 . _K_g% 0
So S
KR' ... KR%"' K R KR ... KRS' K ) RMK-LI
1 So+1
So S
E Rh—T— 5%[ RSo+1 . RS-1 Z R
h=1 h=Sp+1
K — £
( D 0 K- &1 0 0
-1 - =
5)
0 0 —K - 51 0
So S
K> R KRSt ... KR! K Y R'-K-4
h=1 h=Sp+1
So S
4(So—1) S-So-1| X R —T—hKI > Rh
<—1 - “1) [det <—K - MQIH =L ot
0
0 0 K> R K Y R'-K-LI
h=1 h=So+1
. 1 0 N 1 0 N \ _
As Y R" = QAT+ .+ @ Y AV + I @ Y AG, and K is
0 £ 0 F

positive definite, then the condition for stability of Model I under mixed RLS/SG learning
with equal degrees of inertia of agents for each type of learning algorithm, §; = 6755,
Vi=1,..,S0, 6; = 6°%, Vi =Sy +1,..., 5, is exactly defined by the conditions of stability
of the corresponding average economy under mixed RLS/SG learning of two agents with

equal degrees of inertia for each type of learning algorithm, 6% for RLS and 6°¢ for SG:
S

SN, h
S RN T — s > R
h=1 g g h=S0+1 = 0.
0
K> Rk K > R'-K-jkl
L h=1 h=So+1
mce
SAN+ Y (Ab+ALD) a®d Al 0

Rh= 0 VoY A+l @ (Ah+Ahb) 0

7o Al F'@ Y A4, @ Y (Aj+ALD)
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b corresponds to the average economy and is defined by (1.9) for Model IT and in (1.16)
for Model IV, which may be rewritten as

(Ea) (2 0))o (B )+ (5,2)

Ag = 0 for Model 1V), and K is positive definite, the condition for stability of Model

Ly b+ B = b (with

IT under mixed RLS/SG learning with equal degrees of inertia is exactly defined by the
conditions of stability of the corresponding average economy under mixed RLS/SG learning
of two agents with equal degrees of inertia.

The proof for Model III is completely similar to the proof for Model I above. Set

The proof for Model IV is completely similar to the proof for Model II above.
Set Ak =0. Q.E.D.

A.7.14 Proof of Proposition 1.12 (for Model I and Model III without
lags, the diagonal case, mixed RLS/SG learning)

For €2, repeat basically the same steps as in Kolyuzhnov [40]. Use the "columns"
negative diagonal dominance of €2, , which is sufficient for the real parts of the eigenvalues
of D12, to be negative; look for a condition that would be sufficient for negative diagonal
dominance in this setup. As weights for rows use (¢ (¥, ..o, ¥,,)s ooy @ (U1, ..y 10,,)), ¢; > 0,
Y >0, ;wi = 1,2};% =1

For any [ take any block A and any column j

agjj + pla}fjj 4+ ...+ plTa}fjj — 1 < 0 - negative diagonal
j? b

> (¢1 + o 0) oy |agy; + prally; + o+ paly| -

1
— oY )agjj + pla]fjj + ...+ pfa?jj‘ - dominance

)
-77 )

> (1 + e+ ) Z¢z agij + pla?ij +t pza?ij -

1

h h h

—Pn; )a()jj +payj;+ et pz—aljj‘

\

¢
0< agjj + pla}fjj + ...+ p[a}fjj <1

Case 19 S, Pty V4, Vh, VI

< 0T——F/7 1
¢1+ ... + g
—_———

=1

h h T h
agg; + p1ayy; + -+ ppayy;
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@]
agjj + pla’fjj + ...+ plTa’fjj <0
X
S oy + e+ el < 5 g
Case 2¢ ° ——— Vj,Vh,VL

20pv; h h h
—m (aojj + plaljj + ...+ p[a1]j>
—_———

\ =1

Since in the second case p; (agjj + pla?jj + ...+ p[ai%) < 0, one may formulate

aly; + pally; + ..+ pTal| < dyv; V4, Vh, V1. The

the following sufficient condition v,
i
condition 1 > algjj + pla’fjj + ... + plTa’fjj is implied by this relation, and the condition of

case 2 is also satisfied. To prove that 1 > agjj + pla’fjj + ...+ p[a’fjj, notice that

h h T _h
Vi |agij + p1ats; + -+ platy| < dpth; =
1
Zwi|agij+pla§bij+"'+pz—a§bij| , \ ,
i#] T
— "pj —I—‘aojj—i—plal”-i--f-pl aljj‘ <¢h <l=
>0 =0

h h h h h h
— ’aojj + pla’ljj 4+ ...+ p;aljj) <1l=— anj + pla’ljj + ...+ pz—aljj < 1.

So this condition alone is sufficient. The derived sufficient condition follows from

+ ...+ o]

+ il ol ) < 6,90, ¥,V

%:% (’agij

This is the condition of Proposition 1.13.(For Model 111, set agij = 0 everywhere) Q.E.D.

A.7.15 Proof of Proposition 1.15 (for Model I, III without a lag, the

general non-diagonal case, heterogeneous RLS learning)

Prove that Q and Qp are D-stable. May prove just for 2r as a more general
case, with the part for Q derived then by setting F' = I.

For QF use the "columns" negative diagonal dominance of Qr, which is sufficient
for the real parts of the eigenvalues of D,,Qr to be negative; look for a condition that

would be sufficient for negative diagonal dominance in this setup. As weights for rows

use (¢1(”¢17 ---71/}71)7 "'7¢1 (wlv "'71/}71)7 "'7¢S<¢17 "'71/}71)7 "'7¢S (wh 7wn))7 ¢z > O, wh > 07
k k
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Take any block h, any row [ of F', and any column j

fia TJJ + ...+ f”a}fjj + agjj — 1 < 0 - negative diagonal
Oy | frali+o A+ fual+al; — 1‘ > (1t +o) Z’%‘(Zr 1 |l e
7

k
+ 21 | firl

e W4, YALVI

TZ]

a]fij ) — On; ‘fﬁaﬁjj +o+ flla’fjj + af}jj‘ - dominance

h
+ ‘GOij

—¢h¢j (f;l—aﬁjj—{_"'_{'flla}lljj_‘_agjj) +opt; > (d1+...+ ) Z%(Zr 15 a
+_§:f:1|ﬁr’

o V4, VR,V

TZ]

