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Abstract

Essays in Heterogeneous Learning

by

Anna Bogomolova

My dissertation makes a contribution to the �eld of heterogeneous adaptive learning in
macroeconomic models. This contribution is presented in the form of three research papers
that constitute di¤erent chapters of my thesis.

In the �rst chapter of my dissertation, "E-stability That Does Imply Learnability", I
provide criteria and su¢ cient conditions for the stability of a structurally heterogeneous
economy under the heterogeneous learning of agents, extending the results of Honkapohja
and Mitra [36], Bogomolova and Kolyuzhnov [5], and Kolyuzhnov [40]. I provide general
criteria (in terms of the corresponding Jacobian matrices) for stability under heterogeneous
mixed RLS/SG learning for four classes of models: models without lags and with lags of
the endogenous variable and with t- or t�1- dating of expectations, and provide su¢ cient
conditions for stability for some simpler cases, where simpli�cations include either the
diagonal structure of the shock process behaviour or the heterogeneous RLS learning.
I also provide su¢ cient conditions for stability in terms of the structural heterogeneity
independent of heterogeneity in learning (�-stability) in terms of E-stability of a suitably
de�ned aggregate economy for all four classes of models considered. In addition, I have
found a very useful criterion for stabilty for all types of models in the general (non-
diagonal) shock process case under mixed RLS/SG learning with equal degrees of inertia
for each type of learning algorithm in terms of the stability of a suitably de�ned average
economy with two agents.

In the second chapter, "Heterogeneous Learning: Beyond The Aggregate Economy Su¢ -
cient Conditions for Stability", I extend the results of the �rst chapter and of Honkapohja
and Mitra [36], Bogomolova and Kolyuzhnov [5], and Kolyuzhnov [40]. Using the alter-
native de�nition of the D-stability approach, I provide alternative (to criteria written in
terms of the corresponding Jacobian matrices in Kolyuzhnov [40] and in the �rst chap-
ter of my thesis) general criteria for stability under mixed RLS/SG learning for the four
classes of models considered and alternative su¢ cient conditions for stability for some sim-
pler cases. This approach also allows me to provide criteria for �-stability for univariate
models without lags of the endogenous variable under mixed RLS/SG learning in econom-
ically meaningful terms, such as the "same sign" conditions and E-stability of a suitably
de�ned average economy and its subeconomies, and to provide quite weak su¢ cient condi-
tions for �-stability for univariate models with a lag of the endogenous variable using the
same economic terms. Using the characteristic equation approach, I provide quite strong,
economically tractable, necessary conditions that can be used as an easy quick test for
non-�-stability.
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The fundamental nature of the approach adopted in the papers presented in the �rst two
chapters of my thesis allows one to apply its results to a vast majority of the existing and
prospective linear and linearized economic models (including estimated DSGE models)
with the adaptive learning of agents.

The third chapter of my dissertation is presented by the paper "Optimal Monetary Policy
Rules: The Problem of Stability Under Heterogeneous Learning" (a joint work with Dmitri
Kolyuzhnov). In this paper, we extend the analysis of optimal monetary policy rules in
terms of the stability of the economy, started by Evans and Honkapohja [26], to the
case of heterogeneous learning, using the results on �-stability derived in Bogomolova and
Kolyuzhnov [5], and Kolyuzhnov [40], which can be derived as special cases of the results
presented in the �rst two chapters of the thesis.
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Abstrakt

Eseje o heterogenním uµcení

Anna Bogomolova

Moje dizertaµcní práce je pµríspµevek v oblasti heterogenního adaptivního uµcení v makroeko-
nomických modelech. Tento pµríspµevek je prezentován ve formµe tµrí výzkumných prací, které
pµredstavují kapitoly mé dizertace.

V první kapitole mé dizertaµcní práce, �E-stabilita implikující nauµcitelnost�, stanovuji
kritéria a postaµcující podmínky pro stabilitu strukturálnµe heterogenní ekonomiky s he-
terogennµe uµcícími se agenty, a roz�iµruji tak výsledky Honkapohji a Mitri [36], Bogomolové
a Kolyuzhnova [5], a Kolyuzhnova [40]. Stanovuji obecná kritéria (na základµe Jacobiho
matic) pro stabilitu pµri heterogenním smí�eném RLS/SG uµcení pro µctyµri tµrídy model°u: mo-
del°u bez zpoµzdµených a se zpoµzdµenými endogenními promµennými a s t- nebo t�1-µcasováním
oµcekávání, a stanovuji postaµcující podmínky pro stabilitu u nµekterých jednodu��ích pµrí-
pad°u, kde zjednodu�ení zahrnuje bu

,
d diagonální strukturu chování �okového procesu,

nebo heterogenní RLS uµcení. Stanovuji také postaµcující podmínky pro stabilitu, pokud
jde o strukturální heterogenitu nezávislou na heterogenitµe v uµcení (�-stabilita) na zá-
kladµe E-stability vhodnµe de�nované agregátní ekonomiky pro v�echny µctyµri uvaµzované
typy model°u. Navíc jsem nalezla velmi uµziteµcné kritérium pro stabilitu v�ech typ°u model°u
v pµrípadµe obecného (ne-diagonálního) procesu pro �oky, pµri smí�eném RLS/SG uµcení se
stejným stupnµem inercie pro kaµzdý typ uµcícího algoritmu, na základµe stability vhodnµe
de�nované pr°umµerné ekonomiky se dvµema agenty.

Ve druhé kapitole, �Heterogenní uµcení: za postaµcujícími podmínkami stability pro agregátní
ekonomiku�, roz�iµruji výsledky první kapitoly, Honkapohji a Mitri [36], Bogomolové a
Kolyuzhnova [5], a Kolyuzhnova [40]. Pµri pouµzití alternativní de�niceD-stability, stanovuji
alternativní (ke kritériím zapsaným na základµe odpovídajících Jacobiho matic v Kolyuzh-
novi [40] a v první kapitole mé práce) obecná kritéria pro stabilitu pµri smí�eném RLS/SG
uµcení pro µctyµri uvaµzované kategorie model°u a alternativní postaµcující podmínky pro stabi-
litu pro nµekteré jednodu��í pµrípady. Tento pµrístup mi také umoµzµnuje stanovit kritéria pro
�-stabilitu pro modely s jednou promµennou a bez zpoµzdµených endogenních promµenných
pµri heterogenním smí�eném RLS/SG uµcení na základµe ekonomicky interpretovatelných
podmínek �stejného znaku� a E-stability vhodnµe de�nované agregátní ekonomiky a její
podekonomik, a stanovit pomµernµe slabé postaµcující podmínky pro �-stabilitu pro mo-
dely s jednou promµennou a se zpozdµenými endogenními promµennými za pouµzití stejných
ekonomických koncept°u.Pouµzitím pµrístupu charakteristické rovnice, stanovuji pomµernµe
silné, ekonomicky interpretovatelné, nezbytné podmínky, které mohou být pouµzity jako
jednoduchý, rychlý test �-nestability.
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Základní podstata pµrístupu pouµzitého ve µcláncích prezentovaných v prvních dvou kapi-
tolách mé dizertaµcní práce umoµzµnuje aplikaci jejich výsledk°u na velkou vµet�inu existu-
jících a budoucích lineárních a linearizovaných ekonomických model°u (vµcetnµe odhadnutých
DSGE model°u) s adaptivnµe uµcícími se agenty.

Tµretí kapitolu mé dizertaµcní práce pµredstavuje µclánek �Optimální mµenovµe-politická pravidla:
problém stability pµri heterogenním uµcení�(spoleµcná práce s Dmitrim Kolyuzhnovem). V
tomto µclánku roz�iµrujeme analýzu optimálních mµenovµe-politických pravidel pokud jde o
stabilitu ekonomiky, zapoµcatou Evansem and Honkapohjou [26], na pµrípad heterogenního
uµcení, pouµzitím výsledk°u ohlednµe �-stability odvozených v Bogomolové a Kolyuzhnovi [5],
a Kolyuzhnovi [40], které mohou být odvozené jako speciální pµrípady výsledk°u prezento-
vaných v prvních dvou kapitolách práce.
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1.1 Introduction

Contemporary macroeconomic models include expectations that in�uence the

dynamics of endogenous variables. The main question that always arises in this respect

is how to model these expectations. Historically, moving from naive (static) and adaptive

expectations to rational expectations, the most widely used expectation formation function

implied, until some time ago, was the rational expectations (RE) of agents. However, it has

been pointed out that this assumption does not always produce appropriate results in terms

of simulated model data behaviour. One of the reasons for that is the serious restrictions

imposed on the knowledge of agents under this assumption. One argument against the

RE assumption was formulated by Sargent [50]: If economists (who are naturally assumed

to know economics better than other agents) themselves do not know the exact economic

models and have to estimate the model parameters econometrically, then we may think

that economic agents behave no better themselves. Thus, it makes sense to consider agents

as econometricians or statisticians who update their beliefs (loosely speaking, regression

coe¢ cients) as a new data point arrives, thus trying to learn the underlying true economic

model better as new information arrives. This approach is a speci�c form of bounded

rationality and represents adaptive learning � namely, adaptive econometric learning.

Adaptive econometric learning has become widely used in the literature, see e.g.,

Bray [7]; Bray and Savin [8]; Fourgeaud, Gourieroux, and Pradel [28]; Marcet and Sargent

[43]; Evans and Honkapohja [19, 20, 21]; Cho and Sargent [14]; Marimon [44]; Giannitsarou

[31]; Adam [1]; Honkapohja and Mitra [36]; Carceles-Poveda and Giannitsarou [11]; Cho

and Kasa [13]; Kolyuzhnov, Bogomolova and Slobodyan [41], a useful monograph by Evans

and Honkapohja [24], and many others. Adaptive learning in macroeconomics plays several

roles. First, it can be used as a testing procedure for the validity of the RE hypothesis;

second, it can be used as a selection device for a model with multiple RE equilibria; third,

the dynamics generated by learning may resemble the actual data behaviour (see e.g. the

escape dynamics papers by Cho, Williams and Sargent [15]; Sargent and Williams [51];

Kolyuzhnov, Bogomolova and Slobodyan [41]; Slobodyan, Bogomolova and Kolyuzhnov

[52]; Sargent, Williams and Zha [49]; and Cho and Kasa [13]); and fourth, the learning

algorithm may serve as a method for calculating an RE equilibrium (REE).

Despite its growing popularity, this approach to modelling expectations has

nevetherless some pitfalls. Usually when one applies the adaptive learning scheme as
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a form of expectation formation, one assumes a homogeneous type of learning, that is,

that there is some representative agent that uses some particular type of learning algo-

rithm. The most widely used learning algorithms are recursive least squares (RLS) and

stochastic gradient (SG). They di¤er only in one respect: the RLS algorithm updates the

second moments matrix, while the SG algorithm keeps it �xed1. The structure of a learn-

ing algorithm assumes that the current parameter (a belief, loosely speaking a regression

coe¢ cient) equals the previous value of this parameter plus a gain coe¢ cient sequence2

multiplied by the error correction function that depends on the most recent forecast error.

The main question that arises with homogeneous learning is whether the stability results

under homogeneous learning follow from this homogeneity, that is, whether the stability

results remain valid if one uses e.g. some mixture of di¤erent algorithms or di¤erent speeds

of updating information, di¤erent starting values, which would be, in fact, checking the

representative agent hypothesis. Among the papers that consider this question are Gian-

nitsarou [31], who assumes that agents are homogeneous in all respects but in the way

they learn; Honkapohja and Mitra [36], who consider a structurally heterogeneous econ-

omy meaning that besides heterogeneity in learning, agents may also di¤er in structural

parameters such as technologies and preferences, etc.; and Bogomolova and Kolyuzhnov [5]

and Kolyuzhnov [40], who consider conditions for stability of a structurally heterogeneous

forward�looking model with one lead in expectations and with the diagonal structure of

shocks � conditions independent of heterogeneity in learning.

The learning heterogeneity in these papers comes from the di¤erent type of learn-

ing algorithm used by agents: RLS or SG, where the �rst allows us to model "more sophis-

ticated" agents; the di¤erent speeds of reaction to innovation by di¤erent agents (usually

expressed as positive multipliers before a decreasing sequence of gain coe¢ cients common

for all agents in the beliefs updating mechanism, called degrees of inertia); di¤erent initial

perceptions re�ected in di¤erent starting points for algorithms; and di¤erent shares of

1One more type of econometric learning is Bayesian learning. I also stress that in this paper I con-
sider only the econometric type of adaptive learning. The discussion on other types of adaptive learning
approaches: the generalized expectation function approach (in nonstochastic models) considered, e.g., by
Fuchs [29]; Fuchs and Laroque [30]; Grandmont [32, 33]; and Grandmont and Laroque [34]) and the com-
putational intelligence approach in the form of classi�er systems, neural networks and genetic algorithms
considered e.g., by Arifovic [2]; Kirman and Vriend [39]; and Cho and Sargent [14]), can be found in Evans
and Honkapohja [23, pp. 464-465].

2This gain sequence is usually assumed to be decreasing in time, though constant gains (the so called
perpetual learning) are also sometimes considered. The constant gain learning discounts the past by
assigning more weight to more recent data and makes sense when agents are assumed to suspect the world
around them to be non-stationary and expect sudden breaks in data.
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agents using a particular type of learning algorithm. All of the above mentioned learning

heterogeneity characteristics can be expressed by a type of adaptive learning when one

type of agents use RLS and the other one uses SG, the so called heterogeneous mixed

RLS/SG learning.

In my paper, I, following Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40],

solve the following open question posed by Honkapohja and Mitra [36]: to �nd conditions

for the stability of a structurally heterogeneous economy under mixed RLS/SG learn-

ing with (possibly) di¤erent degrees of inertia in terms of structural heterogeneity only,

independent of the heterogeneity in learning.

Though Honkapohja and Mitra [36] have formulated a general criterion for such

stability and have been able to solve for su¢ cient conditions for the case of a univariate

model (a model with one endogenous variable), they did not derive the conditions (neces-

sary, and/or su¢ cient) in terms of the model structure only, independent of the learning

characteristics, for the general forward-looking (multivariate) case. In turn, Bogomolova

and Kolyuzhnov [5] and Kolyuzhnov [40] consider conditions for stability irrespective of

the heterogeneity in learning. However, they consider only a forward-looking model with

one lead and without lags of the endogenous variable and the diagonal environment case

that means the diagonal structure of the AR (1) coe¢ cients matrix in the shock process.

It leaves aside many economic models. For example, it leaves aside the DSGE models with

an endogenous variable lag. I resolve this issue in my paper.

I extend the results of Honkapohja and Mitra [36], Bogomolova and Kolyuzhnov

[5], and Kolyuzhnov [40]. I provide the general criteria for stability under heterogeneous

mixed RLS/SG learning for four classes of models: models without lags and with lags

of the endogenous variable and with the t- or t � 1-dating of expectations, and su¢ cient

conditions for stability in some simpler cases, where simpli�cations include either the

diagonal structure of the shock process behaviour or heterogeneous RLS learning. I also

want to stress a very useful criterion I obtain for the stabilty of all types of models in

the general (non-diagonal) shock process case under mixed RLS/SG learning with equal

degrees of inertia for each type of learning algorithm in terms of the stability of a suitably

de�ned average economy with two agents.

Essentially, it turns out that all stability conditions written in terms of the stabil-

ity of the corresponding Jacobian matrices require D-stability of some matrix (matrices)
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. Thus, all Jacobians look like D
, where D is a positive diagonal matrix. Among

the mathematical approaches to D�stability (studied, for example, in Johnson [37]) high-

lighted by Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40] are the ones based on the

Lyapunov Theorem3, on the negative diagonal dominance4, on an alternative de�nition of

D-stability5, on the characteristic equation, and on the Routh-Hurwitz conditions6.

In the work by Bogomolova and Kolyuzhnov [5] and by Kolyuzhnov [40], the

negative diagonal dominance approach, based on the MacKenzie Theorem7, turns out to

be useful in deriving a su¢ cient condition for the stability of a forward-looking model with

one lead and without lags of the endogenous variable and with the diagonal structure of

shocks, irrespective of learning heterogeneity. I also follow this approach in the current

paper, and it also allows me to �nd su¢ cient conditions for stability irrespective of the

heterogeneity in learning in terms of aggregate economies but for all model classes con-

sidered. I also have to rede�ne the concept of ��stability introduced in Kolyuzhnov [40]

that assumed stability independent of all types of learning characteristis: I �nd conditions

for stability independent of the degrees of inertia and di¤erent initial perceptions; thus,

my de�nition does not include di¤erent shares of agents using a particular type of learn-

ing algorithm. In this paper, using the negative diagonal dominance approach, I derive

su¢ cient conditions for �-stability (in my de�nition) in some simpler cases, where simpli-

�cations include either the diagonal structure of shocks or heterogeneous RLS learning for

all types of models considered. These results are written in terms of E-stability of suitably

de�ned aggregate economies. The results that are based on the alternative de�nition of D-

stability, the necessary conditions based on the characteristic equation approach in terms

of the "same" sign conditions, and the E-stability of a suitably de�ned average economy

and its subeconomies are considered in a companion paper (presented in Chapter 2).

The fundamental nature of the approach adopted here allows one to apply its

results to a vast majority of the existing and prospective linear and linearized economic

models with the adaptive learning of agents. For example, the models considered include

(estimated) DSGE models with an introduced learning of agents. In this sense, the results

derived could be very helpful in terms of checking the robustness of a particular DSGE

3See Theorem A.2 in Appendix A.3.
4See Theorem A.4 in Appendix A.4.
5See Theorem A.6 in Appendix A.6.
6See Theorem A.5 in Appendix A.5.
7See Theorem A.4 in Appendix A.4.
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model8 to an expectation-formation hypothesis (usually, the RE hypothesis) and checking

the validity of the representative agent assumption.

The rest of the paper is organized as follows. In Section 2, I present the four

classes of structurally heterogeneous models with the expectations of agents and describe

the REE in each of them. In Section 3, I subsequently apply the assumption of heteroge-

neous adaptive learning to each model class; I apply to each model the general results of

the stochastic approximation literature on the convergence of models under learning writ-

ten as stochastic recursive algorithms in order to provide criteria and su¢ cient conditions

for the stability of the REE in the general and simpler cases; and I formulate the concepts

of heterogeneous expectational stability and of �-stability. In Section 4, I provide a useful

stability criterion for all types of models considered in the general (non-diagonal) shock

process case under mixed RLS/SG learning with equal degrees of inertia for each type of

learning algorithm in terms of the stability of a suitably de�ned average economy with

two agents. In Section 5, I use the negative diagonal dominance approach to provide su¢ -

cient conditions for ��stability in terms of the E-stability of a suitably de�ned aggregate

economy for all four classes of models considered. Section 6 concludes the paper.

1.2 The model classes setup. The PLM, the T -map, and

the MSV REE

1.2.1 The general setup of structurally heterogeneous linear models with

expectations

I consider models from the general setup of Evans and Honkapohja [24, ch. 8,

p. 173, eq. (8.1)] extended to allow for a heterogeneous structure and for expectations

formed at time t: The general class of structurally heterogeneous linear models with S

8A typical DSGE model in structural form looks like

A0

�
yt�1
wt�1

�
+A1

�
yt
wt

�
+A2Etyt+1 +B0"t = const:

After the estimation (for example, by DYNARE [38]), the solution of the model under rational expec-
tations is given by �

yt
wt

�
= �+ T

�
yt�1
wt�1

�
+R"t:

See, for example, Slobodyan and Wouters [53].



27

types of agents with di¤erent forecasts can be presented by

yt = �+
dP
i=1

Liyt�i +
SP
h=1

mP
b=0

nP
f=b

Ahbf Ê
h
t�byt�b+f +Bwt + �"t; A

h
00 � 0; (1.1)

wt = Fwt�1 + vt; (1.2)

where yt is an n � 1 vector of endogenous variables, wt is a k � 1 vector of exogenous

variables; vt and "t are vectors of (independent) white noise shocks; Êht�byt�b+f are (in

general, non-rational) expectations of the vector of endogenous variables by agent h; and

Li, Ahbf , B, and � are conformable matrices. It is also assumed that F (a k � k matrix)

is such that wt follows a stationary VAR(1) process, with Mw = limt!1wtw
0
t being a

positive de�nite matrix.

The model presented above is a linear (or linearized) model describing the whole

economy written in a reduced form, that is, it corresponds to the intertemporal equilibrium

of the dynamic model. In this model, the expectations of endogenous variables formed by

di¤erent agent types linearly in�uence the current values of these variables.

Structural heterogeneity of the model, similarly to the original setup of Honkapo-

hja and Mitra [36], is expressed through matrices Ahbf , which are assumed to incorporate

the mass �h of each agent type with
P
�h = 1. That is, A

h
bf = �h � ~Ahbf , where ~Ahbf�s are

de�ned as describing how agents of type h respond to their own forecasts. So ~Ahbf�s contain

the structural parameters characterizing a given economy, such as the basic characteristics

of agents, like those describing their preferences, technology, and endowments. Subscript

b shows the lag in time from the current time t for the information set, which is used to

calculate conditional expectation Êht�b, while f shows how the predicted variable is far in

time from the information set used to form its conditional expectation, the minimal value

of f is equal to b as at time t all the previous lags of the endogenous variable are known.

Structural heterogeneity means that all ~Ahbf�s are di¤erent for di¤erent types of agents.

When ~Ahbf = Abf for all h, the economy is structurally homogenous.

Though the discussion is easily extendable to this general case, in order to simplify

the exposition of the results, I restrict my analysis to the examples mostly used in the

literature: d = 0; m = 1; n �any, Ah0f � 0 (Model I); d = 1; m = 1; n = 2, Ah0f � 0 (Model

II), d = 0; m = 0; n �any (Model III); and d = 1; m = 0; n = 1 (Model IV).
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1.2.2 The class of structurally heterogeneous models without endoge-

nous variable lags and with t � 1-dating of expectations (Model
I)

The �rst class of models considered is the class of structurally heterogeneous

models without endogenous variable lags and with t�1-dating of expectations. Hereafter,

I will refer to this formulation as Model I.

yt = �+
SP
h=1

Ah0Ê
h
t�1yt +

SP
h=1

Ah1Ê
h
t�1yt+1 + :::+

SP
h=1

Ah� Ê
h
t�1yt+� +Bwt + �"t;(1.3)

and (1.2);

where the de�nitions of variables and matrices are the same as for the general class of

structurally heterogeneous linear models with S types of agents with di¤erent forecasts

above.

Agents of each type h are assumed to form their expectations Êht�1yt+r, r =

0; 1; :::; � ; about the endogenous variables, believing (perceiving) that the economic system

follows the model called the agents�perceived law of motion (PLM)

yt = ah;t�1 + bh;t�1wt�1:

Note that I consider here and through the rest of the paper only such PLMs that corre-

spond to the fundamental or minimal state variable (MSV) rational expectations

equilibrium (REE) solution9.

The forecasts of each agent type h based on this PLM can be written as follows

Êht�1yt = ah;t�1 + bh;t�1wt�1 (1.4)

Êht�1yt+1 = ah;t�1 + bh;t�1Fwt�1

Êht�1yt+� = ah;t�1 + bh;t�1F
�wt�1:

After plugging the forecasts of each agent (1.4) into the reduced form (1.3), one obtains the

actual law of motion (ALM) of the model, given the PLM. The corresponding mapping

9The concept of the MSV solution for linear rational expectations models was introduced by McCallum
[45]. As is de�ned in Evans and Honkapohja [24, ch.8, p. 176], this is a solution that depends linearly on
a set of variables and is such that there does not exist a solution that depends linearly on a smaller set of
variables.
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from the parameters of the PLM to the parameters of the ALM (called the T -map) is

T

2666666664

a1;t

b1;t
...

aS;t

bS;t

3777777775
=

26664
�
�+

SP
h=1

�
Ah0ah;t +A

h
1ah;t + :::+A

h
�ah;t

��0
��

SP
h=1

Ah0bh;t

�
+

�
SP
h=1

Ah1bh;t

�
F + :::+

�
SP
h=1

Ah� bh;t

�
F � +BF

�0
37775 �

24 Ta(�t)

Tb(�t)

35 :

(1.5)

Thus, the MSV REE solution can be found as

T

2666666664

�a

�b
...

�a

�b

3777777775
=

24 �a

�b

35 :

Similar procedures are then applied to each class of models considered.

1.2.3 The class of structurally heterogeneous models with one lag of the

endogenous variable, t�1-dating of expectations, and one forward-
looking term in expectations (Model II)

The second class of models considered (hereafter Model II) is a class of struc-

turally heterogeneous models with one lag of the endogenous variable, t � 1-dating of

expectations, and one forward-looking term in expectations:

yt = �+ Lyt�1 +
SP
h=1

Ah0Ê
h
t�1yt +

SP
h=1

Ah1Ê
h
t�1yt+1 +Bwt + �"t; (1.6)

and (1.2);

where the de�nitions of the variables and the matrices are as before de�ned to be the same

as for the general class of structurally heterogeneous linear models with S types of agents

with di¤erent forecasts above.

Each agent type h forms its expectations Êht�1yt, Ê
h
t�1yt+1 using a PLM (corre-

sponding to the MSV solution yt = a+ byt�1 + cwt +Bvt + �"t) that looks like

yt = ah;t�1 + bh;t�1yt�1 + ch;t�1wt�1:
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The forecast functions based on this PLM are, in turn, given by

Êht�1yt = ah;t�1 + bh;t�1yt�1 + ch;t�1wt�1 (1.7)

Êht�1yt+1 = ah;t�1 + bh;t�1Ê
h
t�1yt + ch;t�1Ê

h
t�1(Fwt�1 + vt) =

= (In + bh;t�1)ah;t�1 + b
2
h;t�1yt�1 + (bh;t�1ch;t�1 + ch;t�1F )wt�1:

The ALM, derived after plugging the forecasts (1.7) of agents into the reduced form of the

model (1.6), is

yt = �+ Lyt�1 +
SP
h=1

Ah0 [ah;t�1 + bh;t�1yt�1 + ch;t�1wt�1] +

+
SP
h=1

Ah1 [(In + bh;t�1)ah;t�1 + b
2
h;t�1yt�1 + (bh;t�1ch;t�1 + ch;t�1F )wt�1] +Bwt + �"t:

Thus, the corresponding T -map is given by

T

2666666666666664

a1;t

b1;t

c1;t
...

aS;t

bS;t

cS;t

3777777777777775
=

266666664

�
�+

SP
h=1

�
Ah0ah;t +A

h
1ah;t +A

h
1bh;tah;t

��0
�
L+

�
SP
h=1

Ah0bh;t

�
+

�
SP
h=1

Ah1b
2
h;t

��0
��

SP
h=1

Ah0ch;t

�
+

�
SP
h=1

Ah1bh;tch;t

�
+

�
SP
h=1

Ah1ch;tF

�
+BF

�0

377777775
�

2664
Ta(�t)

Tb(�t)

Tc(�t)

3775 :

(1.8)

As a result, the MSV REE of Model II can be derived from the following system of

equations

�+
SX
h=1

�
Ah0 +A

h
1 +A

h
1
�b
�
�a = �a (1.9)

L+

SX
h=1

Ah0
�b+

 
SX
h=1

Ah1

!
�b2 = �b 

SX
h=1

Ah0 +A
h
1
�b

!
�c+

SX
h=1

Ah1�cF +BF = �c:

1.2.4 The class of structurally heterogeneous models without lags of the

endogenous variable and with t-dating of expectations (Model III)

The third class of models considered (hereafter Model III) is the class of struc-

turally heterogeneous models without lags of the endogenous variable and with t-dating

of expectations:
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yt = �+
SP
h=1

Ah1Ê
h
t yt+1 + :::+

SP
h=1

Ah� Ê
h
t yt+� +Bwt + �"t; (1.10)

and (1.2);

where the variables and the matrices are de�ned as before.

The PLM (corresponding to the MSV solution of this Model) of agent type h has

the form

yt = ah;t + bh;twt;

and the forecast functions are presented by

Êht yt+1 = ah;t + bh;tFwt (1.11)

Êht yt+� = ah;t + bh;tF
�wt:

After plugging them into the reduced form (1.10), one obtains the corresponding T -map:

T

2666666664

a1;t

b1;t
...

aS;t

bS;t

3777777775
=

26664
�
�+

SP
h=1

�
Ah1ah;t + :::+A

h
�ah;t

��0
��

SP
h=1

Ah1bh;t

�
F + :::+

�
SP
h=1

Ah� bh;t

�
F � +B

�0
37775 �

24 Ta(�t)

Tb(�t)

35 :

(1.12)

The MSV REE is then de�ned as usual.

1.2.5 The class of structurally heterogeneous models with a lagged en-

dogenous variable, t-dating of expectations, the (1; y0t�1;w
0
t) infor-

mation set, and one forward-looking term in expectations (Model

IV)

The fourth (the last one in this paper) class of models considered (hereafter Model

IV) is the class of structurally heterogeneous models with a lagged endogenous variable,

t-dating of expectations, the (1; y0t�1;w
0
t) information set

10, and one forward-looking term

10In order to keep the presentation of results concise I do not consider the case of the (1; y0t;w
0
t) informa-

tion set (considered, for example, in Evans and Honkapohja [22] for a structurally homogeneous economy
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in expectations:

yt = �+ Lyt�1 +
SP
h=1

Ah1Ê
h
t yt+1 +Bwt + �"t; (1.13)

and (1.2)

with the same de�nition for the variables and the matrices as above.

The PLM (corresponding to the MSV solution for Model IV) of agent type h has

the form

yt = ah;t + bh;tyt�1 + ch;twt;

and the corresponding forecast functions based on this PLM are given by

Êht yt+1 = ah;t + bh;t(ah;t + bh;tyt�1 + ch;twt) + ch;tFwt = (1.14)

= (In + bh;t) ah;t + b
2
h;tyt�1 + (bh;tch;t + ch;tF )wt:

The ALM, derived by plugging the forecasts (1.14) of agents into the model�s reduced

form (1.13), is

yt = �+ Lyt�1 +
SP
h=1

Ah1((In + bh;t) ah;t + b
2
h;tyt�1 + (bh;tch;t + ch;tF )wt) +Bwt + �"t =

= �+
SP
h=1

�
Ah1 (In + bh;t) ah;t

�
+

�
SP
h=1

�
Ah1b

2
h;t

�
+ L

�
yt�1 +

+

�
SP
h=1

�
Ah1bh;tch;t

�
+

SP
h=1

�
Ah1ch;tF

�
+B

�
wt + �"t:

Finally, the T -map is presented by

T

2666666666666664

a1;t

b1;t

c1;t
...

aS;t

bS;t

cS;t

3777777777777775
=

266666664

�
�+

SP
h=1

�
Ah1 (In + bh;t) ah;t

��0
�
SP
h=1

�
Ah1b

2
h;t

�
+ L

�0
�
SP
h=1

�
Ah1bh;tch;t

�
+

SP
h=1

�
Ah1ch;tF

�
+B

�0

377777775
�

2664
Ta(�t)

Tb(�t)

Tc(�t)

3775 ; (1.15)

under homogeneous learning) in this paper. Instead, I consider a realistic situation when the value of
the endogenous variable at time t cannot be used to predict the future value of this variable since it is
not known yet. It allows me to avoid simultaneity between yt and Êh

t yt+1: The case of the (1; y
0
t;w

0
t)

information set clearly falls under this paper�s technical constructions with some modi�cations and is a
matter for my future research.
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and the MSV REE of Model IV is given by�
In �

SP
h=1

Ah1
�b�

SP
h=1

Ah1

�
�a = � (1.16)

SP
h=1

Ah1
�b2 � �b+ L = 0�

In �
SP
h=1

Ah1
�b

�
�c�

SP
h=1

Ah1�cF = B:

1.3 Heterogeneous adaptive learning, the SRA, the associ-

ated ODE, and the criteria for stability under hetero-

geneous learning for various classes of models

1.3.1 Heterogeneous adaptive learning and the general setup of a sto-

chastic recursive algorithm and the associated ODE

In all classes of structurally heterogeneous linear models with the expectations

presented above, it is assumed that agents use the adaptive learning procedure to form and

update their forecast functions. They use the so-called heterogeneous mixed RLS/SG

learning, when a part of agents, h = 1; S0, is assumed to use the RLS learning algorithm,

while others, h = S0 + 1; S, are assumed to use the SG learning algorithm. Heterogeneity

in learning comes in the form of di¤erent types of learning algorithms used by agents (RLS

and SG), di¤erent speeds of reacting to innovations, di¤erent initial perceptions (presented

by di¤erent starting values for learning algorithms for each agent), and di¤erent shares

of agents using a particualr type of learning algorithm. Di¤erent speeds of reacting to

innovations (or di¤erent degrees of responsiveness to the updating function) are presented

by di¤erent degrees of inertia �h > 0, which, in the formulation of Giannitsarou [31],

are constant coe¢ cients before the deterministic decreasing gain sequence in the learning

algorithm, which is common for all agents.11:

�h;t = �h�t;

where �t is a deterministic, decreasing and positive gain sequence that satis�es the usual

conditions:
11Honkapohja and Mitra [36] use the generalized form of degrees of inertia (see Honkapohja and Mitra

[36, Ch.3]). For the ease of the exposition, I prefer to stick to the de�nition by Giannitsarou [31] though
the results derived are easily extendable to the generalized formulation.
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Assumption A
1P
t=1

�t = 1 and
1P
t=1

�2t < 1, and lim sup
t!1

��
1

�t+1

�
�
�
1

�t

��
< 1 (an

additional technical assumption).

These conditions on �t are standard and always assumed to hold in order to

guarantee convergence to a REE of the model under learning written in the form of a

stochastic recursive algorithm (SRA). All classes of models considered in this paper

(as well as the majority of economic models under learning) can be written in a standard

form of the SRA, the convergence properties of which can be studied using the stochastic

approximation techniques developed in Benveniste, Métivier and Priouret [3], adapted

and presented for economic (in particular, linear) models under learning, for example, by

Evans and Honkapohja [22] and Evans and Honkapohja [24]. According to this approach,

the majority of linear economic models under learning can be written in the form of a

SRA that has the following representation.

�t = �t�1 + �tH (�t�1; Xt) + �
2
t�t (�t�1; Xt) ;

Xt = A(�t�1)Xt�1 +B(�t�1)Wt; (1.17)

where �t is a vector of recursively updated parameters (called beliefs), which in typical

adaptive learning algorithms (RLS, SG) includes the regression coe¢ cients and elements

of the second moments matrix. The second equation gives the law of motion for the state

in the model, where Wt is a random disturbance term.

Under the regularity conditions on H (�t�1; Xt) and �t (�t�1; Xt), under Assump-

tion A on �t, and under assumptions on the properties of the law of motion for the state

(1.17) (speci�ed in Evans and Honkapohja [24, pp.124-125] and in Evans and Honkapohja

[22, pp. 26-27] and presented here for the reader�s convenience in Appendix A.1), condi-

tions for the convergence of �t to an equilibrium �� (that in this case is considered to be

the MSV REE) are determined by the conditions for stability of the associated ODE:

d�

d�
= h(�);where h(�) = lim

t!1
EH (�;Xt(�)) : (1.18)

After writing the model in the standard form of an SRA and deriving the associated

ODE, one may start using the local stability properties of this ODE as the local stability

properties under learning of the model�s equilibrium (in this case the MSV REE).

Due to di¤erent time-dating and the corresponding di¤erences in updating al-

gorithms, it is convenient to consider adaptive learning and the corresponding SRAs for
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the classes of models grouped by the dating of expectations: models with t� 1-dating of

expectations (Model I and Model II) and models with t-dating of expectations (Model III

and Model IV).

1.3.2 Heterogeneous adaptive learning in models with t � 1-dating of
expectations with information available up to t� 1 (Models I and
II)

First, I consider heterogeneous adaptive learning in models with t � 1-dating

of expectations with information available up to t � 112 (that is, in Models I and II).

After denoting z0t = (1; w0t) for Model I (similarly in Model II, when a lag is included,

z0t = (1; y0t; w
0
t) ) and �

0
h;t = (ah;t; bh;t) (if a lag is included, then �0h;t = (ah;t; bh;t; ch;t)),

�0t = (�
0
1;t; :::;�

0
S;t), the formal representation of the learning algorithms in these classes

of models can be written as follows.

RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;t+1zt

�
yt+1 � �0h;tzt

�0 (1.19a)

Rh;t+1 = Rh;t + �h;t+1
�
ztz

0
t �Rh;t

�
(1.19b)

SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt+1 � �0h;tzt

�0
: (1.20)

Agents use �0h;t�1 = (ah;t�1; bh;t�1) in Model I (or �
0
h;t�1 = (ah;t�1; bh;t�1; ch;t�1)

in Model II when a lag is included) and zt�1 to make their forecasts Êht�1yt and Ê
h
t�1yt+1.

The actual law of motion will be

yt = T (�t�1)
0zt�1 +B�t + �"t;

where T (�t�1)0 is de�ned in (1.5) for Model I and in (1.8) for Model II above.

To convert the system into the standard form of an SRA, I make a change in

the timing of the system for Rh;t: I set Sh;t�1 = Rh;t: Thus, the beliefs updating algorithm

of Models I and II will have the following SRA representation

RLS: for h = 1; S0

�h;t+1 = �h;t + �t+1
�h;t+1
�t+1

�
S�1h;t ztz

0
t [T (�t)� �h;t] + S�1h;t zt (B�t+1 + �"t+1)

0
�

12Similar technical constructions can be found in Evans and Honkapohja [24, ch 10.2.2] but for a struc-
turally homogeneous economy under homogeneous learning.
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Sh;t+1 = Sh;t+�t+1 (�h)
�
zt+1z

0
t+1 � Sh;t

�
+�2t+1

�
�t+2 � �t+1

�2t+1

�
(�h)

�
zt+1z

0
t+1 � Sh;t

�
SG: for h = S0 + 1; S

�h;t+1 = �h;t + �t+1
�h;t+1
�t+1

ztz
0
t [T (�t)� �h;t] + �t+1

�h;t+1
�t+1

zt (B�t+1 + �"t+1)
0 :

For the case without lags (Model I), the law of motion for the state can be

written as

Xt = AXt�1 +BWt;

where

X 0
t =

�
1; w0t; w

0
t�1; �

0
t; "

0
t

�
;

W 0
t = (1; �

0
t; "

0
t);

and where

A =

0BBBBBBBB@

0 0 0 0 0

0 F 0 0 0

0 I 0 0 0

0 0 0 0 0

0 0 0 0 0

1CCCCCCCCA
; B =

0BBBBBBBB@

1 0 0

0 I 0

0 0 0

0 I 0

0 0 I

1CCCCCCCCA
:

For the case with a lag and one forward-looking term in expectations (Model II),

the law of motion for the state can be written as

Xt = A(�t�1)Xt�1 +B(�t�1)Wt;

where

�0t =
�
�01;t; :::; �

0
S;t

�
;

where

�0h;t =
�
vec

�
�0h;t)

0; vec(Sh;t
�0�

; h = 1; S0;

�0h;t = vec
�
�0h;t

�
; h = S0 + 1; S;

X 0
t =

�
1; y0t; w

0
t; yt�1; w

0
t�1; �

0
t; "

0
t

�
;

W 0
t = (1; �

0
t; "

0
t);
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and where

A =

0BBBBBBBBBBBBBB@

0 0 0 0 0 0 0

T 0a(�t�1) T 0b(�t�1) T 0c(�t�1) 0 0 0 0

0 0 F 0 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1CCCCCCCCCCCCCCA
; B =

0BBBBBBBBBBBBBB@

1 0 0

0 B �

0 I 0

0 0 0

0 0 0

0 I 0

0 0 I

1CCCCCCCCCCCCCCA
:

The associated ODEs for these SRAs (for the proof see Appendix A.7.1) are

given by

d�h
d�

= �h (T (�)� �h) ; h = 1; S0 (1.21a)

d�h
d�

= �hMz (T (�)� �h) ; h = S0 + 1; S: (1.21b)

1.3.3 General criteria for stability under heterogeneous learning for

Models I and II

The next step is to take the derivatives of the T -maps: (1.5) for Model I and

(1.8) for Model II, and to compose the Jacobians for the right-hand side of the associated

ODEs (1.21).

For the SRA of Model I, the system of the associated ODEs (linear by the setup)

after dropping the inessential constant terms is written by components as0BBB@
_a1
...

_aS

1CCCA = D1


0BBB@
a1
...

aS

1CCCA, where D1 =
0BBB@

�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA ;


 =

0BBB@
A10 +A

1
1:::+A

1
� � In � � � AS0 +A

S
1 :::+A

S
�

...
. . .

...

A10 +A
1
1:::+A

1
� � � � AS0 +A

S
1 :::+A

S
� � In

1CCCA
0BBB@

vec_b1
...

vec_bS

1CCCA = Dw
F

0BBB@
vecb1
...

vecbS

1CCCA, where Dw =

0BBB@
Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CCCA ;

Dwh = �hInk; h = 1; S0

Dwh = �h (Mw 
 In) ; h = S0 + 1; S
;
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F =

0BBB@
F 0� 
A1�+...+F 0 
A11+Ik 
A10-Ink � � � F 0� 
AS�+...+F 0 
AS1+Ik 
AS0

...
. . .

...

F 0� 
A1�+...+F 0 
A11+Ik 
A10 � � � F 0� 
AS�+...+F 0 
AS1+Ik 
AS0 -Ink

1CCCA.
For the SRA of Model II, the system of the associated ODEs linearized around

the MSV REE given by (1.9) after dropping the inessential constant terms is written by

components as0BBBBBBBBBBBBBB@

_a1

vec_b1

vec _c1
...

_aS

vec_bS

vec _cS

1CCCCCCCCCCCCCCA
= D1yw
1bF

0BBBBBBBBBBBBBB@

a1

vecb1

vecc1
...

aS

vecbS

veccS

1CCCCCCCCCCCCCCA
, where D1yw =

0BBB@
D1yw1 � � � 0
...

. . .
...

0 � � � D1ywS

1CCCA ;

D1ywh = �hIn+n2+nk; h = 1; S0

D1ywh = �h (M1yw 
 In) ; h = S0 + 1; S


1bF =

2666664
R1 � In+n2+nk R1 � � � R1

R2 R2 � In+n2+nk � � � R2

...
...

. . .
...

RS RS � � � RS � In+n2+nk

3777775

Rh =

26664
Ah1 +

�
Ah0 +A

h
1
�b
�

�a0 
Ah1 0

0 �b0 
Ah1 + In 

�
Ah0 +A

h
1
�b
�

0
... �c0 
Ah1 F 0 
Ah1 + Ik 


�
Ah0 +A

h
1
�b
�
37775 :

Using the above, I derive general criteria for stability under mixed RLS/SG

learning (à la Honkapohja and Mitra [36, Prop. 5]) for Models I and II.

Criterion 1.1 In economy (1.3) and (1.2), Model I, mixed RLS/SG learning converges

globally (almost surely) to the minimal state variable (MSV) solution if and only if the

corresponding matrices D1
 and Dw
F have eigenvalues with negative real parts.

Proof. See Appendix A.7.3. �

Criterion 1.2 In economy (1.6) and (1.2), Model II, in which all roots of �b de�ned in

(1.9) lie inside the unit circle, mixed RLS/SG learning converges (almost surely) to the
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minimal state variable (MSV) solution if and only if the corresponding matrix D1yw
1bF

has eigenvalues with negative real parts.