) - ¢h¢] + ...+ flla1]] =+ a()j]’

h h
ayj| T ‘QOij »is

)
)

,

O < f 7—]] + + fllalj] + aQ]] < 1
h h Pt i

Case 1\ s (s 17 [l + 4 S0 il [y + Jaly]) < G2t 9 V0V
U =1

f 7—]] + + flla/1]] + ao < 0
Cose 9 Z% (Zrzl |fir] ‘rij +o+ Zr:l | fir| a]fij + ‘agij ) < . Vh, VI

¢hw 2<Ph¢' ’ ’ '
<;51+ +¢S ¢1+...—J|—¢S (fllaTJJ + - +flla1]] +a0y3>
] e

Since in the second case fjja ” + ...+ fualj ;T ‘103 ; <0, formulate the following

T

sufficient condition

k
2 Ui (Z |15 ] |k
v r=1

h h
ay;;| + ‘aou

k
ot D il
r=1

The condition 1 > f”a +...+ f”alj j +a0] ; is implied by this relation, and the condition

Tij

of case 2 is also satisfied. To prove that 1 > f”a + ...+ f”aljj + aojj, notice that

5j
k k
> Ui (Z |l lalis| + . +Z\flr| alyi| + ’a(})lij ) < op; =
v r=1 r=1
;ww( oY b | AP RO Sy | P BR P
= - +
k k
+<Z |l el |+ -+ Z | firl |ali;| + ‘aom ) <¢p<l=
r=1 r=1
>0
k k
== Z | firl aﬁij + +Z|flr| a]ﬁ'j + ‘a’gij <l=
r=1 r=1
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h h h
:>|fl7l—| a <l= ng+"'+flla1ij+a0ij <l=

Tij

h
+ ‘CLOU
- f 7—]] + ...+ fll(ll]j + CZO]] < 1.

So this condition alone is sufficient for §-stability. For Model 111, set agi ; to zero everywhere

above. Thus, this is the condition of Proposition 1.15. Q.E.D.

A.7.16 Proof of Proposition 1.16

Prove that ©Q, Qp, and €2, corresponding to the models are D-stable. For 2
and Qp, the proof is similar to the proof of Proposition 1.15 above. Replace agij with
aOZ] (Ahb) . and set Zle |fl] to zero for 7 > 1 for Model II, and replace agij with
(A?b)ij and set Zle |f7| to zero for 7 > 1 for Model IV.

Proof for €2 is similar to the proof for Qp. As weights for rows use

(¢1(1/}17 "'awn)v "'7¢1 (1/}17 "'a¢n)7 "'7(255'(1/}1’ -"awn>7 "'7¢S (%7 “wwn))a ¢z > vah > 07

n n
Y, =1,> ¢, = 1, where the number of repetitions k from the previous case is replaced
i h B -
for n to reflect the dimension of b. Then everywhere in the proof, replace F' with b and

use summations of elements in rows of b up to n and not up to k. Q.E.D.

A.7.17 Proof of Proposition 1.17

For ${'¢™°4 (1, ¢):
For Model 1

1. BfCmed (4, ¢)‘$—any = SZ P Z V; Z ‘a’gij + oy + et plaly) <
—any h i j

h h h _
<SY D) Pitax ‘%U + P03y et | =
h 7 i ’

= SZ <Z Z (ﬁhwi) H}l:i%X ‘agij + pla?ij + ...+ p[a?ij <
J (2

h

=1

— h h h | _ pAGmax
= mlaXSZ max )aOij + pay;; + -+ plaz;l =By .

2 0]y =S 5 T oy 4 ety =
h

w any

_ZZ¢ZZ’GOl]+plalz]+ +pl T@] >
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< (S Sl oy oy <
i h j

=1
< mlaxmaxz Z ‘GOU + plalzj +..F pl sz

6AGm0d w (25 ‘¢ any Sz(bhz Z ’aOZj +plalzj . +p ng

w—f 17 v ]
Vi

h h ho|
< SZ n 2. opmax ‘aﬂij t ooy + o+ plazi;| =
i hoj ’

zh:ZGf)h =

AG max.
2

1
— h h T h
=5 E En?fjx ‘aOij + paq;; + - ppag;;

— h h T h
_Sth%X‘amj+pla1ij+...+plan.j <
7

< mlaxSZmax ’agij + pla?ij + ...+ p[a?ij = pylGmax,

Z Z Z ‘a()zj + pla’lzj +o Tt pl ng

h\/i\/j
én Py

w_
= Z Z Z ‘CLO’L] + plalm +. Tt pl T’Lj
h 7 7
< zimeXz\a&j+ma’fﬁ+-u+pza% -

J
——
=1

< max g max E ‘a&j + pla}llij + .t p[aﬁij =
b=
h %

To prove the proposition for gA¢med (1, ¢) for Model I11, set agl-j = 0 in the proof above.

4. ﬁAGmod(w d) o

\Hmw

<

= Zmaxz ‘%zg + plah] +...+pla TU

,BfG max

For Bﬁg;flﬁgd 1 (¥, 9):

To prove for Model I, replace agij —i—plaﬁ-j + ...—&—p[aﬁij with agij
Zr 1 15l a n]
C A fa
To prove the proposition for 3
Model 1.

k

+> o Ll el |+ o+
k

+Zr:1|frl| a}ﬂ'j +

in the proof above for steps 1 and 4 and with

h
Qpij

for steps 2 and 3.

T’Lj

deinoos1 (¥, ¢) for Model III, set afy;; = 0 in the proof for

For Bicighiea p (10, 6):

for f-type aggregation
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To prove the proposition for Model I1, replace agij with agij + (A?B) i and set Zle L]
and Zf’le |f[| to zero for 7 > 1 in the proof for Model I.
To prove the proposition for Model IV, replace agl-j with (Aill;) i and set Zle |ff| and

Zle |f7| to zero for 7 > 1 in the proof for Model I.

for b-type aggregation
The proof is analogous to the proof for f-type aggregation. One only uses b instead of
f, changes the index of rows and columns from [ to ¢, and uses summation up to n and

not up to k.Q.E.D.