Proof. See Appendix A.7.4. �

Note that these conditions are written in terms of mixture of structural and learn-

ing heterogeneity. In order to be able to write down economically meaningful conditions

in terms of structural heterogeneity only, one has to consider several simpli�cations of the

general setup. For example, it is easy to obtain more pleasant su¢ cient conditions for

stabiltiy of the MSV REE of Model II under heterogeneous RLS learning, which allows

for a further elaboration of su¢ cient conditions.

Corollary 1.3 (Su¢ cient conditions for stabiltiy of the MSV REE of Model II under

heterogeneous RLS learning). In economy (1.6) and (1.2), Model II, in which all roots of

�b de�ned in (1.9) lie inside the unit circle, heterogeneous RLS learning converges (almost

surely) to the minimal state variable (MSV) solution if the corresponding matrices D1
;

Dy
b, and Dw
F (below) have eigenvalues with negative real parts; thus, the MSV REE

is a locally stable point of the following system0BBB@
_a1
...

_aS

1CCCA = D1


0BBB@
a1
...

aS

1CCCA, where D1 =
0BBB@

�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA ;


 =

0BBB@
A10 +A

1
1 +A

1
1
�b� In � � � AS0 +A

S
1 +A

S
1
�b

...
. . .

...

A10 +A
1
1 +A

1
1
�b � � � AS0 +A

S
1 +A

S
1
�b� In

1CCCA
0BBB@

vec_b1
...

vec_bS

1CCCA = Dy
b

0BBB@
vecb1
...

vecbS

1CCCA, where Dy =

0BBB@
�1In2 � � � 0
...

. . .
...

0 � � � �SIn2

1CCCA ;


b =

0BBB@
�b0 
A11 + In 


�
A10 +A

1
1
�b
�
� In2 � � � �b0 
AS1 + In 


�
AS0 +A

S
1
�b
�

...
. . .

...

�b0 
A11 + In 

�
A10 +A

1
1
�b
�

� � � �b0 
AS1 + In 

�
AS0 +A

S
1
�b
�
� In2

1CCCA,
0BBB@

vec _c1
...

vec _cS

1CCCA = Dw
F

0BBB@
vecc1
...

veccS

1CCCA ;where Dw =

0BBB@
�1Ink � � � 0
...

. . .
...

0 � � � �SInk

1CCCA ;
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F =

0BBB@
F 0 
A11 + Ik 


�
A10 +A

1
1
�b
�
� Ink � � � F 0 
AS1 + Ik 


�
AS0 +A

S
1
�b
�

...
. . .

...

F 0 
A11 + Ik 

�
A10 +A

1
1
�b
�

� � � F 0 
AS1 + Ik 

�
AS0 +A

S
1
�b
�
� Ink

1CCCA :

Proof. See Appendix A.7.5. �

1.3.4 Conditions for stability in the diagonal environment case for Mod-

els I and II

Another simpli�cation that can be used to derive economically meaningful con-

ditions in terms of structural heterogeneity only, is to assume a diagonal structure of the

shocks process. Now, I will obtain a criterion for the following diagonal environment case

F = diag(�1; :::; �k);Mw = lim
t!1

wtw
0
t = diag

�
�21
1��21

; :::;
�2k
1��2k

�
: (1.22)

For Model I in the "diagonal" environment, the problem of �nding conditions

for the stability of both D1
 and Dw
F under any (possibly di¤erent) degrees of inertia

of agents, � > 0; is simpli�ed to �nding stability conditions for D1
 and D1
�l ;where 
�l

is obtained from 
 by substituting all of Ah0 + Ah1 :: + Ah� for A
h
0 + �lA

h
1 :: + ��l A

h
� , where

j�lj < 1 as wt follows a stationary VAR(1) process, by the setup of the model.

D1 =

0BBB@
�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA ; (1.23)


�l =

0BBB@
A10 + �lA

1
1 + :::+ �

�
l A

1
� � In � � � AS0 + �lA

S
1 + :::+ �

�
l A

S
�

...
. . .

...

A10 + �lA
1
1 + :::+ �

�
l A

1
� � � � AS0 + �lA

S
1 + :::+ �

�
l A

S
� � In

1CCCA ;8l = 0; :::; k; (�0 = 1):

(1.24)

Proposition 1.4 (A criterion for the stability of Model I under mixed RLS/SG learn-

ing for the diagonal environment case under any (possibly di¤erent) degrees of inertia of

agents, � > 0). In the structurally heterogeneous economy (1.3), (1.2), and (1.22), mixed

RLS/SG learning (2.8), (1.20), and (1.4) converges globally (almost surely) to an MSV

REE solution for any (possibly di¤erent) degrees of inertia of agents, � > 0; if and only
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if matrices D1
�l are stable for any � > 0, where D1 and 
�l are de�ned in (1.23) and

(1.24), respectively.

Proof. See Appendix A.7.6. �

For Model II with heterogeneous RLS learning in the "diagonal" envi-

ronment, the problem of �nding conditions for stability for D1
; Dy
b, and Dw
F under

any (possibly di¤erent) degrees of inertia of agents, � > 0; is simpli�ed to �nding stability

conditions for Dy
b and D1
�l ; where 
�l is given by


�l =

0BBB@
A10 + �lA

1
1 +A

1
1
�b� In � � � AS0 + �lA

S
1 +A

S
1
�b

...
. . .

...

A10 + �lA
1
1 +A

1
1
�b � � � AS0 + �lA

S
1 +A

S
1
�b� In

1CCCA ;8l = 0; :::; k; (�0 = 1);

(1.25)

where j�lj < 1 as wt follows a stationary VAR(1) process, by the setup of the model.

Proposition 1.5 (Su¢ cient conditions for the stability of Model II under heterogeneous

RLS learning for the diagonal environment case under any (possibly di¤erent) degrees of

inertia of agents, � > 0). In the structurally heterogeneous economy (1.6), (1.2), and

(1.22), in which all roots of �b de�ned in (1.9) lie inside the unit circle, heterogeneous RLS

learning (2.8), (1.20), and (1.7) converges (almost surely) to an MSV REE solution for

any (possibly di¤erent) degrees of inertia of agents, � > 0; if matrices Dy
b and D1
�l

are stable for any � > 0, where D1 and 
�l are de�ned in (1.23) and (1.25), respectively.

Proof. See Appendix A.7.7. �

1.3.5 Adaptive learning in models with t-dating of expectations (Models

III and IV)

A similar approach to writing down the corresponding SRAs and the associated

ODEs can be applied to models with t-dating of expectations (that is, Models III and

IV)13 under heterogeneous mixed RLS/SG learning.

After denoting z0t = (1; w0t) for Model III (z0t = (1; y0t�1; w
0
t) for Model IV) and

�0h;t = (ah;t; bh;t) (if a lag is included, then �0h;t = (ah;t; bh;t; ch;t) ), �0t = (�01;t; :::;�
0
S;t);

the formal presentation of the learning algorithms in this model can be written as follows.
13Similar technical constructions can be found in Evans and Honkapohja [24, ch. 10.5] but for a struc-

turally homogeneous economy under homogeneous learning.
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RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;t+1zt

�
yt � �0h;tzt

�0 (1.26a)

Rh;t+1 = Rh;t + �h;t+1
�
ztz

0
t �Rh;t

�
(1.26b)

SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt � �0h;tzt

�0
: (1.27)

Agents use �0h;t = (ah;t; bh;t) (or �0h;t = (ah;t; bh;t; ch;t) when a lag is included)

and zt to make their forecasts Êht yt+� . The actual law of motion will be

yt = T (�t)
0zt + �"t;

where T (�t�1)0 is de�ned in (1.12) for Model III and in (1.15) for Model IV above.

To convert the system into the standard form of an SRA, again, as for the �rst

group of models, a change is made in the timing of the system for Rh;t: I set Sh;t�1 = Rh;t:

Thus, the beliefs updating algorithm of Models III and IV will have the following SRA

representation

RLS: for h = 1; S0

�h;t+1 = �h;t + �t+1
�h;t+1
�t+1

�
S�1h;t ztz

0
t [T (�t)� �h;t] + S�1h;t zt (�"t)

0
�

Sh;t+1 = Sh;t+�t+1 (�h)
�
zt+1z

0
t+1 � Sh;t

�
+�2t+1

�
�t+2 � �t+1

�2t+1

�
(�h)

�
zt+1z

0
t+1 � Sh;t

�
SG: for h = S0 + 1; S

�h;t+1 = �h;t + �t+1
�h;t+1
�t+1

ztz
0
t [T (�t)� �h;t] + �t+1

�h;t+1
�t+1

zt (�"t)
0 :

For the case without lags (Model III), the law of motion for the state can

be written as

Xt = AXt�1 +BWt;

where

X 0
t =

�
1; w0t; w

0
t�1; "

0
t�1
�
;

W 0
t = (1; "

0
t�1; �

0
t);

and where

A =

0BBBBB@
0 0 0 0

0 F 0 0

0 0 I 0

0 0 0 0

1CCCCCA ; B =

0BBBBB@
1 0 0

0 0 I

0 0 0

0 I 0

1CCCCCA :
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For the case with a lag and one forward-looking term in expectations, the (1; y0t�1; w
0
t)

information set (Model IV), the law of motion for the state can be written as

Xt = A(�t�1)Xt�1 +B(�t�1)Wt;

where

�0t =
�
�01;t; :::; �

0
S;t

�
;

where

�0h;t =
�
vec

�
�0h;t)

0; vec(Sh;t
�0�

; h = 1; S0;

�0h;t = vec
�
�0h;t

�
; h = S0 + 1; S;

X 0
t =

�
1; y0t�1; w

0
t; y

0
t�2; w

0
t�1; "

0
t�1
�
;

W 0
t = (1; "

0
t�1; �

0
t);

and where

A =

0BBBBBBBBBBB@

0 0 0 0 0 0

T 0a(�t�1) T 0b(�t�1) T 0c(�t�1) 0 0 0

0 0 F 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 0 0 0

1CCCCCCCCCCCA
; B =

0BBBBBBBBBBB@

1 0 0

0 � 0

0 0 I

0 0 0

0 0 0

0 I 0

1CCCCCCCCCCCA
:

The associated ODEs for these SRAs (for proof see Appendix A.7.2) again

look like (1.21).

1.3.6 General criteria for stability under heterogeneous learning for

Models III and IV

Again, the next step is to take derivatives of the T -maps: (1.12) for Model III

and (1.15) for Model IV, and to compose the Jacobians for the right-hand side of the

associated ODEs (1.21).

For the SRA of Model III, the system of the associated ODEs (linear by the

setup), after dropping the inessential constant terms, is written by components as0BBB@
_a1
...

_aS

1CCCA = D1


0BBB@
a1
...

aS

1CCCA, where D1 =
0BBB@

�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA ;
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 =

0BBB@
A11:::+A

1
� � In � � � AS1 :::+A

S
�

...
. . .

...

A11:::+A
1
� � � � AS1 :::+A

S
� � In

1CCCA
0BBB@

vec_b1
...

vec_bS

1CCCA = Dw
F

0BBB@
vecb1
...

vecbS

1CCCA, where Dw =

0BBB@
Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CCCA ;

Dwh = �hInk; h = 1; S0

Dwh = �h (Mw 
 In) ; h = S0 + 1; S
;


F =

0BBB@
F � 
A1� + :::+ F 0 
A11 � Ink � � � F � 
AS� + :::+ F 0 
AS1

...
. . .

...

F � 
A1� + :::+ F 0 
A11 � � � F � 
AS� + :::+ F 0 
AS1 � Ink

1CCCA.
For the SRA of Model IV, the system of associated ODEs linearized around the

MSV REE given by (1.16), after dropping the inessential constant terms, is written by

components as0BBBBBBBBBBBBBB@

_a1

vec_b1

vec _c1
...

_aS

vec_bS

vec _cS

1CCCCCCCCCCCCCCA
= D1yw
1bF

0BBBBBBBBBBBBBB@

a1

vecb1

vecc1
...

aS

vecbS

veccS

1CCCCCCCCCCCCCCA
, where D1yw =

0BBB@
D1yw1 � � � 0
...

. . .
...

0 � � � D1ywS

1CCCA ;

D1ywh = �hIn+n2+nk; h = 1; S0

D1ywh = �h (M1yw 
 In) ; h = S0 + 1; S


1bF =

2666664
R1 � In+n2+nk R1 � � � R1

R2 R2 � In+n2+nk � � � R2

...
...

. . .
...

RS RS � � � RS � In+n2+nk

3777775

Rh =

26664
Ah1 +A

h
1
�b �a0 
Ah1 0

0 �b0 
Ah1 + In 

�
Ah1
�b
�

0
... �c0 
Ah1 F 0 
Ah1 + Ik 


�
Ah1
�b
�
37775 :

The steps below are similar to those for Models I and II. Using the above, the

general criteria for stability under mixed RLS/SG learning (à la Honkapohja and Mitra

[36, Prop. 5]) for Models III and IV may be written as follows.
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Criterion 1.6 In economy (1.10) and (1.2), Model III, mixed RLS/SG learning converges

globally (almost surely) to the minimal state variable (MSV) solution if and only if the

corresponding matrices D1
 and Dw
F have eigenvalues with negative real parts.

Proof. See Appendix A.7.8. �

Criterion 1.7 In economy (1.13) and (1.2), Model IV, in which all roots of �b de�ned in

(1.16) lie inside the unit circle, mixed RLS/SG learning converges (almost surely) to the

minimal state variable (MSV) solution if and only if the corresponding matrix D1yw
1bF

has eigenvalues with negative real parts.

Proof. See Appendix A.7.9. �

Again, as in the case of the other model with a lag (Model II), it is easy to

obtain more handy su¢ cient conditions for stability of the MSV REE of Model IV under

heterogeneous RLS learning, which allows for a further elaboration of su¢ cient conditions.

Corollary 1.8 (Su¢ cient conditions for stability of the MSV REE of Model IV under

heterogeneous RLS learning) In economy (1.13) and (1.2), Model IV, in which all roots of

�b de�ned in (1.16) lie inside the unit circle, heterogeneous RLS learning converges (almost

surely) to the minimal state variable (MSV) solution if and only if the corresponding

matrices D1
; Dy
b; and Dw
F (below) have eigenvalues with negative real parts; thus,

MSV REE is a locally stable point of the following system:0BBB@
_a1
...

_aS

1CCCA = D1


0BBB@
a1
...

aS

1CCCA, where D1 =
0BBB@

�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA ;


 =

0BBB@
A11 +A

1
1
�b� In � � � AS1 +A

S
1
�b

...
. . .

...

A11 +A
1
1
�b � � � AS1 +A

S
1
�b� In

1CCCA
0BBB@

vec_b1
...

vec_bS

1CCCA = Dy
b

0BBB@
vecb1
...

vecbS

1CCCA, where Dy =

0BBB@
�1In2 � � � 0
...

. . .
...

0 � � � �SIn2

1CCCA ;


b =

0BBB@
�b0 
A11 + In 


�
A11
�b
�
� In2 � � � �b0 
AS1 + In 


�
AS1
�b
�

...
. . .

...

�b0 
A11 + In 

�
A11
�b
�

� � � �b0 
AS1 + In 

�
AS1
�b
�
� In2

1CCCA,
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0BBB@
vec _c1
...

vec _cS

1CCCA = Dw
F

0BBB@
vecc1
...

veccS

1CCCA ;where Dw =

0BBB@
�1Ink � � � 0
...

. . .
...

0 � � � �SInk

1CCCA ;


F =

0BBB@
F 0 
A11 + Ik 


�
A11
�b
�
� Ink � � � F 0 
AS1 + Ik 


�
AS1
�b
�

...
. . .

...

F 0 
A11 + Ik 

�
A11
�b
�

� � � F 0 
AS1 + Ik 

�
AS1
�b
�
� Ink

1CCCA :

Proof. See Appendix A.7.10. �

1.3.7 Conditions for stability in the diagonal environment case for Mod-

els III and IV

The diagonal shock process simpli�cation for Models III and IV yields results

similar to the ones for Models I and II.

ForModel III in the "diagonal" environment, the problem of �nding conditions

for the stability of both D1
 and Dw
F under any (possibly di¤erent) degrees of inertia

of agents, � > 0; is simpli�ed to �nding stability conditions for D1
 and D1
�l ; where 
�l

is obtained from 
 by substituting all of Ah1 ::+ Ah� with �lA
h
1 ::+ ��l A

h
� , where j�lj < 1 as

wt follows a stationary VAR(1) process, by the setup of the model.


�l =

0BBB@
�lA

1
1 + :::+ �

�
l A

1
� � In � � � �lA

S
1 + :::+ �

�
l A

S
�

...
. . .

...

�lA
1
1 + :::+ �

�
l A

1
� � � � �lA

S
1 + :::+ �

�
l A

S
� � In

1CCCA ;8l = 0; :::; k; (�0 = 1):

(1.28)

Proposition 1.9 (A criterion for the stability of Model III under mixed RLS/SG learn-

ing for the diagonal environment case under any (possibly di¤erent) degrees of inertia of

agents, � > 0). In the structurally heterogeneous economy (1.10), (1.2), and (1.22), mixed

RLS/SG learning (2.10), (1.27), and (1.11) converges globally (almost surely) to an MSV

REE solution for any (possibly di¤erent) degrees of inertia of agents, � > 0; if and only

if matrices D1
�l are stable for any � > 0, where D1 and 
�l are de�ned in (1.23) and

(1.28), respectively.

Proof. See Appendix A.7.11. �
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For Model IV with heterogeneous RLS learning in the "diagonal" envi-

ronment, the problem of �nding conditions for the stability of D1
; Dy
b; and Dw
F

under any (possibly di¤erent) degrees of inertia of agents, � > 0; is simpli�ed to �nding

stability conditions for Dy
b and D1
�l ; where 
�l is given by


�l =

0BBB@
�lA

1
1 +A

1
1
�b� In � � � �lA

S
1 +A

S
1
�b

...
. . .

...

�lA
1
1 +A

1
1
�b � � � �lA

S
1 +A

S
1
�b� In

1CCCA ;8l = 0; :::; k; (�0 = 1); (1.29)

where j�lj < 1 as wt follows a stationary VAR(1) process, by the setup of the model.

Proposition 1.10 (Su¢ cient conditions for the stability of Model IV under hetero-

geneous RLS learning for the diagonal environment case under any (possibly di¤erent)

degrees of inertia of agents, � > 0). In the structurally heterogeneous economy (1.13),

(1.2), and (1.22), heterogeneous RLS learning (2.10), (1.27), and (1.14) converges (al-

most surely) to an MSV REE solution for any (possibly di¤erent) degrees of inertia of

agents, � > 0; if matrices Dy
b and D1
�l are stable for any � > 0, where D1 and 
�l

are de�ned in (1.23) and (1.29), respectively.

Proof. See Appendix A.7.12. �

1.3.8 The concepts of �-stability and heterogeneous expectational sta-

bility

I will refer to the stability of a REE under ODE (1.21) as heterogeneous

expectational (HE�) stability (or stability in heterogeneous expectations). I also

rede�ne the concept of �-stability in the following way.

De�nition 1.1 �-stability is the stability of a REE under heterogeneous (either RLS,

SG, or mixed RLS/SG) learning for any positive values of degrees of inertia and for any

starting values; that is, it is the stability of the system under heterogeneous learning that

is provided by structural heterogeneity only and is independent of the heterogeneity in

learning mentioned above.

In this sense, the general stability criteria and the conditions mentioned above

refer to HE-stability as they depend on �s. It is also clear that all necessary and su¢ cient



48

conditions for HE-stability of all types of the models considered have the same algebraic

representation.

We have to have stability of a matrix


KR =

2666666666664

�1
�
R1 � I

�
� � � �1R

S0 �1R
S0+1 � � � �1R

S

...
. . .

...
...

. . .
...

�S0R
1 � � � �S0

�
RS0 � I

�
�S0R

S0+1 � � � �S0R
S

�S0+1KR
1 � � � �S0+1KR

S0 �S0+1
�
KRS0+1 �K

�
� � � �S0+1KR

S

...
. . .

...
...

. . .
...

�SKR
1 � � � �SKR

S0 �SKR
S0+1 � � � �S

�
KRS �K

�

3777777777775
;

where matrices K and Rh for each model are de�ned as follows.

Model I

K =

24 1 0

0 Mw

35 ; Rh =
24 1 0

0 F 0�

35
Ah� + :::+
24 1 0

0 F 0

35
Ah1 + Ik+1 
Ah0 .
Model II

K = (M1yw 
 In) ;M1yw =

24 M1y 0

0 Mw

35 ;
Rh =

26664
Ah1 +

�
Ah0 +A

h
1
�b
�

�a0 
Ah1 0

0 �b0 
Ah1 + In 

�
Ah0 +A

h
1
�b
�

0
... �c0 
Ah1 F 0 
Ah1 + Ik 


�
Ah0 +A

h
1
�b
�
37775 :

Model III

K =

24 1 0

0 Mw

35 ; Rh =
24 1 0

0 F 0�

35
Ah� + :::+
24 1 0

0 F 0

35
Ah1 :
Model IV

K = (M1yw 
 In) ;M1yw =

24 M1y 0

0 Mw

35 ;
Rh =

26664
Ah1 +A

h
1
�b �a0 
Ah1 0

0 �b0 
Ah1 + In 

�
Ah1
�b
�

0
... �c0 
Ah1 F 0 
Ah1 + Ik 


�
Ah1
�b
�
37775 :

1.4 Stability under mixed RLS/SG learning with equal de-

grees of inertia for each type of learning algorithm

It is possible to obtain a criterion for HE-stability for all types of models in terms

of an average economy in case �i = �; 8i. It looks like a very strong result meaning that
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stability issues for a vast class of structurally heterogeneous models can be substituted

with just one type of a structurally heterogeneous economy with heterogeneous learning

of two agents. This criterion serves as an initial check for the possibility of �-stability in

an economy since it provides a very general necessary condition for it. If the economy is

not stable for equal �s, then it is not �-stable. To write down this criterion, let us �rst

make the following natural de�nition.