A.7.18 Proof of Proposition 1.18

For Model 1

AGmax __ h h T h
1. for 3] = mlaxS ; max ‘aOij + padi; + o+ prady;

5flgmax < 1. Let’s prove that there

— h h T h
= mlaXSZ max ‘GOij + paty; + - plagy;

exist weights 1) and ¢ such that
S (aby + pralyy + o+ plaly ) [9; < 05, YR,V

Let us take ¢, = % Vh, and

>0

L— SZH}%X (‘agij + pati; + .+ plal; )

)+ 7 - V4,

¥; = Smax ()agij + pafy; + e+ plal

These can be considered as weights since

S n
,;1¢h:1,0<¢h<1 and lej:170<¢j < 1.
- iz

Notice that

)z

V.
gj > max ()agij + pali; + .+ plaly ) = Z%H}L%X ()a}&'j + paly; + .+ plaly
) 7 )

) V4, Vh, VI,

2> (‘agij + Pza}ﬁj + ...+ pz—afrlij
(A

or after rewriting: »_ v, <‘a6lij + plaﬁj + ...+ plTa?ij ) <; ¢y , Y, Vh, VI
i ~~

1
S
AGmax __
4. for By = max > max y
h 7

h h roh
g5 + P15+ e Py Ay
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AGmax __ h h h
Bi = mlaXZ mjaXZ ‘aOij + pafy; + -+ plagy;
n 5

exist weights 1) and ¢ such that

< 1. Let’s prove that there

h h T h
> (’a()ij + pag; + -+ ppaz;
1

) Jib; < 8,4, Vh, VL.

Let us take ¢; = % Vi,

>0
1- EhImJaXZ (’agij + Pla}ﬁ‘j T+ PlTa}le‘j )
K3

S S
These are weights as Y ¢, = 1,0 < ¢, < 1 and > Y;=1,0<9; <1
h=1 j=1
Notice that

(bh > mjaxz (‘agij + pla}llij +ot pz-a‘}rlij > 3 Z (’aOz] + plalz] +o.t pl T’Lj ) 7V]7Vh7VZ
i i
1
~ =
> U (‘a(})lij + Pla}fij +..t PzTa}rlijD
i

or after rewriting:

< ¢y, V4, YRV
%‘

1

To prove the proposition for BAG max — mlaxmax > Z ‘aOU + plam +...+pla

T’L_]

and ,BAGmaX = mlaxS Zmax OLOZ] + plah] +...+pfatiil, 1 ﬁrst derive a sufficient condi-
h.j

TZ]

tion for & — stability that follows from the "rows" diagonal dominance condition, which is
also sufficient for stability of matrices D12,. Therefore, my derivation of this condition
resembles the steps in the proof of Proposition 1.12. Use (di, ..., dn, ..., d1, ..., dy), d;i > 0,
Z d; = 1 as weights for columns.
Z For any [, take any block h and any row 1.

’

al.; + pak; + ...+ plal,, — 1 < 0 - negative diagonal
d; |ag;;+pafy ] aly; — 1] > zh: >_d;
j

agij+01a?ij+---+PlTa¢ij — Vi,Vh,VI

—di ‘a’Ozz + plalu +o+ Pl T“ - dominance

al; + praty + ..+ pfaly, —1<0

d (a0u+plalzz+ +10 T’L’L) +d >sz ’a01j+plalz]+ +P ng - VZ,Vh,Vl

\ —d; ‘a0u+pla1u+ +pl T’L’L|
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0< a&-i + pla}fu- + ...+ plTa}T‘ii <1

Case 1 Vi, Vh, Vi
Zh: 2. d; ‘agij + iy + ot pfaly| < di
J
U
agm + pla?m +.o.t PzT frl'n <0
Case 2

Vi, Vh, V.
<di_2d (a01z+plalzz+ +pT ?zz) " ’

sz ‘a01j+plalzj+ +p 7'1]

Since in the second case aon’ + plam + ...+ pjal; <0, formulate the following

T7,Z

sufficient condition: Z >.d; agij + pla}fij +..+ plTa}T‘ij < d; Vi,Vh,VI. The condition 1 >
J

a(m + plam +...+pja m is implied by this relation, and the condition of case 2 is also satis-

fied. To prove that 1 > al,+p,al;;+...+p] a”;, notice that z Zd ‘aom + plalw + ...+ pja m <

di =
= Z Z d aOzy + plalzj + ot pl sz +
h j#i
>0
i [agi + paty + -+ plaly| < di <1 =

h

/

>0

h h h
<1= ag; + pay; + ... +pjaz; <1

h h T h
== ‘aou' + prayy + o pp Qg

So this condition alone is sufficient for d—stability.

ﬁ2AG max __

Next, I use the derived sufficient condition to prove Proposition 4.18 for

h h h AG max __ h h h
mlaxmaxE Z )am‘j + pay;; + .-+ plaz;;| and 53 = mlaxSan}lLa}x ‘a(n’j + praty; + -+ plagil-
7 )

2. for ,BAGmaX = mlaxmaxz Z ’aOU + Plaug +...+pla m

Bo\Gmax — mlaxmzax§ > ’amj + plalij + ..+ P a’;ij < 1. Let’s prove that there
j

exist weights d = (d1, ...,dp, ..., d1, ..., dyp), d; > 0, > d; = 1, such that

> %jdj (‘agij + pral; + o+ pfal ) < di¥i, Yh, V.

Let us take d; = % Vj.
Notice that

;Z (’agij + pallyy + o+ plaly; ) Sm max ;Z (‘agij + pally; + o+ plaly ) < 1,Vi,Vh, Vi,
j j

1 1
or after rewriting: » >  — (‘a&-j + pla}fij +..+ p[aﬁij ) < — ,Vi,Vh,Vi.
mile <~
d; d;
3. for p40max — mlaXS Z max ‘aOU + plah] + ...+ pja
h.j

TZ_]
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< 1. Let’s prove that there

AGmax __ h h h
3 = maxS ) max )a()ij + pafi; + A ppadi;
1 )

exist weights d = (di, ..., dn, ..., d1, ...,dy), di > 0, > d; = 1, such that
i

> ; d; (’a’gij + ol + o+ plal ) < di¥i, Yh, V.

Let us take
>0

1-53 max <‘a(}llij + pati; + .+ plaly

)+ i - Vi V.

: <‘agz'j + pallyy + o+ plaly;

d; = Smax
h.j

n
These can be taken as weights since > d; = 1,0 < d; < 1.
i=1

Notice that

=

n S
h h T _h
) = Zld] hZ n;lla,X ()a()ij + plalij + ...+ pl aTij
j:

h h h
d; > Snlllax <‘a0ij + Pty + -+ plazy
7]

>33 4 (’agij + pal; + o+ pfal; ) i, Yh, VL.
h J

To prove the proposition for Model II1, just set agij = 0 in the proof above.

A.7.19 Proof of Proposition 1.20

For Model 1
1. for g{l¢max — mlaxS > max (‘a&j
X

k
+ Z ’flr‘
r=1
Let’s prove that there exist weights 1) and ¢ such that

k
+ot > 1]
r=1

):

k
+ o+ 2 S a?z’j

)<t

) J; < G4, VR, V.

h
A1y

k
+ Er:l ’flr‘

k
+ot Y LSl
r=1

h
Qrij

h
Q144

BAEmax — maxS S max ‘a&-j
TG hi

k

+Z‘fl7“

r=1

h
Arij

h
Q144

;T/Ji (’a&'j

Let us take ¢;, = % Vh, and

k k
h h T h
V; = Sn}ﬁx (’aﬂij +Z|flr| ayij| ..+ Z | fi] |azs; > +
i r=1 r=1
>0
k k
h h h
1—521"%%?( (‘am‘j +Z|flr| ay;j +---+Z|fz§| am‘)
J ’ r=1 r=1 .
V4, V.

+
n
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These can be considered as weights since

S n
hzlqﬁhzl,()<¢h < land lejzl,0<wj < 1.
= J:

Notice that

Z‘fh"‘

+ .. +Z!flr

alzg TZ]

>_

ﬁ > max ’a
S hyi 0ij

k k
= ;wirr;gx (‘a&j +Z’flr’ aty;| + - +Z\flﬂ ali; ) 2
Z sz (’am] Z ’flT alz] to Tt Z |flr ‘rz] ) , V3, Vh, Vi,

or after rewriting:

Z|flr

+ .. +Z|flr

a‘l’Lj 7'1]

sz (‘a()zg ) < @ZJ]\QSEJ,\V/],\V/}Z,VZ

S

+Zr 1 ’fl?"‘

)

)<

) [; < G4, VR, VL.

alz] + . +Zr 1 ‘flr‘ 7'2]

4. for piiGmax — maxz:maxz <‘a0w

h
a5 Tij

k k
+ )1 firl R R A
r=1 r=1

Let’s prove that there exist weights v and ¢ such that

Z‘flr| + . +Z|fl7‘

Byi6max = max Z max Z ()aow

alzy sz

Z% (‘aom

Let us take ¢; = % Vh,

k k
<;5hfmaxz <‘a0” Z’flr’ aly +---+Z\fﬁ~| ati; ) +
r=1 r=1
>0
1—;maxz (‘agw Z\fﬂ alij| + .. +Z|flr m)
n - V4, V.

S S
These are weights as ) ¢, =1,0 < ¢, <l and > ¢; =1,0<¢,; <1.
h=1

=1
IE

Notice that

h
Q145 Tij

k k
IR o) (THED SUTAIPHERS wiAl
r=1 r=1
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k
2 (’GJOW Z|flr a’lz] +Z’flﬁ” a?ij ) , V3, Vh, Vi,
r=1
or after rewriting:
1
E w (’G'O’Lj +Zr 1’fl7“‘ alzy + . +Zr l‘flr‘ le)
d < ¢y, Vg, Vh, V.
¥
~~

1
n

To prove the proposition for

Z‘fw” ‘am

k k
+ 2= | Sl ‘a}fz'j ot 2 il e

rive a sufficient condition for ¢ — stability that follows from the "rows" diagonal dominance

+ . +Z|

T’L]

BolGmax maxmaxz Z <‘a02]

)

) I first de-

and B{Cmax — mlaxSZ I%%X (‘agij m
condition, which is also sufficient for §-stability of matrices ) and Qp, prove for Q0 as
a more general case, with the part for 2 then derived by setting F' = I. Therefore, my
derivation of this condition resembles the steps in the proof of Proposition 1.15. Use
(diy.eydnyeydi, .oydy), d;i >0, Zd,; =1 as weights for columns.

]
Take any block h, any column of F' [, and any row ¢

( fral, + ...+ fual, + ab., — 1 < 0 - negative diagonal
k T
i } na T’L’L +..t+ fllalu + aOzz - 1} > sz (Zr:l ‘ rl| a’}rlij + .
Vi, Vh, Vi
+ 38 | ful ‘auj + ’G’Oij

l —d; ‘fl als + ...+ fual, + aU“| - dominance

T
( fral, + .+ fudky +aly; —1<0
k
_dl( TZZ+ +flla1u+a’0u) +d > sz (Zr:1| 7z—l| a7h-'7;j + .
J Vi, Vh, Vi

+ 30 |l ‘auj + ‘%ij

_di ‘fl Qri; +..+ flla’lu + a022|
(i
. 0 < fral + ...+ fual,; +al,; < 1

ase 1 - k Vi, Vh, Vi
;Zdj(zrﬂ [Falali ]+ o 4 0y [l ’a?ij + ‘agz'j ) < d;
J

U
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Tzz +o+ fllalzz + aOu <0
Case 2 ZhIZdj(Zrzll il |ari| + -t Vi, Vh, V.
J

k
+ 30 ol ol 2d (i falys + .+ fualy; + afy;)

Since in the second case fﬁaﬁii + o+ fual, + agii < 0, one may formulate the

T’L]

+ ’agz'j ) <
following sufficient condition:

23 Z\ al|a ) < di¥i, Vh, .

T’Lj

‘GOU

+ . +Z’frl‘ ‘alw

The condition 1 > ffal, + ...+ fyal; + al. is implied by this relation, and the condition

of case 2 is also satisfied. To prove that 1 > ffal,. + ... + fyal; + al,., notice that

Zng(i!sz! al; +"'+i‘frl“a}fz‘j ‘a’Oz] ) <di =
hj r=1 r=1
sz Z| 1l |a m + . +Z frl|’alz] ‘aOzj )+
>0
+5d, Z| il ok | + - +Z|frl|}am jabiy]) < di =
>0
:>Z| allak ]+ +Z|frl|)a1zg ‘a&-j <l=

h
= |fil Qrij

<l= fllaﬂz + ot fllalu + aOzz <1

h
+ oo+ [ ful ‘alij ‘aow

So this condition alone is sufficient for d—stability.