De�nition 1.2 For general model setup (1.1) and (1.2) with mixed RLS/SG learning

with equal degrees of inertia for each type of learning algorithm, �i = �RLS ; 8i = 1; S0;

�i = �SG; 8i = S0 + 1; S; the average economy with mixed RLS/SG learning with

equal degrees of inertia for each type of learning algorithm, �RLS for RLS and �SG for SG,

is de�ned as

yt = �+
dP
i=1

Liyt�i +
mP
b=0

nP
f=b

�
S0P
h=1

Ahbf

�
ÊRLSt�b yt�b+f+ (1.30)

+
mP
b=0

nP
f=b

 
SP

h=S0+1

Ahbf

!
ÊSGt�byt�b+f +Bwt + �"t;

and (1.2), Ah00 � 0;

where the agent with coe¢ cients
�

S0P
h=1

Ahbf

�
learns by RLS, while the agent with coe¢ cients 

SP
h=S0+1

Ahbf

!
learns by SG.

Now, I can formulate the criterion.

Proposition 1.11 (The criterion for stability under mixed RLS/SG learning with equal

degrees of inertia of agents for each type of learning algorithm, � > 0). In the structurally

heterogeneous economy (1.3) and (1.2), Model I ((1.10) and (1.2), Model III) or (1.6)

and (1.2), Model II ((1.13) and (1.2), Model IV), in which all roots of �b de�ned in (1.9)

for Model II and in (1.16) for Model IV lie inside the unit circle, mixed RLS/SG learning

with equal degrees of inertia of agents for each type of learning algorithm, �i = �RLS ;

8i = 1; :::; S0; �i = �SG; 8i = S0 + 1; :::; S; converges globally, for Models I and III, or

locally, for Models II and IV, (almost surely) to an MSV REE, if and only if the REE

is a locally asymptotically stable �xed point of the corresponding average economy (1.30)

under mixed RLS/SG learning of two agents with equal degrees of inertia for each type of

learning algorithm, �RLS for RLS and �SG for SG.
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Proof. See Appendix A.7.13. �

1.5 Aggregate Economy Su¢ cient Conditions for ��stability

It turns out that for models without lags of the endogenous variable (Model I

and III), it is possible to derive economically tractable su¢ cient conditions for �-stability

in terms of an aggregate economy constructed for the original one. It is possible to derive

these conditions for the general mixed RLS/SG learning but with the diagonal structure

of the shock process (1.22), diagonal F and consequently, M .

For the general non-diagonal case (F -any) it is possible to obtain economically

tractable su¢ cient conditions for �-stability for all types of models (Models I, II, III, and

IV) but in terms of aggregate economies constructed for the associated set of models that

have equivalent stability properties of the MSV REE of the original model. It is possible

to derive these conditions for the heterogeneous RLS learning case.

1.5.1 Aggregation for models without lags of endogenous variables un-

der general heterogeneous mixed RLS/SG learning in the diagonal

environment case

First, note that the stability properties of the MSV REE under mixed RLS/SG

learning of Model I in the diagonal environment case are equivalent to the ones of the

MSV REE of the set of the associated current value expectations models

yt = �+
SP
h=1

(Ah0 + �lA
h
1 + :::+ �

�
l A

h
� )Ê

h
t�1yt +Bwt + �"t; (1.31)

and (1.2):

Similarly, stability properties of the MSV REE under mixed RLS/SG learning of

Model III in the diagonal environment case is equivalent to the ones of the MSV REE

of the set of the associated current value expectations models

yt = �+
SP
h=1

(�lA
h
1 + :::+ �

�
l A

h
� )Ê

h
t�1yt +Bwt + �"t; (1.32)

and (1.2):

To proceed with aggregation, I start with the original Model I and employ the

same approach to aggregation used by Bogomolova and Kolyuzhnov [5] and Kolyuzhnov
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[40]14.

Given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1,

and across agent types �h > 0,
SP
h=1

�h = 1 (and denoting a
h
ij the element in the i

th row

and jth column of matrix Ah), I aggregate the economy in the following way.

yAGt =
P
i
 iyit =

P
i
 i�i +

P
h

S�h
P
i
 i
P
j
ah0ijÊ

h
t�1yjt + :::+

+
P
h

S�h
P
i
 i
P
j
ah�ijÊ

h
t�1yjt+� +

�P
i
 iB

i

�
wt +

�P
i
 i&

i

�
"t =

=
P
i
 i�i+�

AG
0 ( ; �) ÊAGt�1

�
yAGt

�
+ :::+�AG� ( ; �) ÊAGt�1

�
yAGt+�

�
+

�P
i
 iB

i

�
wt+

+

�P
i
 i&

i

�
"t, where

�AGr ( ; �) = S
P
h

�h
P
i
 i
P
j
ahrij ; r = 0; 1; :::; � (1.33)

ÊAGt�1
�
yAGt+r

�
= (�AGr ( ; �))�1

SP
h=1

S�h
P
i
 i
P
j
ahrijÊ

h
t�1yjt+r; (1.34)

and Bi and & idenote the ith row of B and &, respectively. So, using the derivations above,

I formulate the following de�nition.

De�nition 1.3 Given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agent types �h > 0,
SX
h=1

�h = 1, the aggregate economy for

the economy described by (1.3) and (1.2), Model I, is de�ned as

yAGt =
P
i
 i�i + �

AG
0 ( ; �) ÊAGt�1

�
yAGt

�
+ :::+ �AG� ( ; �) ÊAGt�1

�
yAGt+�

�
+

+

 X
i

 iB
i

!
wt +

�P
i
 i&

i

�
"t;

(1.2),

where �AGr ( ; �) and ÊAGt
�
yAGt+r

�
; r = 0; 1; :::; � are de�ned in (1.33) and (1.34), respec-

tively.

It turns out that it is also useful (the reason for it will become clear later) to

consider an economy that bounds above all possible economies with all possible combi-

nations of signs of ahij aggregated using weights  and �. This is the original aggregate

14For the idea and discussion of such aggregation, please see Bogomolova and Kolyuzhnov [5] and
Kolyuzhnov [40].
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model written in absolute values. When all elements of the model, ahij ; endogenous vari-

ables, and their expectations are positive, this limiting model exactly coincides with the

model considered. So, this is an attainable supremum. Thus, I have the following limiting

aggregate model:

yAGt =
P
i
 iyit � yAGmodt =

P
i
 i jyitj �

�
P
i
 i j�ij+ �AGmod0 ( ; �) ÊAGmodt�1

�
yAGmodt

�
+ :::+

+�AGmod� ( ; �) ÊAGmodt�1
�
yAGmodt+�

�
+

�����P
i
 iB

i

�
wt

����+ �����P
i
 i&

i

�
"t

���� ; where
�AGmodr ( ; �) = S

P
h

�h
P
i
 i
P
j

���ahrij��� ; r = 0; 1; :::; � (1.35)

ÊAGmodt

�
yAGmodt+r

�
= (�AGmodr ( ; �))�1

SP
h=1

S�h
P
i
 i
P
j

���ahrij��� Êht jyjt+rj : (1.36)
De�nition 1.4 Given the weights of aggregation across endogenous variables  i > 0,

nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the limiting aggregate

economy for an economy described by (1.3) and (1.2), Model I, is de�ned as

yAGmodt =
P
i
 i j�ij+ �AGmod0 ( ; �) ÊAGmodt�1

�
yAGmodt

�
+ :::+

+�AGmod� ( ; �) ÊAGmodt�1

�
yAGmodt+�

�
+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

���� ;
(1.2),

where �AGmodr ( ; �) and ÊAGmodt

�
yAGmodt+r

�
; r = 0; 1; :::; � , are de�ned in (1.35) and

(1.36), respectively.

Remark 1.1 If this limiting aggregate economy is E�stable, then all corresponding aggre-

gate economies with various combinations of signs of ahij are E�stable.

The same aggregation techniques may be applied to Model III and to the set of

associated current value expectations models corresponding to Models I and III. I present

the �nal results in the following de�nitions.

De�nition 1.5 Given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the limiting aggregate
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economy for an economy described by (1.10) and (1.2), Model III, is de�ned as

yAGmodt =
P
i
 i j�ij+ �AGmod1 ( ; �) ÊAGmodt

�
yAGmodt+1

�
+ :::+

+�AGmod� ( ; �) ÊAGmodt

�
yAGmodt+�

�
+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

���� ;
(1.2),

where �AGmodr ( ; �) and ÊAGmodt

�
yAGmodt+r

�
; r = 0; 1; :::; � are de�ned as

�AGmodr ( ; �) = S
P
h

�h
P
i
 i
P
j

���ahrij��� ; r = 1; :::; � (1.37)

ÊAGmodt

�
yAGmodt+r

�
= (�AGmodr ( ; �))�1

SP
h=1

S�h
P
i
 i
P
j

���ahrij��� Êht jyjt+rj : (1.38)
De�nition 1.6 Given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the limiting aggregate

economies for the set of associated current value expectations models corresponding to

Model I (Model III) described by (1.3) and (1.2) ((1.10) and (1.2)) is de�ned as

yAGmodt =
P
i
 i j�ij+ �AGmodl ( ; �) ÊAGmodl t�1

�
yAGmodt

�
+ (1.39)

+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

���� ;
(1.2),

where �AGmodl ( ; �) and ÊAGmodl t�1
�
yAGmodt

�
, are de�ned as

for Model I:

�AGmodl ( ; �) = S
P
h

�h
P
i
 i
P
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� (1.40)

ÊAGmodl t�1

�
yAGmodt

�
= (�AGmodl ( ; �))�1 �

�
SP
h=1

S�h
P
i
 i
P
j

���ah0ij+�lah1ij+...+��l ah�ij��� Êht�1 jyjtj :(1.41)
for Model III: ah0ij = 0 above.

The structure of this limiting aggregate coe¢ cient �AGmodl ( ; �) is as follows.P
i
 i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� (in the case of Model III, ah0ij = 0) is the coe¢ cient before
the expectation of endogenous variable j in the aggregate economy composed of one single

agent type h. Notice that this coe¢ cient is calculated for the expectation of endogenous
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variable j, that enters the aggregate product with coe¢ cient  j . So for each l = 0; 1; :::; k,

following Kolyuzhnov [40], I may name the ratio�P
i
 i

���ah0ij + �lah1ij + :::+ ��l ah�ij���� = j the endogenous variable j "own" expecta-
tions relative coe¢ cient. By looking at the values of these coe¢ cients I will be able

to judge the weight a particular agent type has in the economy in terms of the aggregate

�-coe¢ cient. The next proposition that follows from the criteria for the �-stability of

models without lags under mixed RLS/SG learning in the diagonal environment (1.22)

(Propositions 1.4 and 1.9) and the McKenzie Theorem (1960) (see the Appendix) is for-

mulated in terms of these relative coe¢ cients and stresses the fact that weights of agents

in calculating aggregate expectations have to be put into accordance with this economic

intuition in order to have stability under heterogeneous learning.

Proposition 1.12 In the case of the diagonal environment (1.22), if for each economy

from the set of associated current value expectations models corresponding to Model I

(III) there exists at least one pair of vectors of weights for the aggregation of endogenous

variables  and weights � for the aggregation of agents such that for each agent, every

weighted endogenous variable�s "own" expectations relative coe¢ cient corresponding to the

limiting aggregate economy (1.39) and (1.2) is less than the weight of the agent used in

calculating aggregate expectations, i.e.

P
i
 i

����ah0ij + �lah1ij + :::+ ��l ah�ij���� = j < �h; (
P
i
 i

�����lah1ij + :::+ ��l ah�ij���� = j < �h)8j; 8h;8l;

then the economy described by (1.3) and (1.2), Model I, ((1.10) and (1.2), Model III) is

�-stable under mixed RLS/SG learning.

Proof. See Appendix A.7.14. �

The results for Models I and III and the derivations may be rewritten not in terms

of the aggregate economy to the associated models, but in terms of the aggregate model

to the original one. In this sense, these results largely resemble the ones derived in Bogo-

molova and Kolyuzhnov [5] and Kolyuzhnov [40] except for the weighting of expectations

of di¤erent leads of expectations.

The procedure is as follows. Let us return to the de�nition of the aggregate

economy for the original Model I. It is also possible to simplify matters even further and
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to construct the weighted coe¢ cient for �AGmod� and the corresponding one-expectation

model in the form

yAGmodt =
P
i
 i j�ij+�AGmodweighted ( ; �) Ê

AGmod
weightedt�1

�
yAGmodt

�
+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

���� ;
where the weights for summing the coe¢ cients before expectations of di¤erent leads of y

can naturally be taken to be the autocorrelation coe¢ cients of w or 1 (no discounting);

that is, �l; l = 0; 1; :::; k. Thus, I may formulate the following de�nition.

De�nition 1.7 Given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the corresponding set of

the current value aggregate expectation models for the limiting aggregate

economy for an economy described by (1.3) and (1.2), Model I, is de�ned as

yAGmodt =
P
i
 i j�ij+ �AGmodweighted l ( ; �) Ê

AGmod
weighted l t�1

�
yAGmodt

�
+ (1.42)

+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

����
and (1.2),

where �AGmodweighted l ( ; �) and Ê
AGmod
weighted l t�1

�
yAGmodt

�
; l = 0; 1; :::; l are de�ned as

�AGmodweighted l ( ; �) = �AGmod0 ( ; �)+j�lj�AGmod0 ( ; �)+:::+j�lj� �AGmod� ( ; �) ; l = 0; 1; :::; k

ÊAGmodweighted l t�1

�
yAGmodt

�
=
�
�AGmodweighted l ( ; �)

��1 �X
r=0

�AGmodr ( ; �) ÊAGmodt�1

�
yAGmodt+r

�
:

The structure of this weighted limiting aggregate coe¢ cient �AGmodweighted l is as fol-

lows.
P
i
 i

���ah0ij��� + ���ah0ij���P
i
 i

���ah1ij��� + ::: + j�lj�
P
i
 i

���ah�ij��� is the coe¢ cient before the
expectation of endogenous variable j in the aggregate economy composed of one single

agent type h. Notice that this coe¢ cient is calculated for the expectation of endogenous

variable j, that enters the aggregate product with coe¢ cient  j . So for each l = 0; 1; :::; k,

following Kolyuzhnov [40], I may interpret the ratio�P
i
 i

���ah0ij���+ j�ljP
i
 i

���ah1ij���+ :::+ j�lj�P
i
 i

���ah�ij���� = j
as the weighted endogenous variable j "own" expectations relative coe¢ cient.

The next proposition is formulated in terms of these relative coe¢ cients and stresses the
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fact that the weights of agents in calculating aggregate expectations have to be put into

accordance with this economic intuition in order to have stability under heterogeneous

learning.

Proposition 1.13 In the case of the diagonal environment (1.22), if for each economy

from the corresponding set of current value aggregate expectation models for the limiting

aggregate economy for an economy described by (1.3) and (1.2), Model I, there exists

at least one pair of vectors of weights  for the aggregation of endogenous variables and

weights � for the aggregation of agents such that for each agent every weighted endogenous

variable�s "own" expectations relative coe¢ cient corresponding to the limiting aggregate

economy (1.42) and (1.2) is less than the weight of the agent used in calculating aggregate

expectations, i.e.

P
i
 i

����ah0ij���+ j�lj ���ah1ij���+ :::+ j��l j ���ah�ij���� = j < �h8j;8h;8l;

then the economy described by (1.3) and (1.2), Model I, is ��stable under mixed RLS/SG

learning.

Proof. Follows directly from Proposition 1.12 �

It is clear that this su¢ cient condition is stronger than the previous one and that

the condition for l = 0 alone is su¢ cient for the result to hold true. For Model III, one

has to set ah0ij to zero everywhere in De�nition 1.7 and Proposition 1.13 above.

1.5.2 Aggregation for models in the general (non-diagonal) case under

heterogeneous RLS learning

In the general, non-diagonal case, su¢ cient stability conditions for the MSV REE

of Model I and Model III under heterogeneous RLS learning may again be written in terms

of the stability of models from the corresponding set of current value aggregate expectation

models for the limiting aggregate economy of Model I and Model III, but now the

de�nition of this set has to be extended to account for the non-diagonal structure of matrix

F:

De�nition 1.8 Given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the corresponding set



57

of current value aggregate expectation models for the limiting aggregate

economy for an economy described by (1.3) and (1.2), Model I, ((1.10) and (1.2), Model

III) is de�ned as

yAGmodt =
P
i
 i j�ij+ �AGmodweighted l ( ; �) Ê

AGmod
weighted l t�1

�
yAGmodt

�
+ (1.43)

+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

����
and (1.2),

where �AGmodweighted l ( ; �) and Ê
AGmod
weighted l t�1

�
yAGmodt

�
; l = 0; 1; :::; k are de�ned as

for Model I:

�AGmodweighted l ( ; �) = �AGmod0 ( ; �)+�f�
AGmod
1 ( ; �)+ :::+�f�

AGmod
� ( ; �) ; l = 0; 1; :::; k;

ÊAGmodweighted l t�1

�
yAGmodt

�
=
�
�AGmodweighted l ( ; �)

��1 �X
r=0

�AGmodr ( ; �) ÊAGmodt�1

�
yAGmodt+r

�
;

for Model III:

�AGmodweighted l ( ; �) = �f�
AGmod
1 ( ; �) + :::+ �f�

AGmod
� ( ; �) ; l = 0; 1; :::; k;

ÊAGmodweighted l t�1

�
yAGmodt

�
=
�
�AGmodweighted l ( ; �)

��1 �X
r=1

�AGmodr ( ; �) ÊAGmodt

�
yAGmodt+r

�
;

where �f =
Pk

r=1 jflrj or
Pk

r=1 jfrlj :

Again, the index�P
i
 i

���ah0ij���+ �fP
i
 i

���ah1ij���+ :::+ �fP
i
 i

���ah�ij���� = j
(for Model III ah0ij = 0) may be called, as before, the weighted endogenous variable

j "own" expectations relative coe¢ cient and has the same meaning as before.

As for Models II and IV, complications arise due to the presence of one endoge-

nous variable lag in the model. To alleviate the complications and to return the discussion

to the "unlagged" structure of Bogomolova and Kolyuzhnov [5], Kolyuzhnov [40], and

Honkapohja and Mitra (2006), I construct an economy without a lag corresponding to

the model considered that has the same asymptotic behaviour around the REE. I call

this model (by analogy to the associated ODE) the associated "unlagged" economy. With

respect to Models II and IV, the associated "unlagged" model corresponding to

Models II and IV is de�ned in the following proposition.
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Proposition 1.14 The associated "unlagged" model corresponding to Model

II (IV ) (that is, the model that has the same asymptotic behaviour as Model II (IV)

where the component for the lag coe¢ cient is �xed at the MSV REE value) is the model:

for Model II

yt = �+
SP
h=1

�
Ah0 +A

h
1
�b
�
Êht�1yt +

SP
h=1

Ah1Ê
h
t�1yt+1 +Bwt + �"t;

and (1.2),

for Model IV

yt = �+
SP
h=1

�
Ah1
�b
�
Êht�1yt +

SP
h=1

Ah1Ê
h
t�1yt+1 +BF

�1wt + �"t;

and (1.2),

where �b is de�ned in (1.9) for Model II and in (1.16) for Model IV.

Proof. Follows directly from a comparison of the associated ODEs.

Now it is possible to employ the same aggregating procedures as for Model I and

Model III to obtain the aggregate economy stability result.

De�nition 1.9 Given the weights of aggregation across endogenous variables  i > 0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the limiting aggregate

economy for the associated "unlagged" economy of the economy described

by (1.6) and (1.2), Model II, ((1.13) and (1.2), Model IV) is de�ned as

for Model II:

yAGmodt =
P
i
 i j�ij+

1X
r=0

�AGmodr ( ; �) ÊAGmodt�1

�
yAGmodt+r

�
+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

����
and (1.2);

for Model IV:

yAGmodt =
P
i
 i j�ij+

1X
r=0

�AGmodr ( ; �) ÊAGmodt�1

�
yAGmodt+r

�
+

�����
 X

i

 i
�
BF�1

�i!
wt

�����+
�����P

i
 i&

i

�
"t

����
and (1.2),

where �AGmodr ( ; �) and ÊAGmodt�1
�
yAGmodt+r

�
; r = 0; 1 are de�ned as

�AGmod0 ( ; �) = S
P
h

�h
P
i
 i
P
j

����ah0ij + �Ah1�b�ij
����
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�AGmod1 ( ; �) = S
P
h

�h
P
i
 i
P
j

���ah1ij���
ÊAGmodt�1

�
yAGmodt

�
= (�AGmod0 ( ; �))�1

SP
h=1

S�h
P
i
 i
P
j

����ah0ij + �Ah1�b�ij
���� Êht�1 jyjtj

ÊAGmodt�1

�
yAGmodt+1

�
= (�AGmod1 ( ; �))�1

SP
h=1

S�h
P
i
 i
P
j

���ah1ij��� Êht�1 jyjt+1j :
For Model IV: ah0ij � 0.

The corresponding sets of current value aggregate expectationmodels

for these limiting aggregate economies are given by De�nition 1.10.