Next, I use the derived sufficient condition to prove Proposition 1.20 for

k k
h h
+Z‘frl“alzj +---+Z’fﬁz’ a )
r=1 r=1

Tij

Tz]

5124G max __ mlaxm'ax Z Z <‘agz_7
(2 h ]

and

+Z|
+Zr 1| ’

AG max __ h
53 = mlaxS Z H}%X (‘QOij n]
7 2

k
+Z’frl\ ‘alﬂ'j + .
r=1

2. for BgCmax = mlaxmng > (‘a&‘j + 30 |l ’a’fij + .
h j

)

)<t

k k
AG h h
B = maxmax ) ). <‘“0z’j +Z‘f“|‘“1zj ot DI |z
J r=1 r=1
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Let’s prove that there exist weights d = (dy, ..., dn, ..., d1,...,dy), di > 0, Zdi = 1, such

that ;Zdj(Zle\ il aﬁij ST Dug ‘a?ij ’%zg ) < d; Vi,Vh, Vl
J
Let us take d; = % vj.
Notice that
k
%Z (Z| :l TZ] + . +Z‘f7"l| ‘alm )a’OIj ) <
J r=1
k

< maxzz (Z’ l’ T’L] + - +Z‘frl| ’alzg ‘agij ) < 1aVi7Vh7VZ7

or after rewriting:

D)W (D il ok + - +Z|fﬂ|\am

d] d;
3. for ,BAGmaX = maXSZm&X <)a’()zj + ZT 1 ’le‘ ’alz] to Tt Zr 1 ‘ | 7'7,j

BAGmax = maXSZman <)a0w +ZT 1 ’frl‘ ‘allj + .. +ZT 1‘ ‘ ) < 1.
Let’s prove that there exist weights d = (dy, ..., dn, ..., d1,...,dy), di > 0, Zd = 1, such

k T
that zh: Zdj(ZTZI ‘ ’V‘l’ a'h
J

Tl] ‘a’OZj

> < 1 vivnw
N

).

TZ]

) < d; Vi, Vh, Vl

Ti)

k
+ ot D [l ‘a?ij

Let us take d; = Sn}llax (Zle | 7] |k
7]

’am]

TiJ

k
+ ...+ Zr:l |frl’ ‘a}llij +

h
’%ij

)+

>0

+ . +Z|frl"a1z]

Ve

1 —szmax (Zy ™| la

7'1] ‘G’OU )
+ Vi, VI. These can
n
n
be taken as weights since Y d; = 1,0 < d; < 1.
i=1
Notice that d; > S 1fT) |l K h ho 1) =
otice that a; > II}LEEX Zr:1| rl| aTZ] +"’+Zr:1 |f7"l‘ alz] + aOzy
N k h k h h
= Zldj hzl max (Zrzl |frl |azs| + o 2y [l ‘alij + ‘a’Oij ) =
j: = 9
———"
=1 =S
k k
2 Ehj i (3o 1] a‘fl'lij o |l }a}llij ‘aom ), Vi, Vh, VL.
J

To prove the proposition for Model 111, set agij = 0 in the proof above.

A.7.20 Proof of Proposition 1.21

For the maximal aggregate 3-coefficients of f-type, the proof is a direct repetition

of proof 1.20, where one has to replace agl-j with agij + (A}fl_))ij and to set S°F_ | f7| and
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Zf:1| 7| to zero for 7 > 1 for Model II, and to replace agij with (A?B)ij and to set
Zle |ff.| and Zle |f7] to zero for 7 > 1 for Model IV.

For the maximal aggregate (-coefficients of b-type, the proof is similar to the
proof for the maximal aggregate S—coefficients of f—type. Use b instead of f, change
the index of rows and columns from [ to ¢, and use summation up to n and not up to k.

Q.E.D.
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B.1 Proofs of propositions in Chapter 2

B.1.1 Proof of Criterion 2.8

Model T (IIT) (Model II (IV), in which all roots of b lie inside the unit circle) is
d-stable if and only if the corresponding matrix Qi is Dp-stable. Take F' as an identity
matrix, and D as dz‘ag(%, s %, ey %, - %), dp > 0,h =1, S in the alternative definition
of Dy-stability of Qxr and write down the characteristic equation for eigenvalues with —i

substituted for eigenvalue. No eigenvalue must equal —i, so the following determinant

must not equal zero.

RM-(I-X1) --- RS0 RSo+1 e RS
01
R! oo RSO(I-5LT) RSo+1 . RS
250 ‘ £ 0.
KR! e KR% KR (K-t 1) ... KR®
98011
KR! e KR% KR%+! -+ KRS-(K-3-1)

By subtracting the Sy row block from the row blocks from 1 to Sy — 1 and
subtracting the S row block from the row blocks from Sy + 1 to S — 1, I obtain an

equivalent condition

—(I—%I) 0 —(I—aéof) 0 0
0 '(I_ésg_lf) —(I—é[) 0 0
R! . RSo—1 RSO_([_ﬁj) RSo+1 e RS +0
0
0o - 0 0 (Ko d) - (K-g)
KR! K RSo—1 K RS0 K RSo+1 KRS—(K-él)

By multiplying each column block from the right by (I — é[)’l for h = 1,5
and by (K — i Y=L for h = Sy + 1, 5. (it is possible to do since é is not an eigenvalue of
I or K as I and K are positive definite), and adding all column blocks from 1 to Sy — 1

to the S§® column block and adding all column blocks from Sy + 1 to S — 1 to the S
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column block, I obtain the following equivalent condition

(I-4-1) 0 0 0 0
0 (-5 1) . 0 0 ) 0
0
Rl RSO—l Z ( sz )—I RSO+1 Z < ha‘ >
=1 \173,1 h=S0+1 \ K75, 1
0 0 0 (K-55=1) 0
So S
KRI KRSO—I Z < Klzh ) KRSO+1 Z < KRz'h >—I
=1 \ 75,1 h=Sp+1 E=5.1

where, to simplify notation, % means B~1A
Due to the blocked structure of the matrix under the determinant and due to the

already mentioned fact that é is not an eigenvalue of I or K, the condition is equivalent

to
So . -1 S . -1
B(o-n) 5 () |
3 ((I—(i])lKRh) i <<K—5} >1KRh>—I
h=1 h=S0p+1

Since K, K — 611' ,and [ — (%I are symmetric the last condition is equivalen to
h h

Bl m)r £ (i) |
Kh%l ((I _ £1>_1 Rh) Khéﬂ <<K _ i[)_l Rh> .y

Multiply the second row block from the right by K ~! and then subtract the result in the

row block from the first row block (it is possible to do as K is positive definite) to obtain

—T -1
?:1(( _if)‘th) h§3+1<<[(_6ih >_1Rh>—K1 # 0.

Multiply the second column block from the right by K and then add the first column

block to the second one to obtain the following equivalent condition

—I 0
So | So | S o\ —1 = 0.
S0 m) 2 (=g m) e 3 () m) 1
This last condition is equivalent to
So S
det Z( R,/L>+ ) <K?’L>+I £0.
[h:l =51 h=so+1 \ K5, 1

70,
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Further derivations are striaightforward, Q.E.D.

B.1.2 Proof of Proposition 2.9

The proof follows from the proof of Criterion 2.8. Take Ry, = Ag—i—plA’f—l—...—l—plTAﬁ
and K =1. Q.E.D.

B.1.3 Proof of Proposition 2.10

The proof follows from the proof of Criterion 2.8. Take, subsequently, R, =
Ah+ A + Ao and K =1, Ry, = ¥ ® Al + I, ® (A} + Atb) and K = I, and R}, =
F'® AY + I, ® (A} + Apb) and K = I, setting Al = 0 for Model IV, Q.E.D.

B.1.4 Proof of Proposition 2.11

The proof follows from the proof of Criterion 2.8. Take subsequently R =
Ag —|—plA’f+A?l_) and K =1, Ry, = B’®A?+In ® (Ag + Aflll_)) and K = I, Model IV setting
Al = 0 for Model IV. Q.E.D.

B.1.5 Proof of Proposition 2.12

For the case of n = 1, the condition of the alternative criterion for stability
of Models without lags (Model I and Model IIT) under mixed RLS/SG learning for the
diagonal environment case under any (possibly different) degrees of inertia of agents, § > 0,
according to Proposition 2.9, simplifies the requirement for €2, to be stable and for at

least one of the following to hold true

S
> i (—Af - pAl = - pfAL) £0

S
(Z 2 (—Ag —pAb - p;A’;) + 1) £0, for all 1=0,1, ..., k(py = 1),
h=1 55

with Ag“ = 0 for Model III everywhere above.
The first "same sign" condition follows directly from the first inequality above as
0’s take any positive values. The second condition that follows from the second inequality

is proved below.
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Necessity: Follows directly from the proof of Proposition 2.19. Note that in the

univariate economy setup, any sum of minors M}, consists of elements
OnyOngrOn, (=AM — py AT — = pT Al ) 4 (=AM — g Al T A 41
h1%hg-- hk( 0 P14y e T PrAr 0 Pray e T P Az ),

where (h1, ..., hy) are indeces of agents from a subeconomy, and that if the sum of nonneg-
ative elements ((—Ag1 - plAlf1 — = plTA’T“) +...+ (—Ag’“ - plA}l”“ — = plTA?k> +1is
greater or equal to zero as 0’s take any positive values) is strictly greater than zero, then
at least one of them has to be strictly positive.

Sufficiency: I have
(—Ab = ppAl = gl ) o (AR = AT~ AR ) 4120

for any subeconomy (A1, ..., hy) and for each group of subeconomies of size p, 3 (h{ 0, ..., h;(l)) :

(CALF gAY oy (Al a) 1,
S
and have to prove that | > H% (—Ag —p A — . — plTA}T‘) +1]#0.
h=1""47

I group separately the terms corresponding to the non-positive (Ag + plAil + ...+ plTAﬁ) ’s
and the terms corresponding to the strictly positive (Ag + plA}f + ...+ plTAﬁ) ’s.

Schematically, I will have

(A’g + oAb+ ,o[A’j)* +

1 _
— (A + p AL+ AN L+
1+51%( 0T Pl Pi ) 1_'_%

<0

1
(AT AT 4 4 T AT 1

m =

1
|l (AF+ p AL+ T AN
1+ 5

<1

If the first sum is strictly less than zero, then the whole expression is less than zero since
the sum of something less than zero with something that at maximum equals one is less
than one. If the first sum is equal to zero, then the second sum (if there are any positive
(Ab + p A} + ...+ pA")’s at all) has to be less than 1. The last result follows from
the fact that for the whole economy, I have to have that (—Aj — pA7 — ... — p] AL) +
v (—Ag — plAls - = plTAf) 4+ 1 > 0, a necessary condition that follows directly from
the stability of Q, (see Proposition 2.19); that is, excluding zero terms, I have to have
—p AT — ... — p At + 1 > 0, which proves the claim as 0 < ﬁ < 1. This proves the

52

1
sufficiency part of the second condition in Proposition 2.12. Q.E.D.
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B.1.6 Proof of Proposition 2.14

For the case of n = 1, alternative sufficient conditions for d-stability in the
univariate case of Models with lags (Model II, IV), where b < 1, under heterogeneous
RLS learning for the diagonal environment case under any (possibly different) degrees of
inertia of agents, & > 0, according to Proposition 2.10, are simplified to the requirements:

(2, is stable and at least one of the following holds true
1

S 1 _
> i (—Af — A — AfD) #0
h=1 52

S _
(Z 1+11 (_Ag - PzAlf - A}fb) + 1) #0, forall [ =0,1,...k (pg = 1)
h=1""357

h

and

Q) is stable and at least one of the following holds true

s L _
S0 I (= Al — 24%5) £0
h=1'"52

S -
>l (b —2408) + 1) £0,
h=1""¢s2

where AR = 0 for Model IV everywhere above.

The proof for the €, part of the statement follows directly from the proof of
Proposition 2.12 in the sufficiency part. Replace Ag with Ag + Ap and set AP =0,r > 1.

The proof for the € part of the statement also follows from the proof of Propo-
sition 2.12. Replace A} with A} + A%, set A = 0,7 > 1 and use b instead of p;. In the
corresponding results of Proposition 2.19, use b instead of p; that leaves the result of this

proposition intact since we consider a univariate model, and b has dimension one.