De�nition 1.10 Given the weights of aggregation across endogenous variables  i >

0,
nP
i=1

 i = 1, and across agent types �h > 0,
SP
h=1

�h = 1, the corresponding set

of current value aggregate expectation models for the limiting aggregate

economy for an associated "unlagged" economy of the economy described by

(1.6) and (1.2), Model II, ((1.13) and (1.2), Model IV) is de�ned as

for Model II:

yAGmodt =
P
i
 i j�ij+ �AGmodweighted p ( ; �) Ê

AGmod
weighted p t�1

�
yAGmodt

�
+ (1.44)

+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

����
and (1.2);

for Model IV:

yAGmodt =
P
i
 i j�ij+ �AGmodweighted l ( ; �) Ê

AGmod
weighted l t�1

�
yAGmodt

�
+ (1.45)

+

�����
 X

i

 i
�
BF�1

�i!
wt

�����+
�����P

i
 i&

i

�
"t

���� ;
and (1.2),

where p = l or q, �AGmodweighted p ( ; �) and Ê
AGmod
weighted p t�1

�
yAGmodt

�
; are de�ned as

�AGmodweighted l ( ; �) = �AGmod0 ( ; �) + �f�
AGmod
1 ( ; �) ; l = 0; 1; :::; k;

and

�AGmodweighted q ( ; �) = �AGmod0 ( ; �) + �q�
AGmod
1 ( ; �) ; q = 1; :::; n;
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ÊAGmodweighted p t�1

�
yAGmodt

�
=
�
�AGmodweighted p ( ; �)

��1 1X
r=0

�AGmodr ( ; �) ÊAGmodt�1

�
yAGmodt+r

�
;

where �f =
Pk

r=1 jflrj or
Pk

r=1 jfrlj ; �q =
Pn

r=1

���bqr�� or Pn
r=1

���brq�� :
The second part of the de�nition using

Pn
r=1

���bqr�� as weights for the leads in
expectations re�ects the dependence of yt on yt�1 at the REE for endogenous variable j:

The structure of these weighted limiting aggregate coe¢ cients �AGmodweighted p, simi-

larly to the ones of Model I and Model III, allows for the ratiosP
i
 i

�
�f

���ah1ij���+ ���ah0ij + �Ah1�b�ij���� = j andP
i
 i

�
�q

���ah1ij���+ ���ah0ij + �Ah1�b�ij���� = j (for Model
IV ah0ij � 0) to be interpreted as the weighted endogenous variable j "own" expec-

tations relative coe¢ cients. Again, as above, the existence of a similar correspondence

between the values of these coe¢ cients and the weight of a particular agent type that fol-

lows from the criteria (Criteria 1.1 and 1.6) for the stability of models without lags of

the endogenous variables or from the su¢ cient conditions (Corollaries 1.3 and 1.8) for the

stability of models with lags of the endogenous variable, with both model types being un-

der heterogeneous RLS learning in the general (non-diagonal) environment, and from the

McKenzie Theorem (1960), the existense of this correspondence allows for the �-stability

of the original economies.

Proposition 1.15 In the general (non-diagonal) case, if for all economies from the cor-

responding set of the current value aggregate expectation models for the limiting aggregate

economy for the economy described by (1.3) and (1.2), Model I ((1.10) and (1.2), Model

III) under heterogeneous RLS learning, there exists at least one pair of vectors of weights

 for the aggregation of endogenous variables and weights � for the aggregation of agents

such that for each agent, every weighted endogenous variable�s "own" expectations relative

coe¢ cient corresponding to the limiting aggregate economy (1.43) and (1.2) of the row

type is less than the weight of the agent used in calculating aggregate expectations, i.e.�P
i
 i

���ah0ij���+ �fP
i
 i

���ah1ij���+ :::+ �fP
i
 i

���ah�ij���� = j < �h8j; 8h;8l;

where �f =
Pk

r=1 jflrj : (for Model III ah0ij � 0), then the economy described by (1.3)

and (1.2), Model I, ((1.10) and (1.2), Model III) under heterogeneous RLS learning is

�-stable.

Proof. See Appendix A.7.15. �
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Proposition 1.16 In the general (non-diagonal) case, if for each row aggregation type

( f and b -type) of economies from the corresponding set of the current value aggregate

expectation models for the limiting aggregate economy for the associated "unlagged" econ-

omy of the economy described by (1.6) and (1.2), Model II ((1.13) and (1.2), Model IV)

under heterogeneous RLS learning, there exists at least one pair of vectors of weights  for

the aggregation of endogenous variables and weights � for the aggregation of agents such

that for each agent, every weighted endogenous variable�s "own" expectations relative coef-

�cient corresponding to the limiting aggregate associated "unlagged" economy (1.44) and

(1.2), ((1.45) and (1.2)) is less than the weight of the agent used in calculating aggregate

expectations, i.e.

9( ; �)� weights
...
P
i
 i

 
kX
r=1

�f

���ah1ij���+ ����ah0ij + �Ah1�b�ij
����
!
= j < �h8j;8h;8l;

and

9( ; �)� weights
...
P
i
 i

 
nX
r=1

�q

���ah1ij���+ ����ah0ij + �Ah1�b�ij
����
!
= j < �h8j;8h;8q;

where �f =
Pk

r=1 jflrj, �q =
Pn

r=1

���bqr�� (for Model IV ah0ij � 0), then the economy

described by (1.6) and (1.2), Model II ((1.13) and (1.2), Model IV), in which all roots

of �b de�ned in (1.9) for Model II and in (1.16) for Model IV lie inside the unit circle, is

�-stable under heterogeneous RLS learning.

Proof. See Appendix A.7.16. �

1.5.3 Su¢ cient conditions for �-stability in terms of E-stability of max-

imal aggregate economies

However, the propositions above do not give a real rule of thumb (as they im-

ply looking for systems of weights) that could be used to say if a particular economy is

stable under heterogeneous learning. For this purpose, I go even further looking for up-

per boundaries by considering not only any possible signs of aij ; but also the values of

weights  and �. These boundaries can be derived for four di¤erent subsets of limiting

aggregate economies (Models I and III under mixed RLS/SG learning in the diagonal

environment) and for economies from the corresponding sets of current value aggregate

expectation models (Models I, II, III, and IV under heterogeneous RLS learning in the
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Subset �AGmaxs =

s = 1  �any, ��any max
l
S
P
j
max
h;i

���ah0ij + �lah1ij + :::+ ��l ah�ij���
s = 2  �any, � = 1

S max
l
max
i

P
h

P
j

���ah0ij + �lah1ij + :::+ ��l ah�ij���
s = 3  = 1

n , ��any max
l
S
P
i
max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij���
s = 4  = 1

n , � =
1
S max

l

P
h

max
j

P
i

���ah0ij + �lah1ij + :::+ ��l ah�ij���
Table 1.1: Maximal aggregate ��coe¢ cients for maximal aggregate economies for the
associated current value expectations models corresponding to models without lags (Model
I and Model III) under mixed RLS/SG learning in the diagonal case

general (non-diagonal) case) depending on the weights  and �: with arbitrary weights

of agents and endogenous variables, and with either equal weights of agents, 1S ; or equal

weights of endogenous variables, 1n , or both.

So, I formulate the following de�nitions.

De�nition 1.11 Given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agent types �h > 0,
SX
h=1

�h = 1, each aggregate economy from a

particular subset of limiting aggregate economies for the set of associated current value

expectations models corresponding to Model I (III) under mixed RLS/SG learning in the

diagonal case is bounded above by the following maximal aggregate economy

for Model I:

yAGt =
P
i
 iyit � yAGmodt =

P
i
 i jyitj � yAGmaxt =

=
P
i
 i j�ij+ �AGmaxs ÊAGmaxt�1

�
yAGmaxt

�
+

�����P
i
 iB

i

�
wt

����+ �����P
i
 i&

i

�
"t

���� ;
for Model III:

yAGt =
P
i
 iyit � yAGmodt =

P
i
 i jyitj � yAGmaxt =

=
P
i
 i j�ij+ �AGmaxs ÊAGmaxt�1

�
yAGmaxt

�
+

�����P
i
 iB

i

�
wt

����+ �����P
i
 i&

i

�
"t

����,
where �AGmaxs is de�ned in Table 1.1 (for Model III ah0ij = 0).

Note 1.1 This set of maximal aggregate ��coe¢ cients extends the set derived in Bogo-

molova and Kolyuzhnov [5] and Kolyuzhnov [40]. All of the above coe¢ cients have the

same structure (except for discounting) as in these papers. However, I have been able to

�nd that it is possible to determine a lower boundary for the third set, thus obtaining a
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smaller aggregate coe¢ cient than in these papers. This coe¤cient is

max
l
Smax

h;j

P
i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� :
It can be shown that if it is less than one, then the economy is �-stable (Take  i =

1
n ; 'h =

1
S in the corresponding proposition). However, this coe¢ cient, valid for the diagonal (sym-

metric) structure, as is shown below, does not allow for the �-stability condition (in terms

of the column type coe¤cients) in the non-diagonal case, and instead, the coe¢ cient gen-

erated in these two papers must be used.

Also though it is not mentioned in the papers cited above, it is clear that the

maximal aggregate �-coe¢ cient for the second set is always no greater than the maximal

aggregate �-coe¤cient for the �rst set and that the maximal aggregate �-coe¢ cient for

the fourth set is always no greater than the maximal aggregate �-coe¢ cient for the third

set. This means that I can use only the second and fourth �-coe¢ cients in the su¢ cient

conditions for �-stability, as they provide stronger conditions for �-stability and include

a set of �-stable economies generated by the conditions on greater maximal aggregate �-

coe¢ cients. However, I prefer to mention all four maximal aggregate �-coe¢ cients as the

�rst and third aggregate �-coe¢ cients (namely, their structure) turn out to be quite useful

for su¢ cient conditions analyzed further in this paper in non-symmetric (non-diagonal)

cases.

It can also be shown that all economies from all four sets are bounded above by

the "universal" maximal aggregate ��coe¢ cient nSmax
i;j;h

���ahij��� : It can be shown that if it
is less than one, then the economy is �-stable (Take  i =

1
n ; 'h =

1
S in the corresponding

proposition). It provides the weakest su¢ cient condition and the narrowest set of ��

stable economies among the ones considered.

De�nition 1.12 Given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agent types �h > 0,
SX
h=1

�h = 1, each economy from a particular

subset of aggregate economies from the corresponding set of current value aggregate expec-

tation models for the limiting aggregate economy for the economy described by (1.3) and

(1.2), Model I ((1.10) and (1.2), Model III) is bounded above by the following maximal
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Subset Type �AGmaxweighted s

s = 1 f�row max
l
S
P
j
max
h;i

����ah0ij���+Pk
r=1 jflrj

���ah1ij���+ :::+Pk
r=1 jf �lrj

���ah�ij����
s = 2 f�column max

l
max
i

P
h

P
j

����ah0ij���+Pk
r=1 jfrlj

���ah1ij���+ :::+Pk
r=1 jf �rlj

���ah�ij����
s = 3 f�column max

l
S
P
i
max
h;j

����ah0ij���+Pk
r=1 jfrlj

���ah1ij���+ :::+Pk
r=1 jf �rlj

���ah�ij����
s = 4 f�row max

l

P
h

max
j

P
i

����ah0ij���+Pk
r=1 jflrj

���ah1ij���+ :::+Pk
r=1 jf �lrj

���ah�ij����
Table 1.2: Maximal aggregate ��coe¢ cients for maximal aggregate economies for the
current value aggregate expectation model for models without lags (Model I and Model
III (with ah0ij � 0))

aggregate economy

yAGt =
X
i

 iyit � yAGmodt =
P
i
 i jyitj � yAGmaxt =

=
P
i
 i j�ij+ �AGmaxweighted s Ê

AGmax
weighted l t�1

�
yAGmaxt

�
+

+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

���� ;
where �AGmaxweighted s is de�ned in Table 1.2.

Similar de�nitions can be formulated for Models II and IV.

De�nition 1.13 Given the weights of aggregation across endogenous variables  i > 0,
nX
i=1

 i = 1, and across agent types �h > 0,
SX
h=1

�h = 1, each aggregate economy from the

corresponding set of current value aggregate expectation models for the limiting aggregate

economy for the associated "unlagged" economy of an economy described by (1.6) and

(1.2), Model II ((1.13) and (1.2), Model IV) is bounded above by the following maximal

aggregate economy

for Model II:

yAGt =
X
i

 iyit � yAGmodt =
P
i
 i jyitj � yAGmaxt =

=
P
i
 i j�ij+ �AGmaxweighted s Ê

AGmax
weighted l t�1

�
yAGmaxt

�
+

+

�����
 X

i

 iB
i

!
wt

�����+
�����P

i
 i&

i

�
"t

���� ; (1.2);
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Model Type Subset �AGmaxweighted s

f�row s = 1 max
l
S
P
j
max
h;i

����ah0ij + �Ah1�b�ij���+P
r
jflrj

���ah1ij����
f�column s = 2 max

l
max
i

P
h

P
j

����ah0ij + �Ah1�b�ij���+P
r
jfrlj

���ah1ij����
Model II f�column s = 3 max

l
S
P
i
max
h;j

����ah0ij + �Ah1�b�ij���+P
r
jfrlj

���ah1ij����
and f�row s = 4 max

l

P
h

max
j

P
i

����ah0ij + �Ah1�b�ij���+P
r
jflrj

���ah1ij����
Model IV b�row s = 1 max

q
S
P
j
max
h;i

����ah0ij + �Ah1�b�ij���+P
r

���bqr�� ���ah1ij����
(with ah0ij � 0) b�column s = 2 max

q
max
i

P
h

P
j

����ah0ij + �Ah1�b�ij���+P
r

���brq�� ���ah1ij����
b�column s = 3 max

q
S
P
i
max
h;j

����ah0ij + �Ah1�b�ij���+P
r

���brq�� ���ah1ij����
b�row s = 4 max

q

P
h

max
j

P
i

����ah0ij + �Ah1�b�ij���+P
r

���bqr�� ���ah1ij����
Table 1.3: Maximal aggregate ��coe¢ cients for maximal aggregate economies for the cur-
rent value aggregate expectation model for the associated "unlagged" economy of models
with lags (Model II, IV)

for Model IV:

yAGt =
X
i

 iyit � yAGmodt =
P
i
 i jyitj � yAGmaxt =

=
P
i
 i j�ij+ �AGmaxweighted s Ê

AGmax
weighted l t�1

�
yAGmodt

�
+

+

�����
 X

i

 i
�
BF�1

�i!
wt

�����+
�����P

i
 i&

i

�
"t

���� ; (1.2),
where �AGmaxweighted s is de�ned in Table 1.3 .

These maximal aggregate �-coe¢ cients are actually upper boundaries for

the corresponding �AGmodl ( ; �) and �AGmodweighted l ( ; �) for di¤erent subsets of aggregate

economies. Formally, the result can be written in the form of the following proposition.

Proposition 1.17 Maximal aggregate �-coe¢ cients de�ned in Tables 1.1, 1.2, and 1.3

are upper boundaries for �AGmodl ( ; �) and �AGmodweighted l ( ; �) for the corresponding subsets

of aggregate economies.

Proof. See Appendix A.7.17. �
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Thus, I have managed to aggregate the economy into one dimension and to

�nd the maximal aggregate economies that bound all such aggregate economies within a

particular subset. If one of these maximal aggregate economies for each type of the current

value aggregate expectation model is E-stable (i.e. if at least one of the maximal aggregate

�-coe¢ cients is less than one), then all aggregate subeconomies from a particular subset of

aggregate economies are E-stable. I have already mentioned the concept of a subeconomy,

and now I introduce its formal de�nition as this concept is convenient to use in proofs and

conditions for �-stability.

De�nition 1.14 A subeconomy (h1; :::; hp) of size p for economy (1.1) and (1.2) is

de�ned as consisting only of a part of the agents from the original economy:

yt = �+
dP
i=1

Liyt�i +
pP

k=1

mP
b=0

nP
f=b

Ahkbf Ê
hk
t�byt�b+f +Bwt + �"t; A

hk
00 � 0; (1.46)

(1.2),

where (h1; :::; hp) � (1; :::; S) is a set of numbers of agent types present in the subeconomy.

A single economy is the particular case of a subeconomy with only one type of agent.

Now I am ready to formulate the result in two propositions for the model without

lags and with lags, respectively, which stresses the key role of E-stability of the aggregate

economy in the stability of the original, structurally heterogeneous economy under het-

erogeneous learning with possibly di¤erent degrees of inertia (recall Proposition 2 and

Proposition 3 in Honkapohja and Mitra [36]). The key results are as follows.

Proposition 1.18 If one of the maximal aggregate economies of the associated current

value expectations models for models without lags (Model I and Model III) under mixed

RLS/SG learning in the diagonal case is E-stable (i.e., one of the maximal aggregate �-

coe¢ cients is less than one), then the economy described by the original Model (I or III)

under mixed RLS/SG learning in the diagonal case is �-stable. Notice that all subeconomies

are also �-stable under this condition.

Proof. See Appendix A.7.18. �

It is also possible to write down su¢ cient conditions for �-stability for Models

without lags (I and III) under mixed RLS/SG learning in the diagonal case in terms
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of the E-stability of maximal aggregate economies of the original models (contrary to

the E-stability of maximal aggregate economies of the associated models in Proposition

1.18). These conditions, though more restrictive (stronger), are presented in the following

Corollary.

Corollary 1.19 If one of the maximal aggregate economies for the current value aggregate

expectation model for models without lags (Model I and Model III) under mixed RLS/SG

learning in the diagonal case is E-stable (i.e., one of the maximal aggregate �-coe¢ cients

is less than one), then the economy described by the original Model (I or III) under mixed

RLS/SG learning in the diagonal case is �-stable. Notice that all subeconomies are also

�-stable under this condition.

Proof. It is easy to notice that the aggregated �-coe¢ cients from Table 1.1 are less

than or equal to the corresponding aggregated �-coe¢ cients for the maximal aggregate

economies of this Corollary.

max
l
S
P
j
max
h;i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� � max
l
S
P
j
max
h;i

����ah0ij���+ j�lj ���ah1ij���+ :::+ j��l j ���ah�ij����
max
l
max
i

P
h

P
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� � max
l
max
i

P
h

P
j

����ah0ij���+ j�lj ���ah1ij���+ :::+ j��l j ���ah�ij����
max
l
S
P
i
max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� � max
l
S
P
i
max
h;j

����ah0ij���+ j�lj ���ah1ij���+ :::+ j��l j ���ah�ij����
max
l

P
h

max
j

P
i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� � max
l

P
h

max
j

P
i

����ah0ij���+ j�lj ���ah1ij���+ :::+ j��l j ���ah�ij����
Thus, if one of the latter coe¤cients is less than one, this means that the corresponding

former coe¢ cient is less than one, which leads to ��stability of the original economy by

Proposition 1.18. �

Remark 1.2 The E-stability condition for all �l-types of maximal aggregate economies for

the current value aggregate expectation model for models without lags (Model I and III) is

equivalent to the E-stability condition for the maximal aggregate economies for the current

value aggregate expectation model for models without lags (Model I and III) with �0 = 1.

Thus, this condition alone is su¢ cient for the �-stability of Models I and III under mixed

RLS/SG learning in the diagonal case.

Proposition 1.20 If one of the maximal aggregate economies for the current value aggre-

gate expectation model for models without lags (Model I and Model III) under heterogeneous
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RLS learning in the general (non-diagonal) case is E-stable (i.e., one of the maximal ag-

gregate �-coe¢ cients is less than one), then the economy described by the original Model

(I, III) under heterogeneous RLS learning in the general (non-diagonal) case is �-stable.

Notice that all subeconomies are also �-stable under this condition.

Proof. See Appendix A.7.19. �

Proposition 1.21 If one of the maximal aggregate economies of each type ( f-type and b-

type) of current value aggregate expectation model for the associated "unlagged" economy

of models with lags (Model II and Model IV) under heterogeneous RLS learning in the

general (non-diagonal) case is E-stable (i.e., one of the maximal aggregate �-coe¢ cients

is less than one), then the economy described by the original Model (II or IV), in which

all roots of �b de�ned in (1.9) for Model II and in (1.16) for Model IV lie inside the unit

circle, is �-stable under heterogeneous RLS learning in the general (non-diagonal) case.

Proof. See Appendix A.7.20. �

It is possible to derive less restrictive (weaker) su¢ cient conditions for �-stability

of models with lags under heterogeneous RLS learning in the diagonal environment case.

They could be received as a Corollary to Propositions 1.18 and 1.21 above using the su¢ -

cient conditions for �-stability under heterogeneous RLS models with lags in Propositions

1.5 and 1.10. First, (due to Propositions 1.5 and 1.10) the stability properties of the MSV

REE under heterogenous RLS of the associated "unlagged" economy of Models with lags

(II, IV), similarly to the results for Models I and III, in the diagonal environment case

are equivalent to the simultaneous stability of the MSV REE of the set of the associated

current value expectations models (re�ecting stability of D1
�l).

Model II and Model IV (with Ah0 � 0)

yt = �+
SP
h=1

(Ah0 +
�
Ah1
�b
�
+ �lA

h
1)Ê

h
t�1yt +Bwt + �"t; (1.47)

and (1.2)

and of matrix Dy
b. The �rst part of the conditions gives the �rst part of the su¢ cient

condition in terms of maximal aggregate economies of associated current value expectations

models for models with lags as in Proposition 1.18. The second part of the conditions gives

the second part of the su¢ cient conditions in terms of b-type aggregation as in Proposition

1.21. The result is re�ected in the following Corollary.
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Model Type Subset �AGmaxweighted s

Model II f�row s = 1 max
l
S
P
j
max
h;i

���ah0ij + �Ah1�b�ij + �lah1ij���
and f�column s = 2 max

l
max
i

P
h

P
j

���ah0ij + �Ah1�b�ij + �lah1ij���
Model IV f�column s = 3 max

l
S
P
i
max
h;j

���ah0ij + �Ah1�b�ij + �lah1ij���
(with ah0ij � 0) f�row s = 4 max

l

P
h

max
j

P
i

���ah0ij + �Ah1�b�ij + �lah1ij���
Table 1.4: Maximal aggregate ��coe¢ cients for maximal aggregate economies of the asso-
ciated current value expectations models under heterogeneous RLS learning in the diagonal
case for the associated "unlagged" economy of models with lags (Model II and Model IV)

Corollary 1.22 If for the associated "unlagged" economy of models with lags (Model

II and Model IV) under heterogeneous RLS learning in the diagonal case, at least one

of the exonomies from the set that includes both the maximal aggregate economies of the

associated current value expectations models and the maximal b-type aggregate economies

of the current value aggregate expectation model is E-stable (i.e., one of the maximal

aggregate �-coe¢ cients de�ned in Table 1.3 (for b-type) and in Table 1.4 is less than

one), then the economy described by the original Model (II or IV), in which all roots of

�b de�ned in (1.9) for Model II and in (1.16) for Model IV lie inside the unit circle, is

�-stable under heterogeneous RLS learning in the diagonal case.

1.6 Conclusion

In my paper I extend the results of Honkapohja and Mitra [36], Bogomolova and

Kolyuzhnov [5], and Kolyuzhnov [40]. I provide the general criteria for stability under het-

erogeneous mixed RLS/SG learning for four classes of models considered: models without

lags and with lags of the endogenous variable and with t- or t� 1-dating of expectations.

I also provide conditions for stability and �-stability in some simpler cases, where sim-

pli�cations include the diagonal structure of the shock process behaviour, heterogeneous

RLS learning, and equal degrees of inertia for each type of learning algorithm. The results

on su¢ cient conditions for �-stability in terms of the E-stability of an aggregate economy

derived in this paper are primarily based upon the negative diagonal dominance approach.

The results based on the alternative de�nition of D-stability and the necessary conditions

based on the characteristic equation approach in terms of the "same sign" conditions and
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the E-stability of a suitably de�ned average economy and its subeconomies are considered

in a companion paper.

All the results of this paper can be summarized as follows.

I provide (in terms of stability of the corresponding Jacobian matrices):

� for the case of a general (non-diagonal) structure of the shock, general criteria

for stability under heterogeneousmixed RLS/SG learning in terms of structural

and learning heterogeneity for all types of models considered: models without lags

and with lags of the endogenous variable and with t- or t� 1-dating of expectations.

� for the case of a diagonal structure of the shock, criteria for stability under

heterogeneous mixed RLS/SG learning in terms of structural and learning het-

erogeneity for models without lags of the endogenous variable of both types.

� su¢ cient conditions for stability for the case of a general (non-diagonal) struc-

ture of the shock under heterogeneous RLS learning in terms of structural and

learning heterogeneity for models with lags of the endogenous variable of both types.

For the case of a general (non-diagonal) structure of the shock, I provide cri-

teria for stability under heterogeneous mixed RLS/SG learning with equal degrees

of inertia of agents for each type of learning algorithm in terms of structural and

learning heterogeneity for all types of models considered in terms of the stability of a suit-

ably de�ned, structurally heterogeneous, average economy under heterogeneous learning

of two agents.

I provide su¢ cient conditions for �-stability (that is, the stability that does

not depend on such learning heterogeneity characteristics as di¤erent degrees of inertia

and di¤erent starting values of learning algorithms) in terms of E-stability of suitably

de�ned maximal aggregate economies:

� for the case of a diagonal structure of the shock for models without lags of endoge-

nous variables under heterogeneous mixed RLS/SG learning,

� for the case of a general (non-diagonal) structure of the shock for all types of

models considered under heterogeneous RLS learning,

� and (as a mixture of the above) for the case of a diagonal structure of the shock for

all types of models considered under heterogeneous RLS learning.
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Though for the ease of exposition of models with lags, I considered the models

with one lag of the endogenous variables and one lead of expectations; the results derived

are easily extendable for models with a larger amount of lags and leads. The unconsidered

case of a forward-looking model with a lag when the information set includes current value

of the endogenous variable to be used to predict the future value of this variable clearly

falls under this paper�s technical constructions with some modi�cations and is a matter

for my future research.

The fundamental nature of the approach adopted in the paper allows one to apply

its results to a vast majority of the existing and prospective linear and linearized economic

models (including estimated DSGE models) with the adaptive learning of agents.
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Chapter 2

Heterogeneous Learning: Beyond

The Aggregate Economy Su¢ cient

Conditions for Stability
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Abstract

I provide criteria and su¢ cient and necessary conditions for the stability of a structurally
heterogeneous economy under the heterogeneous learning of agents, thus extending the
results of Honkapohja and Mitra [36], Bogomolova and Kolyuzhnov [5], Kolyuzhnov [40],
and Bogomolova [4]. Using the alternative de�nition of the D-stability approach, I provide
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2.1 Introduction

Adaptive learning is a form of bounded rationality that has arisen to question

the rational expectations (RE) hypothesis usually used in macroeconomic models with

expectations1. One of the widely used forms of adaptive learning is adaptive learning à la

Evans and Honkapohja or the adaptive econometric learning where agents are considered

as econometricians who update the estimated parameters of their forecast functions using

statistical (econometric) approaches each time new information arrives. The essence of

such an approach is well advocated by Sargent: If economists themselves do not know

true models and have to estimate them econometrically, then we should not expect more

from economic agents in general. Thus, it is suggested to consider them as behaving in a

way that resembles the behaviour of econometricians (or statisticians). One of the roles of

adaptive learning then, is to check the validity of the RE hypothesis, whether agents may

learn to be rational; that is, whether a particular model under adaptive learning would

converge to an RE equilibrium (REE).

Another hypothesis made in macroeconomic models that has to be questioned

is related to adaptive learning itself. Usually it is assumed that agents in the model use

the same learning procedure � the case of the so called homogeneous adaptive learning

is considered. A question arises whether the stability properties generated by homoge-

neous learning based on the representative agent hypothesis are replicated in the case of

heterogeneous adaptive learning when agents di¤er in the way they learn. This question

is studied e.g. in Giannitsarou [31], who assumes that agents are homogeneous in all re-

spects but in the way they learn; Honkapohja and Mitra [36], who consider a structurally

heterogeneous economy meaning that, other than heterogeneity in learning, agents may

also di¤er in structural parameters such as technologies, preferences, etc.; Bogomolova and

Kolyuzhnov [5] and Kolyuzhnov [40], who consider conditions for stability independent of

heterogeneity in the learning of a structurally heterogeneous forward-looking model with

one lead in expectations and with the diagonal structure of shocks; and in a companion

paper by Bogomolova [4].

Heterogeneity in learning in these papers comes in the form of di¤erent types

of learning algorithms used by agents, di¤erent speeds of reacting to innovations, di¤er-

ent initial perceptions and di¤erent shares of agents using a particualr type of learning

1including DSGE models
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algorithm. The structure of a typical learning algorithm assumes that the updated be-

lief parameter (in the simplest case, it is the regression coe¢ cient, and in a recursive

least squares (RLS) algorithm, it also includes elements of the second moments matrix)

equals the previous value of the parameter plus the gain coe¢ cient (usually presented by

a decreasing-in-time sequence) multiplied by the error correction function that depends

on the most recent forecast error. The di¤erent types of learning algorithms are presented

by the RLS (derived as a recursive formulation of usual least squares) and the stochastic

gradient (SG) algorithms, where the former di¤ers from the latter only by the fact that

it updates the second moments matrix, while the latter keeps it �xed, which allows us

to model "less sophisticated" agents. The di¤erent speeds of reacting to innovation in

the simplest case are modeled as relative weights before the gain sequence common for

all agents. Di¤erent initial perceptions, in turn, are modeled as di¤erent starting values

for learning algorithms for di¤erent agents. The type of heterogeneous learning that en-

compasses all types of learning heterogeneity is presented by learning when some agents

use RLS and others use SG, and all of them have di¤erent degrees of inertia and di¤erent

starting values for learning. This type of learning is called heterogeneous mixed RLS/SG

learning with di¤erent degrees of inertia.

In my paper, I, following Bogomolova and Kolyuzhnov [5], Kolyuzhnov [40], and

Bogomolova [4], solve the open question posed by Honkapohja and Mitra [36]: to �nd

the conditions for stability of a structurally heterogeneous economy under mixed RLS/SG

learning with (possibly) di¤erent degrees of inertia in terms of structural heterogeneity

only, independent of heterogeneity in learning.

Though Honkapohja and Mitra [36] have formulated a general criterion for such

a stability and have been able to solve for su¢ cient conditions for the case of a univariate

model (a model with one endogenous variable), they did not derive the conditions (neces-

sary and/or su¢ cient) in terms of the model�s structure only, independent of the learning

characteristics, for the general forward-looking (multivariate) case. Though Bogomolova

and Kolyuzhnov [5] and Kolyuzhnov [40] consider conditions for stability irrespective of

heterogeneity in learning, they consider only a forward-looking model with one lead and

without lags of the endogenous variable and the diagonal environment case that implies a

diagonal structure of the AR (1) coe¢ cients matrix in the shock process. It leaves aside

many economic models, such as DSGE models with a lag of the endogenous variable. In
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the companion paper, I substantially extend the results of Honkapohja and Mitra [36],

Bogomolova and Kolyuzhnov [5], and Kolyuzhnov [40]. There I provide su¢ cient condi-

tions for stability under heterogeneous mixed RLS/SG learning for four classes of models:

models without lags and with lags of the endogenous variable and with t- or t�1-dating of

expectations, and provide su¢ cient conditions for stability for some simpler cases, where

simpli�cations include either the diagonal structure of the shock process or heterogeneous

RLS learning. However, that paper provides only one part of the results for stability, in-

dependent of heterogeneity in learning, which follows mainly from the particular approach

to studying stability, namely, the so-called negative diagonal dominance approach.

In the current paper, I also consider the same four types of classes considered in

the companion paper by Bogomolova [4] and use the same concept of stability independent

of the learning characteristics de�ned there (that slightly di¤ers from the de�nition in

Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40]: it does not include shares of agents

using a particular type of learning algorithm); and I study the stability properties of the

mimimal state variable rational expectations equilibrium solution (MSV REE) of these

models under heterogeneous mixed RLS/SG learning.

The stability properties of the MSV REE of the models written in the form

of SRAs (the theory on SRA representation of models and stability results for SRAs

can be found e.g. in Evans and Honkapohja [24]) can be studied using the associated

ordinary di¤erential equations (ODEs). Studying the stability of the MSV REE under

the associated ODEs is, in turn, transformed (using �rst-order approximations around the

MSV REE) into studying the stability of the corresponding �rst-order derivatives matrices

of the right-hand side of the ODEs evaluated at the REE, that is, the Jacobians.

The problem of �nding the conditions for stability of the corresponding Jacobians

results in �nding conditions for stability of a matrix (matrices) of a D
 type, where

D is a positive diagonal matrix. The problem of D-stability was studied, for example,

in Johnson [37]. There are several approaches considered to tackle this problem, e.g.,

in Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40]. Among these approaches are

the negative diagonal dominance approach2, the alternative de�nition of the D-stability

approach3, the characteristic equation approach, the Routh-Hurwitz conditions4 and an

2See Theorem A.4 in Appendix A.4.
3See Theorem A.6 in Appendix A.6.
4See Theorem A.5 in Appendix A.5.
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approach based on the Lyapunov Theorem5. The description and discussion of these

approaches can be found, for example, in Bogomolova [4]6

While in that companion paper I essentially use the negative diagonal dominance

approach, which allows me to derive a su¢ cient condition for the D-stability of matrices

due to the MacKenzie Theorem7, here I look at the problem from a di¤erent angle and

try to �nd the conditions for stability that are not possible to derive using that approach.

I use the alternative de�nition of D-stability approach, which means that the

problem of D-stability can be equivalently substituted with the problem of �nding the

stability of 
 and checking that i is not an eigenvalue of some specially constructed matrix.

Moreover, matrix D in all the models considered is not only a positive diagonal matrix,

but its diagonal consists of blocks of the same numbers of equal length. It has allowed

Kolyuzhnov [40] to introduce the de�nition of blocked D-stability (Db-stability). The

alternative de�nition of Db-stability allows me to write down the criteria for stability

under heterogeneous mixed RLS/SG learning for all four classes of models considered in

the general (non-diagonal) case. Using this approach, I also derive simpli�ed alternative

(to the criteria written in terms of the corresponding Jacobian matrices in Kolyuzhnov [40]

and Bogomolova [4]) criteria for the stability of models without lags of both types with

the diagonal structure of shocks. It also allows me to derive alternative (to the su¢ cient

conditions written in terms of the corresponding Jacobian matrices in Bogomolova [4])

su¢ cient conditions (in terms of structural and learning heterogeneity) for stability of

models with lags of the endogenous variable of both types with the general (non-diagonal)

structure of shocks under heterogeneous RLS learning.

Thus, combined with the blocked structure of matrix 
; this Db-stability allows

me to obtain �ner results for su¢ cient conditions, which in simple univariate cases turn

into the weakest possible su¢ cient conditions, thus becoming necessary and resulting in a

criterion. The �rst (companion) paper (Bogomolova [4]) does not provide a criterion for �-

stability under general heterogeneous mixed RLS/SG learning. Kolyuzhnov [40] provides a

criterion only for a univariate model of the forward-looking type with one expectation lead

and no lags of the endogenous variable. Here, I provide criteria for �-stability for univariate

models (with either t- or t � 1-dating of expectations) without lags of the endogenous
5See Theorem A.2 in Appendix A.3.
6See Apppendix A of that paper for formal de�nitions.
7See Theorem A.4 in Appendix A.4
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variable under mixed RLS/SG learning in economically meaningful terms. I also provide

quite weak, economically tractable, su¢ cient conditions for �-stability in univariate models

with a lag of the endogenous variable. The results based on the alternative de�nition of

Db-stability produce forms of the "same sign" conditions as considered by Honkapohja

and Mitra [36]. In the simplest case, these conditions mean that the endogenous variable

reacts to the same sign changes in expectations of di¤erent agents in the same direction.

In addition, for all types of models with general (non-diagonal) structure of

shocks, using the characterisic equation approach, I provide (quite strong) necessary con-

ditions (in terms of structural and learning heterogeneity) for stability and �-stability

under heterogeneous mixed RLS/SG learning written in terms of stability of a suitably

de�ned structurally heterogeneous average economy under heterogeneous learning of two

agents. Using the same approach, for models without lags of endogenous variables with

general (non-diagonal) structure of shocks, I provide necessary conditions for stability and

�-stability under heterogeneous mixed RLS/SG learning written in terms of subeconomies

for economies from a set of associated current value expectations models. Quite strong

necessary conditions can be used as an easy quick test for non-�-stability.

The fundamental nature of the approach adopted in the paper allows one to apply

its results to a vast majority of the existing and prospective linear and linearized economic

models with the adaptive learning of agents. For example, those include (estimated) DSGE

models with the introduced learning of agents. In this sense, the results derived could

be very helpful in terms of checking the robustness of a particular DSGE model8 to an

expectation formation hypothesis, that is usually taken to be RE, and the validity of the

representative agent assumption.

The rest of the paper is structured as follows. In the next section, I present

the four classes of structurally heterogeneous models under the heterogeneous adaptive

learning of agents. Section 3 provides the starting point for my derivations in the paper

8A typical DSGE model in structural form looks like

A0

�
yt�1
wt�1

�
+A1

�
yt
wt

�
+A2Etyt+1 +B0"t = const:

After estimating (for example by DYNARE [38]), the solution of the model under rational expectations
is given by �

yt
wt

�
= �+ T

�
yt�1
wt�1

�
+R"t:

See, for example, Slobodyan and Wouters [53].
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� the results of the companion paper (Bogomolova [4]) in the form of criteria and su¢ cient

conditions for stability under heterogeneous learning for each class of models considered

in general and simpler cases and formulates the concepts of heterogeneous expectational

stability and of �-stability. In Section 4, using the alternative de�nition of D-stability

approach, I provide the alternative, to those in Section 3, general criteria and su¢ cient

conditions for stability for the general case and for some simpler cases discussed above

for all classes of models considered. In the same section, I also provide the criteria for

�-stability for univariate models without lags of the endogenous variable under mixed

RLS/SG learning in economically meaningful terms, such as the "same sign" conditions

and the E-stability of a suitably de�ned average economy and its subeconomies. There I

also provide quite weak su¢ cient conditions for �-stability for univariate models with a lag

of the endogenous variable using the same economic terms and provide the "same sign"

su¢ cient conditions for �-stability for bivariate models without lags of the endogenous

variables in the diagonal environment case. In Section 5, for all model classes, using the

characteristic equation approach, I provide a set of quite strong, economically tractable,

necessary conditions. Section 6 concludes with a summary of the results.

2.2 The setup of linear model classes under heterogeneous

adaptive learning

2.2.1 Classes of structurally heterogeneous linear models with expecta-

tions

As earlier stated, I consider the same general setup of structurally heterogeneous

linear models with expectations and four classes of models: models without lags and

with lags of the endogenous variable with t- or t � 1-dating of expectations, analyzed

in Bogomolova [4]9. The reduced form of the general class of structurally heterogeneous

linear models with S types of agents with di¤erent forecasts is given by

yt = �+
dP
i=1

Liyt�i +
SP
h=1

mP
b=0

nP
f=b

Ahbf Ê
h
t�byt�b+f +Bwt + �"t; A

h
00 � 0; (2.1)

wt = Fwt�1 + vt; (2.2)

9Here I provide a brief description of the setup in that paper. For a full description of models and
discussion, please see Bogomolova [4].
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where yt is an n � 1 vector of endogenous variables; wt is a k � 1 vector of exogenous

variables; vt and "t are vectors of (independent) white noise shocks; Êht yt+1 are (in general,

non-rational) expectations of the vector of endogenous variables by agent h; Li, Ahbf , B,

and � are conformable matrices. Further, it is assumed that F (a k � k matrix) is such

that wt follows a stationary VAR(1) process with Mw = limt!1wtw
0
t being a positive

de�nite matrix.

The structural heterogeneity of the model is expressed through matrices Ahbf =

�h � ~Ahbf , with �h being the mass of each agent type, where ~Ahbf�s (that in the general case are

di¤erent for di¤erent types of agents) contain structural parameters characterizing a given

economy, such as the basic characteristics of agents: preferences, technology, endowments,

etc. When ~Ahbf = Abf ; 8 h; and
P
�h = 1; the economy is structurally homogenous.

The four classes of models10 are obtained with the following parameter values:

d = 0; m = 1; n -any, Ah0f � 0 (Model I); d = 1; m = 1; n = 2, Ah0f � 0 (Model II); d = 0;

m = 0; n -any (Model III); and d = 1; m = 0; n = 1 (Model IV).

The �rst group of classes of models considered are the two classes of structurally

heterogeneous models with t� 1-dating of expectations, where the �rst class (Model I) is

presented by models without lags of the endogenous variable

yt = �+
SP
h=1

Ah0Ê
h
t�1yt +

SP
h=1

Ah1Ê
h
t�1yt+1 + :::+

SP
h=1

Ah� Ê
h
t�1yt+� +Bwt + �"t;(2.3)

and (2.2)

and the second class (Model II) is presented by models with one lag of the endogenous

variable and one forward-looking term in expectations

yt = �+ Lyt�1 +
SP
h=1

Ah0Ê
h
t�1yt +

SP
h=1

Ah1Ê
h
t�1yt+1 +Bwt + �"t; (2.4)

and (2.2);

with the de�nitions of variables and matrices being the same as for the general class of

structurally heterogeneous linear models with S types of agents with di¤erent forecasts

above.

The second group of classes of models considered are the two classes of struc-

turally heterogeneous models with t-dating of expectations, where the �rst class (Model

10Though my discussion here and in Bogomolova [4] is easily extendable to the general model setup, in
order to simplify the exposition of the results, I restrict my analysis to the examples used the most in the
literature.
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III) is presented by models without lags of the endogenous variable

yt = �+
SP
h=1

Ah1Ê
h
t yt+1 + :::+

SP
h=1

Ah� Ê
h
t yt+� +Bwt + �"t; (2.5)

and (2.2);

and the second class (Model IV)11 is presented by models with one lag of the endogenous

variable, the (1; y0t�1; w
0
t) information set, and one forward-looking term in expectations

yt = �+ Lyt�1 +
SP
h=1

Ah1Ê
h
t yt+1 +Bwt + �"t; (2.6)

and (2.2);

where the variables and the matrices are de�ned as above.

In all four classes of models, agents of each type h are assumed to form their ex-

pectations Êht�1yt+r, r = 0; 1; :::; � (in the case of t� 1-dating of expectations) or Êht yt+r,

r = 1; :::; � (in the case of t-dating of expectations) about the endogenous variables be-

lieving that the economic system follows a model called the agents�perceived law of

motion (PLM) that corresponds to the minimal state variable (MSV) rational

expectations equilibrium (REE) solution:

yt = ahh;t�1 + bh;t�1wt�1 (for Model I),

yt = ahh;t�1 + bh;t�1yt�1 + ch;t�1wt�1 (for Model II),

yt = ah;t + bh;twt (for Model III),

yt = ah;t + bh;tyt�1 + ch;twt (for Model IV).

After plugging the forecasts of each agent based on the corresponding PLM into

the reduced form of the model and then equating the parameters of the corresponding

mapping (called the T -map) from the parameters of the PLM to the parameters of the

actual law of motion (ALM), one may obtain the MSV REE in each class of mod-

els, with our main interest being in the matrix coe¢ cient before the lagged endogenous

11In order to keep the presentation of results concise, in this paper, I do not consider the case of
the (1; y0t; w

0
t) information set analyzed, for example, in Evans and Honkapohja [22] for a structurally

homogeneous economy under homogeneous learning. Instead, I consider a realistic situation where the
value of the endogenous variable at time t cannot be used to predict the future value of this variable since
it is not yet known. Thus, simultaneity between yt and Êh

t yt+1 is avoided. The case of the (1; y
0
t; w

0
t)

information set clearly falls under this paper�s technical constructions with some modi�cations and is a
matter for my future research.
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variables in Models II and IV

L+

SX
h=1

Ah0
�b+

 
SX
h=1

Ah1

!
�b2 = �b; (2.7)

where Ah0 � 0 for Model IV.

2.2.2 Heterogeneous adaptive learning in various classes of linear models

In all classes of structurally heterogeneous linear models with expectations pre-

sented above, it is assumed that agents use heterogeneous mixed RLS/SG learning

(discussed in the Introduction) when part of the agents, h = 1; S0, are assumed to use the

RLS learning algorithm, while others, h = S0 + 1; S, are assumed to use the SG learning

algorithm.