B.1.7 Proof of Proposition 2.15

For the case of n = 2, the condition of the alternative criterion for stability
of models without lags (Model I and Model III) under mixed RLS/SG learning for the
diagonal environment case under any (possibly different) degrees of inertia of agents, § > 0,
according to Proposition 2.9, contains the requirement for €2, to be stable and for the

following condition to hold true:

S T T T
det [Z ((Ag+plA§L+...+pl A’;)) i I} — 14det —(Aj+p AL+ 4] Ai)—l—...—i—det —(AS+p AT +...+p] A2)

h=1 1+5h 1+51 1+5s

+M1(7(A(1)+plA}+...+p[Ai))
1+4
o1

My (—(AS +p, AS+..+p] AS))

+ot e +

_l’_
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+det miz | —Aotadit ol Ar) —(A8+mA%tm+pZA3)> i
1—‘,—@ 1_,'_@
+ det mix <_(Ag_1+plff_li+"'+pff4§_l)’ —(Ag-&-psz—t...—kp[flf)) =
+5371 +g
1 2 1 ; 2
=1+ (H‘Z;) det [—(A§ + prAi+..+pf AD)] +..+ <1+“§> det [—(A§ + p AT +...+p] AZ)] +
57 55

1-5- 1— 4
. ( ) My (A AT AD) 1t () My (A4 AT 4T AS) 4t

S

L
1+ 5

1—2% 1—-%
+< 51) ( 52) [det miz (—(Ag + p AL + - + p[ AL), —(AF + p AT + ... + [ A7) +

+det miz (— (A} + AT + ...+ p] A2), —(A§ + p AL + oo+ ] A + ot

i

1— 1—-1
+ <1+6ffl) (H‘f) (det miz (— (A5~ +p AT 44 pT ASTY), — (AT +p AT+ ] A5) ) +
05 1 o5

+det mix (—(A§ AT e p[ AT), (AT p AT p[A§—1)>] £0

foralll=0,1,...,k, (pg =1).

Now, take real and imaginary parts to obtain

1

S _(Ah h AR 1-%

Re det [Z ( Ll e A”) +I] — 14— det [—(A}+ AL + . + T AN+t
h=1 5 (1 4 6%)

1

52
+——5det [ (A§ + p AT + ...+ p] AD)] + o — Mi(—(Ag+p AL+ 4P AL)) + ot
<1+ = 57
S
1
T Mi(— (A5 + p AT + o+ pTAD)) + ot
+ g

1— L
+ . 0102 — detmiz (—(Ag + p AL + ..+ p] A), —(AG + pAT + .+ p A7) +
(1+3) (1+3%)

+det miz (— (A} + p AT + ...+ p] A2), —(A§ + p AL + oo + ] AD))] + ot

1— 1
0 [det mia (— (A5 o AT T ASTY), — (A AT+ 4] AD) ) +
() (143%)

+det miz (—(AF + py AT + o+ pTAD), ~(AFTH AT 44 T AST)]

+
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S [ _(ah h T Ah — 2
Im det [Z < (A°+plf+1;'+pl AT)) +I} = ( LR
h 1

s det [—(Af + p AL + .. + pAD) ]+ +
h=1 + 1
o1
21 4
e N
- S det [—(A§ + p AT + ..+ pT AD)] + - LMy (—(Ag+p AL+ +pf AD) 4.+
(1—1—% T
é
S
i
+5 stl My (—(A5 + pAS + o 4 pT AD) + .+
3%

+ det miz (—(Ag 4 AS o+ pTAS), —(ASTV 4 p AST pfAf’1)>]
foralll=0,1,....k (pg=1) for all [ =0,1,....k (py = 1).
The "same sign" sufficient condition for this case can be seen from the Im part.
They are sufficient for the Im part to be either nonnegative or nonpositive.
Forall [ =0,1,....k (pg = 1).
det [—(Ag + oAl p;Aﬁ)] >0,
[det mia (—(Ag 4 AL+ pT ALY, — (A + AT+t ,o;AJT‘)) +
+det miz (—(A) + prA] + ..+ pf AD), —(Ah + prA] + .+ p{ AD))] > 0,3 # J,

Mi(—(A + p AT + ...+ p] A) > 0,

or

det [—(A{} + oAl 4+ p{A’;)] <0,
(detmiz (—(4h + prAL + ..+ p AL), —(A] + piA] + ..+ pf A1) +
+ det miz (—(Ag b AT 4 pT ALY, — (AL 4 p AL p;Ai))] <0,Vi % j,
My(—(Af + p A + ..+ p AM)) < 0.

If all inequalities above hold with equality (that would mean a zero Im part), then
the Re part equals 1 from the expression for Re above. This proves that these conditions

are sufficient for d—stability in this setting. For Model III, set Ag = 0 everywhere above.
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B.1.8 Proof of Propositions 2.17, 2.18, 2.19, and 2.20

First, prove Proposition 2.19. Proposition 2.17 is a special case of Proposition
2.19 for I =0 (py = 1). According to Proposition 2.3, the necessary condition for stability
in this case is the stability of matrix D1Q,,, defined in (2.15) and (2.16) (where A} =0
for Model III), respectively. The rest of the proof essentially follows the lines of the proof
of Proposition 12 in Kolyuzhnov [40]. I have to consider matrix I' = D(—). A necessary
and sufficient condition for stability (in a mathematics definition that is opposite to the
definition used throughout the text of this paper) of this matrix is that the real parts of
the eigenvalues of D(—£2) must be greater than zero. For the condition on eigenvalues to
hold true, it is necessary that all sums of the principal minors of D (—£2) grouped by the
same size are greater than zero.

It follows from the fact that, on the one hand, the characteristic equation for
eigenvalues of I' has the form

det (I' + Ip) = det T+puM, 1 + 2 My, o + ...+ p" P My + " = 0, where A = —p
is the eigenvalue of I', and My, is the sum of all principal minors of I' of size k,

while, on the other hand, the same characteristic equation can be written in

terms of the product decomposition of the polynomial:

(4 A1) (e + ) = Mo A" 2 Ao 4 oo+ A1 )+ H A+ o+ N+ = 0.

>0 ;ro >0
Thus, all My > 0.

By writing this condition in terms of D(—£2), one obtains that in each size group,
the sum of minors is subdivided into groups of sums of minors that contain the same
number of columns of each block of (—Q), i.e. —(AR+p,Al+...+p] AL—1,,). The coefficient
before such particular sum has the form (55, )" (8p,)" ... (5hp)jp . This coefficient uniquely
specifies the sum of minors by the size, the number of columns from each block, and from
which subeconomy it is formed, (hi, ..., hp). The size of minors in such a group is equal
to the total power of the coefficients, j; + ... + j,, and the subscripts of §’s denote from
which block of (—€2) the columns are taken, while the power of each ¢ indicates how many
columns are taken from this particular block.