For classes of models with t� 1-dating of expectations (Model I and Model II)

RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;t+1zt

�
yt+1 � �0h;tzt

�0 (2.8a)

Rh;t+1 = Rh;t + �h;t+1
�
ztz

0
t �Rh;t

�
(2.8b)

SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt+1 � �0h;tzt

�0
: (2.9)

For classes of models with t-dating of expectations (Model III and Model IV)

RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;t+1zt

�
yt � �0h;tzt

�0 (2.10a)

Rh;t+1 = Rh;t + �h;t+1
�
ztz

0
t �Rh;t

�
(2.10b)

SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt � �0h;tzt

�0
; (2.11)

where z0t = (1; w
0
t) (Model I and III), z

0
t = (1; y

0
t; w

0
t) (Model II ), z

0
t = (1; y

0
t�1; w

0
t) (Model

IV); �0h;t = (ah;t; bh;t) (Model I and III), �0h;t = (ah;t; bh;t; ch;t) (Model II and IV); and

where

�h;t = �h�t;
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where �t is a deterministic, decreasing, and positive gain sequence that satis�es the usual

conditions:
1P
t=1

�t = 1,
1P
t=1

�2t < 1, and lim sup
t!1

��
1

�t+1

�
�
�
1

�t

��
< 1, �h > 0 are

degrees of inertia given here in the formulation of Giannitsarou [31] as constant coe¢ -

cients before the deterministic decreasing gain sequence in the learning algorithm, which

is common for all agents12.

In Bogomolova [4], I provide the criteria for stability under mixed RLS/SG learn-

ing of the MSV REE for all four classes of models in terms of the stability of the corre-

sponding Jacobian matrices. I present these results (without proof) here for the reader�s

convenience as I use them as a starting pont for the derivation of new results in this paper.

2.3 Criteria, su¢ cient conditions, and the concepts of HE-

and �-stability

Criterion 2.113 In economy (2.3) and (2.2), Model I ((2.5) and (2.2), Model III), mixed

RLS/SG learning converges globally (almost surely) to the minimal state variable (MSV)

solution if and only if the corresponding matrices D1
 and Dw
F have eigenvalues with

negative real parts, where

D1 = diag (�1In; :::; �SIn) ;


 =

0BBB@
A10 +A

1
1:::+A

1
� � In � � � AS0 +A

S
1 :::+A

S
�

...
. . .

...

A10 +A
1
1:::+A

1
� � � � AS0 +A

S
1 :::+A

S
� � In

1CCCA ; (2.12)

Dw=diag (Dw1,...,DwS) ;with Dwh=�hInk for h=1; S0 and Dwh=�h (Mw 
 In) for h=S0 + 1; S;


F=

0BBB@
F 0� 
A1�+...+F 0 
A11+Ik 
A10-Ink � � � F 0� 
AS�+...+F 0 
AS1+Ik 
AS0

...
. . .

...

F 0� 
A1�+...+F 0 
A11+Ik 
A10 � � � F 0� 
AS�+...+F 0 
AS1+Ik 
AS0 -Ink

1CCCA ;

and for Model III, Ah0 � 0:

Criterion 2.214 In economy (2.4) and (2.2), Model II ((2.6) and (2.2), Model IV), in

which all roots of �b de�ned in (2.7) lie inside the unit circle, mixed RLS/SG learning

12Honkapohja and Mitra [36] use a more general form of degrees of inertia.
13that corresponds to Criteria 1.1 and 1.6 in Bogomolova [4]
14that corresponds to Criteria 1.2 and 1.7 in Bogomolova [4]
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converges (almost surely) to the minimal state variable (MSV) solution if and only if the

corresponding matrix D1yw
1bF has eigenvalues with negative real parts, where

D1yw = diag (D1yw1; :::; D1ywS) ; with D1ywh = �hIn+n2+nk for h = 1; S0 and D1ywh =

�h (M1yw 
 In) for h = S0 + 1; S,


1bF =

2666664
R1 � In+n2+nk R1 � � � R1

R2 R2 � In+n2+nk � � � R2

...
...

. . .
...

RS RS � � � RS � In+n2+nk

3777775 ;

Rh =

26664
Ah1 +

�
Ah0 +A

h
1
�b
�

�a0 
Ah1 0

0 �b0 
Ah1 + In 

�
Ah0 +A

h
1
�b
�

0
... �c0 
Ah1 F 0 
Ah1 + Ik 


�
Ah0 +A

h
1
�b
�
37775,

and for Model IV, Ah0 � 0:

These necessary and su¢ cient stability conditions for all classes of models can

be conveniently presented as the requirement for stability of the matrix


KR =

2666666666664

�1
�
R1-I

�
� � � �1R

S0 �1R
S0+1 � � � �1R

S

...
. . .

...
...

. . .
...

�S0R
1 � � � �S0

�
RS0-I

�
�S0R

S0+1 � � � �S0R
S

�S0+1KR
1 � � � �S0+1KR

S0 �S0+1
�
KRS0+1-K

�
� � � �S0+1KR

S

...
. . .

...
...

. . .
...

�SKR
1 � � � �SKR

S0 �SKR
S0+1 � � � �S

�
KRS-K

�

3777777777775
;

(2.13)

where for Model I and Model III (with Ah0 � 0)

K =

24 1 0

0 Mw

35 ; Rh =
24 1 0

0 F 0�

35
Ah� + :::+
24 1 0

0 F 0

35
Ah1 + Ik+1 
Ah0 ;
and for Model II and Model IV (with Ah0 � 0)

K = (M1yw 
 In) ; M1yw =

24 M1y 0

0 Mw

35 ;
Rh =

26664
Ah1 +

�
Ah0 +A

h
1
�b
�

�a0 
Ah1 0

0 �b0 
Ah1 + In 

�
Ah0 +A

h
1
�b
�

0
... �c0 
Ah1 F 0 
Ah1 + Ik 


�
Ah0 +A

h
1
�b
�
37775 :

These conditions are written in terms of a mixture of structural and learning

heterogeneity. Similar to Bogomolova [4], here I refer to these conditions for the stability
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of an REE as heterogeneous expectational (HE-) stability (or stability in hetero-

geneous expectations) and refer to the stability of an REE written in terms of structural

heterogeneity only as �-stability. Formally, the de�nition of �-stability can be given in

the following way.

De�nition 2.1 �-stability is the stability of an REE under heterogeneous (either RLS,

SG, or mixed RLS/SG) learning for any positive values of degrees of inertia and any

starting values of learning algorithms.

Note that this de�nition does not include independence on shares of agents using

a particular type of learning algorithm, and in this sense, this de�nition di¤ers from the

one introduced in Bogomolova and Kolyuzhnov [5] and Kolyuzhnov [40].

It is possible to simplify the conditions written above for the diagonal structure

of the shocks process

F = diag(�1; :::; �k); Mw = lim
t!1

wtw
0
t = diag

�
�21
1��21

; :::;
�2k
1��2k

�
; (2.14)

and/or for the heterogeneous RLS learning (S = S0), or for the mixed RLS/SG learning

with equal degrees of inertia for each type of learning algorithm. Later, it will allow us

to derive su¢ cient conditions, necessary conditions (and criteria in some cases) that have

some economic meaning in terms of structural heterogeneity only, that is, conditions for

�-stability. The results from Bogomolova [4] are as follows.

Proposition 2.315 (The criterion for the stability of Model I (Model III) under mixed

RLS/SG learning for the diagonal environment case under any (possibly di¤erent) degrees

of inertia of agents, � > 0). In the structurally heterogeneous economy (2.3), (2.2), and

(2.14), Model I ((2.3), (2.2), and (2.14), Model III), mixed RLS/SG learning converges

globally (almost surely) to an MSV REE solution for any (possibly di¤erent) degrees of

inertia of agents, � > 0; if and only if matrices D1
�l are stable for any � > 0, where

D1 = diag (�1In; :::; �SIn) ; (2.15)


�l=

0BBB@
A10+�lA

1
1+...+�

�
l A

1
� -In � � � AS0+�lA

S
1+...+�

�
l A

S
�

...
. . .

...

A10+�lA
1
1+...+�

�
l A

1
� � � � AS0+�lA

S
1+...+�

�
l A

S
� -In

1CCCA ;8l=0; :::; k; (�0=1);

(2.16)

15that corresponds to Propositions 1.4 and 1.9 in Bogomolova [4]
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and for Model III, Ah0 � 0:

Proposition 2.416 (Su¢ cient conditions for the stability of the MSV REE of Model II

(IV) under heterogeneous RLS learning for the general (non-diagonal) environment case)

In economy (2.4) and (2.2), Model II ((2.6) and (2.2), Model IV), in which all roots of

�b de�ned in (2.7) lie inside the unit circle, heterogeneous RLS learning converges (almost

surely) to the minimal state variable (MSV) solution if the corresponding matrices D1
;

Dy
b; and Dw
F have eigenvalues with negative real parts, where D1 is given in (2.15),


 =

0BBB@
A10 +A

1
1 +A

1
1
�b� In � � � AS0 +A

S
1 +A

S
1
�b

...
. . .

...

A10 +A
1
1 +A

1
1
�b � � � AS0 +A

S
1 +A

S
1
�b� In

1CCCA ; (2.17)

Dy = diag (�1In2 ; :::; �SIn2) ; (2.18)


b =

0BBB@
�b0 
A11 + In 


�
A10 +A

1
1
�b
�
� In2 � � � �b0 
AS1 + In 


�
AS0 +A

S
1
�b
�

...
. . .

...

�b0 
A11 + In 

�
A10 +A

1
1
�b
�

� � � �b0 
AS1 + In 

�
AS0 +A

S
1
�b
�
� In2

1CCCA ;

(2.19)

Dw = diag (�1Ink; :::; �SInk) ; (2.20)


F =

0BBB@
F 0 
A11 + Ik 


�
A10 +A

1
1
�b
�
� Ink � � � F 0 
AS1 + Ik 


�
AS0 +A

S
1
�b
�

...
. . .

...

F 0 
A11 + Ik 

�
A10 +A

1
1
�b
�

� � � F 0 
AS1 + Ik 

�
AS0 +A

S
1
�b
�
� Ink

1CCCA ;

(2.21)

and for Model IV, Ah0 � 0:

Proposition 2.517 (Su¢ cient conditions for the stability of Model II (Model IV) under

heterogeneous RLS learning for the diagonal environment case under any (possibly di¤er-

ent) degrees of inertia of agents, � > 0) In the structurally heterogeneous economy (2.4),

(2.2), and (2.14), Model II ((2.6), (2.2), and (2.14), Model IV), in which all roots of �b

de�ned in (2.7) lie inside the unit circle, heterogeneous RLS learning converges (almost

surely) to an MSV REE solution for any (possibly di¤erent) degrees of inertia of agents,

16that corresponds to Corollaries 1.3 and 1.8 in Bogomolova [4]
17that corresponds to Propositions 1.5 and 1.10 in Bogomolova [4]
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� > 0; if matrices Dy
b and D1
�l are stable for any � > 0, where D1 is given in (2.15),


�l =

0BBB@
A10 + �lA

1
1 +A

1
1
�b� In � � � AS0 + �lA

S
1 +A

S
1
�b

...
. . .

...

A10 + �lA
1
1 +A

1
1
�b � � � AS0 + �lA

S
1 +A

S
1
�b� In

1CCCA ;8l = 0; :::; k; (�0 = 1);

(2.22)

and for Model IV, Ah0 � 0:

Proposition 2.618 (The criterion for stability under mixed RLS/SG learning with equal

degrees of inertia of agents for each type of learning algorithm, � > 0) In the structurally

heterogeneous economy (2.3) and (2.2), Model I ((2.5) and (2.2), Model III) or (2.4) and

(2.2), Model II ((2.6) and (2.2), Model IV), in which all roots of �b de�ned in (2.7) lie

inside the unit circle, mixed RLS/SG learning with equal degrees of inertia of agents for

each type of learning algorithm, �i = �RLS ; 8i = 1; :::; S0; �i = �SG; 8i = S0 + 1; :::; S;

converges globally (for Models I and III) or locally (for Models II and IV) (almost surely)

to an MSV REE, if and only if the REE is a locally asymptotically stable �xed point of the

corresponding average economy with two agents, de�ned for the general setup (2.1) and

(2.2) as

yt = �+
dP
i=1

Liyt�i +
mP
b=0

nP
f=b

�
S0P
h=1

Ahbf

�
ÊRLSt�b yt�b+f+ (2.23)

+
mP
b=0

nP
f=b

 
SP

h=S0+1

Ahbf

!
ÊSGt�byt�b+f +Bwt + �"t;

and (2.2), Ah00 � 0;

where the agent with coe¢ cients
�

S0P
h=1

Ahbf

�
learns by RLS with the degree of inertia �RLS ,

and the agent with coe¢ cients

 
SP

h=S0+1

Ahbf

!
learns by SG with the degree of inertia �SG.

As it is clear from the Propositions and Criteria above for the general and simpler

cases, the problem of �nding conditions for stability of the corresponding Jacobians results

in �nding conditions for stability of a matrix (matrices) of D
 type, where D is a positive

diagonal matrix. The problem of D-stability was studied, for example, in Johnson [37].

There are several approaches considered to tackle this problem, e.g., in Bogomolova and

Kolyuzhnov [5] and Kolyuzhnov [40]. Among these approaches are the negative diagonal

18that corresponds to Proposition 1.11 and De�nition 1.2 in Bogomolova [4]
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dominance approach19, the alternative de�nition of D-stability approach20, the character-

istic equation approach, the Routh-Hurwitz conditions21, and an approach based on the

Lyapunov Theorem22. The description and dicussion of these approaches can be found,

for example, in Bogomolova [4] (see Apppendix A.2 of that paper for formal de�nitions).

While in that companion paper I essentially use the negative diagonal dominance

approach, which allows me to derive the su¢ cient condition for the D-stability of matrices

due to the MacKenzie Theorem23 and �nally allows me to obtain su¢ cient conditions

written in terms of E-stability of suitably de�ned maximal aggregate economies for all

four classes of models for general and simpler cases, here I look at the problem from a

di¤erent angle and try to �nd conditions for stability that are not possible to derive using

that approach.

2.4 The alternative de�nition of D-stability approach and

the �same sign�su¢ cient conditions for �-stability

2.4.1 Alternative criteria and su¢ cient conditions

I use the alternative de�nition of D-stability approach, which means that the

problem of D-stability can be equivalently substituted with the problem of �nding condi-

tions for stability of 
 and checking that i is not an eigenvalue of some specially constructed

matrix. Moreover, matrix D in all the models considered is not only a positive diagonal

matrix, but its diagonal consists of blocks of the same numbers of equal length. It has

allowed Kolyuzhnov [40] to introduce a de�nition of blocked D-stability (Db-stability) and

an alternative de�nition of it.

De�nition 2.2 (Db-stability) Matrix A of size nS � nS is Db-stable if DbA is stable

for any positive blocked-diagonal matrix Db = diag(�1; :::; �1; :::; �S ; :::; �S).

Proposition 2.7 (An alternative de�nition of Db-stability) Consider MnS(C); the set of

all complex nS�nS matrices, and DbnS ; the set of all nS�nS blocked�diagonal matrices

with positive diagonal entries. Take A 2 MnS(C) and suppose there is F 2 DbnS such

that FA is stable. Then, A is Db-stable if and only if A � iDb is non�singular for all
19See Theorem A.4 in Appendix A.4.
20See Theorem A.6 in Appendix A.6.
21See Theorem A.5 in Appendix A.5.
22See Theorem A.2 in Appendix A.3.
23See Theorem A.4 in Appendix A.4.
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Db 2 DbnS. If A 2MnS(R) � the set of all nS�nS real matrices, then ���in the above

condition may be replaced with �+�since, for a real matrix, any complex eigenvalues come

in conjugate pairs.

Taking F as an identity matrix andD as diag( 1�1 ; :::;
1
�1
; :::; 1�S ; :::;

1
�S
), �h > 0; h =

1; S; in the alternative de�nition toDb-stability above, I obtain the following necessary and

su¢ cient conditions (alternative criteria) for stability under heterogeneous mixed RLS/SG

learning for all four classes of models considered in the general (non-diagonal) case:

Criterion 2.8 In the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5)

and (2.2), Model III) or (2.4) and (2.2), Model II ((2.6) and (2.2), Model IV), in which

all roots of �b de�ned in (2.7) lie inside the unit circle, mixed RLS/SG learning converges

globally (almost surely) to an MSV REE if and only if the corresponding matrix 
KR,

de�ned in (2.13), is stable and

det

"
S0P
h=1

�
�Rh
I� i

�h
I

�
+

SP
h=S0+1

�
�KRh
K� i

�h
I

�
+ I

#
=

= det

" 
S0P
h=1

1
I+ 1

�2
h

I
(�Rh) +

SP
h=S0+1

K
K2+ 1

�2
h

I
(�Rh) + I

!
+

+i

 
S0P
h=1

1
�h

I+ 1

�2
h

I
(�Rh) +

SP
h=S0+1

1
�h
K

K2+ 1

�2
h

I
(�Rh)

!#
6= 0

8�h > 0; h = 1; S;

where to shorten notation A
B means B�1A:

Proof. See Appendix B.1.1. �

The alternative de�nition to Db-stability approach allows me to write down sim-

pli�ed alternative stability criteria (to criteria in terms of the corresponding Jacobian

matrices [given in Proposition 2.3 here] in Kolyuzhnov [40] and Bogomolova [4]) for mod-

els without lags of both types (Models I and III) in the case of the diagonal structure of

the shock behaviour.

Proposition.2.9 (An alternative criterion for the stability of models without lags (Model

I and Model III) under mixed RLS/SG learning for the diagonal environment case under
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any (possibly di¤erent) degrees of inertia of agents, � > 0) In the structurally heteroge-

neous economy (1.3), (1.2), and (1.22), mixed RLS/SG learning (2.8), (1.20), and (1.4)

converges globally (almost surely) to an MSV REE solution for any (possibly di¤erent)

degrees of inertia of agents, � > 0; if and only if the corresponding matrix 
�l, de�ned in

(1.24), is stable and

det

�
SP
h=1

�
�(Ah0+�lAh1+:::+��l Ah� )

1+ i
�h

�
+ I

�
=

= det

" 
SP
h=1

�1
1+ 1

�2
h

�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
+ I

!
+

+i

 
SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�!#
6= 0;

8�h > 0; h = 1; S;8l = 0; 1; :::; k; (�0 = 1):

For the univariate case (n = 1), this condition simpli�es to 
�l � stable and 
SP
h=1

�1
1+ 1

�2
h

�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
+ 1

!
6= 0 or

SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
6= 0;

or both;8�h > 0; h = 1; S;8l = 0; 1; :::; k; (�0 = 1);

where Ah0 � 0 for model III everywhere above.

Proof. See Appendix B.1.2. �

This approach also allows me to write down alternative su¢ cient stability condi-

tions (to the su¢ cient conditions in terms of the corresponding Jacobian matrices [given in

Proposition 2.4 here] in Bogomolova [4]) for models with lags of the endogenous variable

of both types (Models II and IV) in the case of the general (non-diagonal) structure of

shocks under heterogeneous RLS learning � conditions written in terms of structural and

learning heterogeneity.

Proposition.2.10 (Alternative su¢ cient conditions for stability of models with lags

(Model II, IV) under heterogeneous RLS learning for the general (non-diagonal) envi-

ronment case under any (possibly di¤erent) degrees of inertia of agents, � > 0) In the

structurally heterogeneous economy (2.4) and (2.2), Model II ((2.6) and (2.2), Model IV),

in which all roots of �b de�ned in (2.7) lie inside the unit circle, heterogeneous RLS learn-

ing converges (almost surely) to an MSV REE solution for any (possibly di¤erent) degrees
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of inertia of agents, � > 0; if the corresponding matrices 
; 
b; and 
F de�ned in (2.17),

(2.19), and (2.21), respectively, are stable and

det

�
SP
h=1

�
�(Ah0+Ah1+Ah1�b)

1+ i
�h

�
+ I

�
=

= det

" 
SP
h=1

�1
1+ 1

�2
h

�
Ah0 +A

h
1 +A

h
1
�b
�
+ I

!
+ i

 
SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 +A

h
1 +A

h
1
�b
�!#

6= 0

8�h > 0; h = 1; S;

and

det

�
SP
h=1

�
�(�b0
Ah1+In
(Ah0+Ah1�b))

1+ i
�h

�
+ I

�
=

= det

" 
SP
h=1

�1
1+ 1

�2
h

�
�b0 
Ah1 + In 


�
Ah0 +A

h
1
�b
��
+ I

!
+

+i

 
SP
h=1

� 1
�h

1+ 1

�2
h

�
�b0 
Ah1 + In 


�
Ah0 +A

h
1
�b
��!#

6= 0

8�h > 0; h = 1; S;

and

det

�
SP
h=1

�
�(F 0
Ah1+Ik
(Ah0+Ah1�b))

1+ i
�h

�
+ I

�
=

= det

" 
SP
h=1

�1
1+ 1

�2
h

�
F 0 
Ah1 + Ik 


�
Ah0 +A

h
1
�b
��
+ I

!
+

+i

 
SP
h=1

� 1
�h

1+ 1

�2
h

�
F 0 
Ah1 + Ik 


�
Ah0 +A

h
1
�b
��!#

6= 0

8�h > 0; h = 1; S:

For the case n = 1; k = 1; this condition simpli�es to 
; 
b; and 
F � stable and 
SP
h=1

�1
1+ 1

�2
h

�
Ah0 +A

h
1 +A

h
1
�b
�
+ 1

!
6= 0 or

SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 +A

h
1 +A

h
1
�b
�
6= 0;

or both;8�h > 0; h = 1; S;

and  
SP
h=1

�1
1+ 1

�2
h

�
Ah0 + 2A

h
1
�b
�
+ 1

!
6= 0 or

SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 + 2A

h
1
�b
�
6= 0;

or both;8�h > 0; h = 1; S;
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and  
SP
h=1

�1
1+ 1

�2
h

�
Ah0 +A

h
1�+A

h
1
�b
�
+ 1

!
6= 0 or

SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 +A

h
1�+A

h
1
�b
�
6= 0;

or both;8�h > 0; h = 1; S:

For Model IV, Ah0 � 0 everywhere above.