Let us fix one subeconomy (say, formed by blocks 1, 2, and 3) and consider the
limit of inequalities for the sum of minors, with §’s for other blocks going to zero. Doing

the same operation for all subeconomies, I will derive the condition in the statement of



185

Proposition 2.19. Therefore, Proposition 2.17 also holds true, and Propositions 2.18 and
2.20 are derived from Propositions 2.17 and 2.19, respectively, by setting all §’s for all

subeconomies equal to 1.
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Appendix to Chapter 3
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C.1 Proofs of propositions in Chapter 3

C.1.1 Proof of Propositions 3.1 and 3.2

The PLM in general form is y; = a + ['w;. If w; is not included in the PLM, it
is reflected in the corresponding zero column of I'. The REE conditions can be written as
(p;A— 1) [ Vi ee Vg },+Bi=0,z‘efo.

It is clear that in case 7 is not included into the active factors set, that is
[ Y1 -+ Vmi ]/ = 0, then in order to have a REE solution, B’ has to be equal to
0, so that one can omit only those factors in the PLM that have a zero column in B in
the reduced form. Equivalently, it is clear that if B; # 0, then, in order to have a REE
solution, one should not have[ Yii -+ Vmi ]/ = 0, that is, one has to include w; into the
active factors set.

In case 7 is included in the active factors set, that is [ Y1 -+ Vmi ]/ # 0, the
REE solution exists if and only if the following conditions hold true.

B =0, or (B # 0 and det (p;A — I) # 0), or (B" # 0 and det (p;A — I) = 0 and
rank(p;A — I) = rank(p;A — I, BY)).

Combining the two cases we get the statement in Proposition 3.1.

For Proposition 3.2, one has only to transform the last conditions to guarantee
the uniqueness of the solution.

In case i is included in the active factors set, that is [ Y1 -+ Vmi ]/ # 0, the

REE solution exists and is unique if and only if the following condition holds true.

det (p;A—1) #0.

C.1.2 Proof of Proposition 3.5 (Necessary conditions and sufficient con-
ditions in terms of eigenvalues for the structurally homogeneous

case)

We have to study matrix D12, for stability under any d;, > 0, where D; and
Q,, are defined in (3.14) and (3.16), respectively. Thus, we consider

A= (14 4) 1 - piAs
det (Q,, — Dy'pl) = det : : =0,
Vl — 0,...,k, (IOO: 1),
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where A, = (LA, > ¢, =1

It is clear from the structure of the matrix above that yu =

—d;, is a root if and

only if at least one of the following holds true: A is singular or there exists at least one

other §; that equals d;,. (If A is singular, then p;, = —dp, h = 1, S are the roots. That is,

if none of —§’s is the root, then A is non-singular.)

Assume that A is non-singular and all d5,’s are different, that is, assume that none

of —¢'s is the root. If there are roots other than —d} s (the case of eigenvalues u;, = —d;, < 0

is obvious), then they satisfy the characteristic equation for obtaining the eigenvalues of

D19, that are not equal to —dp:

= det

g

det (sz — DfluI)

1

(

14 &
1

prA1L — (1 + piAs

det

(subtracting the last row from other rows)

—(1eg)r 0 0 (1+4£)1
0 ~(1+ )1 0 (1+£)r
_ 1 i
0 0 (+5)r (1+g)r
P prA2 prAs—1 pAs — (1 + ﬁ) I ]
(for p # o5 Yh)
I 0 I
o M a
A1 prAs—1 prAs I
| (%) ) ()
(adding all columns to the last one)
—I 0 0
W
5 >><...><<1+55>det 0 -1 0 =
A1 prAs—1 prA1 pLAs
-1
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<1+’”‘> x<1+“)( 1)1 gep | AL +...+LAi—I ~0.

As we consider p # —dp, the last equation is equivalent to

—pA —pAs
1+ 4 1+5S

det + 1| =0, where A, = (,A,> ¢, =1

After some calculations, we obtain

PlA Cl + ...+ _CS + 1
14—51 1+5S

det =0,

and finally

o ¢y 4ot Cs _
1—1—5 1—|—§S

for those )\, eigenvalues of A, that are not equal to zero. If all A\, = 0, then A is a zero
matrix, and the only eigenvalues of D2 are —d’s.
As complex eigenvalues of a real matrix A come in conjugate pairs, the system

above is equivalent to

pRe (A\r) Re e +1+H — p;Im (\) Im 1&%*“*1%‘*; =1
p,Im (A1) Re ljlé%Jr A+ C’; + p;Re (A\x) Im 1&%*"'*1%% =0

for each pair of conjugate eigenvalues. In case of a real eigenvalue, Im (\;) = 0, the
corresponding system simplifies to

¢ CS S| Cs
p; Re (A + ...+ =pA o Tt =1
1 e(k)(l 5 1 65 Ik 1 6 1 65

For any S we have that for eigenvalues p to be negative, it is necessary that
1

J S _
—22% > ( and therefore that p)\r, < 1,¥1 =0, ...k, (py = 1). As |p| < 1,VI = 1,k, the
PIAEO1---0g

latter condition is equivalent to \p < 1.

For S = 2, the system corresponding to a real eigenvalue looks as follows:

pl>\k <1+/L + 4-2 > =1

plx\k (i—i_%l) (%-’_%) + ﬁ—l = 0.

PIAK9102 PIAKO192

1+ p

The Routh—Hurwitz conditions for the negativity of real parts of y are necessary

and sufficient and look as follows:
1

-1 3
A
HE—>0

PIARO102
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The system of inequalities above is equivalent to

pZAk <1
1,1
B 5
Pk < & = =
93 91
5t 1 1
Since E}Jr‘zz > 1, as g—fl + g—fz > 0, the last system of inequalities is equivalent to
EPRETY

oM < LVE=0,....k (pg=1). As |p| < 1,VI = 1,k, the latter condition is equivalent to
A < 1.

Thus, the sufficient condition for stability for the case of S = 2 is that all eigen-
values of A are real and less than 1; and the necessary condition for stability for any S is

that all real eigenvalues of A have to be less than 1. Q.E.D.
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