Proof. See Appendix B.1.3. �

Su¢ cient conditions written above can be simpli�ed further by assuming also

the diagonal environment setting (2.14). This results in alternative su¢ cient stability

conditions (to su¢ cient conditions in terms of the corresponding Jacobian matrices [given

in Proposition 2.5 here] in Bogomolova [4]) for models with lags of the endogenous variable

of both types (Models II and IV) in the case of the diagonal structure of shocks under

heterogeneous RLS learning � conditions written in terms of structural and learning

heterogeneity .

Proposition.2.11 (Alternative su¢ cient conditions for stability of models with lags

(Model II, IV) under heterogeneous RLS learning for the diagonal environment case under

any (possibly di¤erent) degrees of inertia of agents, � > 0) In the structurally heteroge-

neous economy (2.4), (2.2), and (2.14), Model II ((2.6), (2.2), and (2.14), Model IV), in

which all roots of �b de�ned in (2.7) lie inside the unit circle, heterogeneous RLS learning

converges (almost surely) to an MSV REE solution for any (possibly di¤erent) degrees of

inertia of agents, � > 0; if the corresponding matrices 
�l and 
b, de�ned in (2.22) and

(2.19), are stable and

det

�
SP
h=1

�
�(Ah0+�lAh1+Ah1�b)

1+ i
�h

�
+ I

�
=

= det

" 
SP
h=1

�1
1+ 1

�2
h

�
Ah0 + �lA

h
1 +A

h
1
�b
�
+ I

!
+ i

 
SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 + �lA

h
1 +A

h
1
�b
�!#

6= 0

8�h > 0; h = 1; S;8l = 0; 1; :::; k; (�0 = 1);

and

det

�
SP
h=1

�
�(�b0
Ah1+In
(Ah0+Ah1�b))

1+ i
�h

�
+ I

�
=

= det

" 
SP
h=1

�1
1+ 1

�2
h

�
�b0 
Ah1 + In 


�
Ah0 +A

h
1
�b
��
+ I

!
+
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+i

 
SP
h=1

� 1
�h

1+ 1

�2
h

�
�b0 
Ah1 + In 


�
Ah0 +A

h
1
�b
��!#

6= 0

8�h > 0; h = 1; S:

For the univariate case (n = 1), this condition simpli�es to 
�l and 
b � stable and 
SP
h=1

�1
1+ 1

�2
h

�
Ah0 + �lA

h
1 +A

h
1
�b
�
+ 1

!
6= 0 or

SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 + �lA

h
1 +A

h
1
�b
�
6= 0;

or both;8�h > 0; h = 1; S;8l = 0; 1; :::; k; (�0 = 1);

and  
SP
h=1

�1
1+ 1

�2
h

�
Ah0 + 2A

h
1
�b
�
+ 1

!
6= 0 or

SP
h=1

� 1
�h

1+ 1

�2
h

�
Ah0 + 2A

h
1
�b
�
6= 0;

or both;8�h > 0; h = 1; S:

For Model IV, Ah0 � 0 everywhere above.

Proof. See Appendix B.1.4. �

2.4.2 The �same sign�su¢ cient conditions for �-stability

The alternative de�nition of Db-stability approach allows me to derive "same

sign" conditions, considered by Honkapohja and Mitra [36] for lower dimension cases

n = 1; 2; and necessary and su¢ cient conditions for �-stability for n = 1.

The �rst (companion) paper did not provide a criterion for �-stability in the

general heterogeneous mixed RLS/SG learning case. Kolyuzhnov [40] provides a criterion

only for the univariate model of the forward-looking type with one expectation lead and

no lags of the endogenous variable. Here, I provide criteria for �-stability for univariate

models (with either t- or t � 1-dating of expectations) without lags of the endogenous

variable (Models I and III) under mixed RLS/SG learning in economically meaningful

terms such as subeconomies.

De�nition 2.3 A subeconomy (h1; :::; hp) of size p for economy (2.1) and (2.2) is

de�ned as consisting only of a part of agents from the original economy:

yt = �+
dP
i=1

Liyt�i +
pP

k=1

mP
b=0

nP
f=b

Ahkbf Ê
hk
t�byt�b+f +Bwt + �"t; A

hk
00 � 0; (2.24)

(2.2),
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where (h1; :::; hp) � (1; :::; S) is a set of numbers of agent types present in the subeconomy.

A single economy is a particular case of a subeconomy with only one type of agent.

Before formulating the criteria for �-stability for univariate Models I and III under

mixed RLS/SG learning in the diagonal environment case, �rst note that the stability

properties of the MSV REE under mixed RLS/SG learning of Model I in the diagonal

environment case is equivalent to the ones of the MSV REE of the set of associated

current value expectations models24

yt = �+
SP
h=1

(Ah0 + �lA
h
1 + :::+ �

�
l A

h
� )Ê

h
t�1yt +Bwt + �"t; (2.25)

and (1.2):

Similarly, the stability properties of the MSV REE under mixed RLS/SG learning

of Model III in the diagonal environment case is equivalent to the ones of the MSV REE

of the set of associated current value expectations models

yt = �+
SP
h=1

(�lA
h
1 + :::+ �

�
l A

h
� )Ê

h
t�1yt +Bwt + �"t; (2.26)

and (1.2):

The next criterion is formulated in terms of this set of associated current value

expectations models as well.

Proposition 2.12 (A criterion for �-stability in the univariate case of models without

lags, Model I and Model III, under mixed RLS/SG learning for the diagonal environ-

ment case) In the case of n = 1; the structurally heterogeneous economy (2.3), (2.2),

and (2.14), Model I ((2.5), (2.2), and (2.14), Model III) under mixed RLS/SG learning

is �-stable if and only if each economy from the set of associated current value expecta-

tions models corresponding to Model I (III) is E -stable (that is, the corresponding matrix


�l , de�ned in (2.16), is stable) and for each economy from the set of associated current

value expectations models corresponding to Model I (III), at least one of the following

holds true: the "same sign" condition (all
�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
are greater than or

equal to zero, and at least one is strictly greater than zero, or all
�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
24The same de�nition is given in Bogomolova [4]. It has turned out to be useful in deriving su¢ cient

conditions in terms of E-stability of a suitably de�ned maximal aggregate economy.
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are less than or equal to zero, and at least one is strictly less than zero), or all aver-

age economies with (A0 + �lA1 + :::+ �
�
l A� )(h1;:::;hp) =

P
(h1;:::;hp)

�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
corresponding to subeconomies (h1; :::; hp) of all sizes p are not E-unstable, and for each

l = 0; 1; :::; k (�0 = 1) there exists at least one average economy corresponding to subecon-

omy (h�1(l); :::; h
�
p(l)) in each size p for which the stability coe¢ cientP

(h�1(l);:::;h
�
p(l))

�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
is strictly less than one. For Model III, Ah0 � 0 everywhere above.

Proof. See Appendix B.1.5. �

I also provide quite weak, economically tractable, su¢ cient conditions for �-

stability for univariate models with a lag of the endogenous variable (Models II and IV)

under heterogeneous RLS learning. Before formulating these conditions for �-stability for

univariate Models II and IV under heterogeneous RLS learning in the diagonal environment

case, I have to formulate several de�nitions from the companion paper as it has turned

out that "same sign" conditions can be applied to the same sets of aggregate economies

considered there.

First note that for models with a lag of the endogenous variable (Models II and

IV), one can construct an economy without a lag corresponding to the model considered

that has the same asymptotic behaviour around the REE. In Bogomolova [4], I call this

model (by analogy to the associated ODE) the associated "unlagged" economy. With

respect to Models II and IV, the associated "unlagged" model corresponding to

Model II and IV is given in the following proposition (for the proof see Bogomolova

[4]).

Proposition 2.13 The associated "unlagged" model corresponding to Model

II (IV ) (that is, the model that has the same asymptotic behaviour as Model II (IV),

where the component for the lag coe¢ cient is �xed at the MSV REE value) is the model:

for Model II:

yt = �+
SP
h=1

�
Ah0 +A

h
1
�b
�
Êht�1yt +

SP
h=1

Ah1Ê
h
t�1yt+1 +Bwt + �"t;

and (2.2);
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for Model IV:

yt = �+
SP
h=1

�
Ah1
�b
�
Êht�1yt +

SP
h=1

Ah1Ê
h
t�1yt+1 +BF

�1wt + �"t;

and (2.2),

where �b is de�ned in (2.7).

The set of associated current value expectations models for this as-

sociated "unlagged" economy is then naturally de�ned as for models without lags

(Models I and III) above. This set may also be considered as the set of aggregate models

of the associated "unlagged" economy, where aggregation is done to reduce the number

of forward-looking terms in expectations using �l�s as discounting factors. However, such

discounting can also be done using elements of �b instead of �l�s since the endogenous vari-

able at the REE depends on its lag with matrix coe¢ cient �b. In the univariate case, the

choice of elements of �b to be used for discounting is obvious. One has to replace �l�s with

�b in the de�nition of the set of aggregate models above to obtain the b-type current

value aggregate expectation model for the associated "unlagged" economy of

the model with a lag, Model II (Model IV). The following su¢ cient conditions are

formulated in terms of the properties of these aggregate economies and their subeconomies.

Proposition 2.14 (Su¢ cient conditions for �-stability in the univariate case of Models

with lags (Model II, IV) under heterogeneous RLS learning for the diagonal environment

case) In the case of n = 1; the structurally heterogeneous economy (2.4), (2.2), and (2.14),

Model II ((2.6), (2.2), and (2.14), Model IV), in which the value of �b de�ned in (2.7) is

less than one, under heterogeneous RLS learning is �-stable if each economy from the

set of associated current value expectations models and the b-type current value aggregate

expectation model for the associated "unlagged" economy of the model with a lag, Model

II (Model IV), are E-stable (that is, the corresponding matrices 
�l and 
b, de�ned in

(2.22) and (2.19), are stable) and for each economy from the set of associated current

value expectations models and for the b-type current value aggregate expectation model

for the associated "unlagged" economy of the model with a lag, Model II (Model IV), at

least one of the following holds true: the "same sign" condition (all
�
Ah0 + �lA

h
1 +A

h
1
�b
�

(for b-type
�
Ah0 + 2A

h
1
�b
�
) are greater than or equal to zero, and at least one is strictly

greater than zero or all
�
Ah0 + �lA

h
1 +A

h
1
�b
�
are less than or equal to zero, and at least

one is strictly less than zero), or all average economies with
�
Ah0 + �lA

h
1 +A

h
1
�b
�
(h1;:::;hp)

=
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P
(h1;:::;hp)

�
Ah0 + �lA

h
1 +A

h
1
�b
�
.(For b-type

�
Ah0 + 2A

h
1
�b
�
(h1;:::;hp)

=
P

(h1;:::;hp)

�
Ah0 + 2A

h
1
�b
�
) cor-

responding to subeconomies (h1; :::; hp) of all sizes p are not E-unstable and for each ag-

gregate economy there exists at least one average economy corresponding to subeconomy

(h�1(l); :::; h
�
p(l)) in each size p for which the stability coe¢ cient

P
(h�1(l);:::;h

�
p(l))

�
Ah0 + �lA

h
1 +A

h
1
�b
�

(for b-type
P

(h�1(l);:::;h
�
p(l))

�
Ah0 + 2A

h
1
�b
�
) is strictly less than one. For Model IV, Ah0 � 0

everywhere above.

Proof. See Appendix B.1.6. �

Proposition 2.15 In the case of n = 2, the structurally heterogeneous economy (1.3),

(1.2), and (1.22), Model I (III), under mixed RLS/SG learning (2.8), (1.20), and (1.4)

in the diagonal environment case is �-stable, if each economy from the set of associated

current value expectations models corresponding to Model I (III) is E-stable (that is, the

corresponding matrix 
�l, de�ned in ( 1.24), is stable) and the following "same sign"

condition for each of these economies holds true:
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8l = 0; 1; :::; k; (�0 = 1);

where mix (��lAi;��lAj) denotes a matrix of structural parameters of a pairwise�mixed

economy and is composed by mixing columns of a pair of matrices �lAi; �lAj, for any i;

j = 1; S. For Model III Ah0 � 0 everywhere above.

Proof. See Appendix B.1.7. �
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2.5 Necessary Conditions for HE- and �-stability

In addition, using the characterisic equation approach, for the case of the

general (non-diagonal) structure of shocks, I provide (quite strong) necessary conditions

for stability and �-stability in terms of structural and learning heterogeneity under het-

erogeneous mixed RLS/SG learning for all types of models considered in terms of stability

of a suitably de�ned structurally heterogeneous average economy under the heterogeneous

learning of two agents.

Proposition 2.16 (A universal necessary condition for stability under mixed RLS/SG

learning) For the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5) and

(2.2), Model III) or (2.4) and (2.2), Model II ((2.6) and (2.2), Model IV), in which all

roots of �b de�ned in (2.7) lie inside the unit circle, under mixed RLS/SG learning in the

general (non-diagonal) case, to be �-stable, it is necessary that the corresponding average

economy (2.23) and (2.2) (with the same MSV REE) under mixed RLS/SG learning of

two agents, where one learns by RLS with the degree of inertia �RLSand the other by SG

with the degree of inertia �SG; is stable for any positive values of �RLS and �SG.

Proof. Follows directly from Proposition 2.6. �

Using the characterisic equation approach, for the case of the general (non-

diagonal) structure of shocks, I also provide necessary conditions for HE-stability and

�-stability for models without lags of the endogenous variables (Model I and III) under

heterogeneous mixed RLS/SG learning in terms of subeconomies for an economy from a

set of associated current value expectations models.

Proposition 2.17 A necessary condition for HE-stability of models without lags, Model I

and Model III, under mixed RLS/SG learning in the general (non-diagonal) environment

case: For the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5) and

(2.2), Model III) under mixed RLS/SG learning to be HE-stable, it is necessary that all

sums of the same-size principal minors of D1r (�
r) are nonnegative for all subeconomies

r = (h1; :::; hp) for all p of the economy from the set of associated current value expectations

models corresponding to Model I (III) with �0 = 1 for all positive block�diagonal matrices

D1r, where D1r and 
r de�ned similar to D1and 
 in (2.15) and (2.12) (where Ah0 � 0

for Model III), respectively, correspond to a subeconomy r = (h1; :::; hp).
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Proof. See Appendix B.1.8. �

The condition above can not be used as a test for non-�-stability, as it requires

checking all subeconomies� sums of minors for all possible D1r. That is why I present

below a condition that has a direct testing application.

Proposition 2.18 A necessary condition for �-stability of Models without lags, Model I

and Model III, under mixed RLS/SG learning in the general (non-diagonal) environment

case: For the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5) and (2.2),

Model III) under mixed RLS/SG learning to be �-stable, it is necessary that all sums of

the same-size principal minors of minus matrices corresponding to subeconomies (�
r)

of the economy from the set of associated current value expectations models corresponding

to Model I (III) with �0 = 1 are non-negative for each corresponding subeconomy r =

(h1; :::; hp).

Proof. See Appendix B.1.8. �

Stronger su¢ cient conditions can be derived for HE-stability and �-stability for

models without lags of the endogenous variables (Model I and III) under heterogeneous

mixed RLS/SG learning in the case of the diagonal structure of the shock behaviour in

terms of subeconomies for economies from a set of associated current value expectations

models.

Proposition 2.19 A necessary condition for HE�stability of Models without lags, Model

I and Model III, under mixed RLS/SG learning in the diagonal environment case: For the

structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5) and (2.2), Model III)

under mixed RLS/SG learning to be HE-stable, it is necessary that all sums of the same-

size principal minors of D1r
�
�
r�l

�
are nonnegative for all subeconomies r = (h1; :::; hp)

for all p of all economies from the set of associated current value expectations models

corresponding to Model I (III) for all positive block-diagonal matrices D1r, where D1r

and 
r�l de�ned similar to D1and 
�l in (2.15) and (2.16) (with A
h
0 � 0 for Model III),

respectively, correspond to a subeconomy r = (h1; :::; hp).

Proof. See Appendix B.1.8. �



102

Again, the condition above cannot be used as a test for non-�-stability as it

requires checking all subeconomies� sums of minors for all possible D1r. That is why I

present below a condition that has a direct testing application.

Proposition 2.20 A necessary condition for �-stability of Models without lags, Model

I and Model III, under mixed RLS/SG learning in the diagonal environment case: For

the structurally heterogeneous economy (2.3) and (2.2), Model I ((2.5) and (2.2), Model

III) under mixed RLS/SG learning to be �-stable, it is necessary that all sums of the

same-size principal minors of minus matrices corresponding to subeconomies
�
�
r�l

�
of

all economies from the set of associated current value expectations models corresponding

to Model I (III) are non-negative for each corresponding subeconomy r = (h1; :::; hp).

Proof. See Appendix �

Quite strong necessary conditions can be used as an easy quick test for non-�-

stability. I think that this is quite a strong necessary condition, which implies that many

models will not satisfy it, and will not be �-stable. Note that the stability of each single

economy and subeconomies is a su¢ cient condition for the condition above to hold true.

2.6 Conclusion

In this paper, I extend the results of Honkapohja and Mitra [36], Bogomolova and

Kolyuzhnov [5], Kolyuzhnov [40], and of the companion paper by Bogomolova [4]. I pro-

vide su¢ cient and necessary conditions for stability under heterogeneous mixed RLS/SG

learning for four classes of models considered: models without lags and with lags of the

endogenous variable and with t- or t � 1-dating of expectations. While in Bogomolova

[4] I essentially use the negative diagonal dominance approach that allows me to derive a

su¢ cient condition for the D-stability of matrices due to the MacKenzie Theorem, here

I look at the problem from a di¤erent angle and try to �nd conditions for stability that

were not possible to derive using that approach. The alternative de�nition of Db-stability

approach allows me to derive for all four classes of models considered in the general (non-

diagonal) case, alternative stability criteria (to the criteria in terms of the corresponding

Jacobian matrices in Kolyuzhnov [40] and Bogomolova [4]) under heterogeneous mixed

RLS/SG learning. It also allows me to obtain simpli�ed alternative stability criteria for
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both types of models without lags for the case of the diagonal structure of shocks; and for

the case of the general (non-diagonal) structure of shocks, alternative su¢ cient stability

conditions (to the su¢ cient conditions in terms of the corresponding Jacobian matrices

in Bogomolova [4]) for models with lags of the endogenous variable of both types un-

der heterogeneous RLS learning � conditions written in terms of structural and learning

heterogeneity.

The alternative de�nition to Db-stability approach allows me to provide the cri-

teria for �-stability for univariate models (with either t- or t � 1-dating of expectations)

without lags of the endogenous variable under mixed RLS/SG learning in economically

meaningful terms, such as "same sign" conditions and E-stability of a suitably de�ned

average economy and its subeconomies. I also provide quite weak su¢ cient conditions

for �-stability for univariate models with a lag of the endogenous variable using the same

economic terms. Using the characteristic equation approach, I also derive quite strong

necessary conditions that can be used as an easy quick test for non-�-stability. Necessary

conditions are derived for the general (non-diagonal) case of the shock process.

The results for su¢ cient conditions for �-stability based primarily on the negative

diagonal dominance approach in terms of E-stability of maximal aggregate economies are

considered in the companion paper. All the results of this paper can be summarized in

the following way.

I provide (using the alternative de�nition of Db-stability):

� for the case of the general (non-diagonal) structure of shocks, general alternative

stability criteria (to the general criteria in terms of the corresponding Jacobian

matrices in Honkapohja and Mitra [36] and Bogomolova [4]) for all types of models

considered: a model without lags and with lags of the endogenous variable and with

t- or t� 1-dating of expectations, under heterogeneous mixed RLS/SG learning

� criteria written in terms of structural and learning heterogeneity;

� for the case of the diagonal structure of shocks, alternative stability criteria

(to the criteria in terms of the corresponding Jacobian matrices in Kolyuzhnov

[40] and Bogomolova [4]) in terms of structural and learning heterogeneity for both

types of models without lags of the endogenous variable, under heterogeneousmixed

RLS/SG learning � criteria written in terms of structural and learning hetero-

geneity;
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� for the case of the general (non-diagonal) structure of shocks, alternative su¢ -

cient stability conditions (to the su¢ cient conditions in terms of the correspond-

ing Jacobian matrices in Bogomolova [4]) for both types of models with lags of the

endogenous variable, under heterogeneous RLS learning � conditions written

in terms of structural and learning heterogeneity;

For the case of the diagonal structure shocks and a univariate endogenous

variable, I provide:

� criteria for �-stability (that is, stability that does not depend on such learning

heterogeneity characteristics as di¤erent degrees of inertia and di¤erent starting val-

ues of learning algorithms) for models without lags of the endogenous variables under

heterogeneous mixed RLS/SG learning in terms of the "same sign" conditions

and E-stability of a suitably de�ned average economy and its subeconomies.

� (quite weak) su¢ cient conditions for �-stability for models with lags of the en-

dogenous variables under heterogeneous RLS learning in terms of the "same

sign" conditions and E -stability of a suitably de�ned average economy and its sube-

conomies.

For the case of the diagonal structure of shocks and a bivariate endogenous

variable, I provide su¢ cient conditions for �-stability for models without lags of the

endogenous variables under heterogeneous mixed RLS/SG learning in terms of the

"same sign" conditions.

For the case of the general (non-diagonal) structure of shocks, I provide:

� (quite strong) necessary conditions for stability in terms of structural and learn-

ing heterogeneity under heterogeneous mixed RLS/SG learning for all types of

models considered in terms of stability of a suitably de�ned structurally heteroge-

neous average economy under heterogeneous learning of two agents. These condi-

tions are also necessary (for any �xed degrees of inertia) for �-stability under

heterogeneous mixed RLS/SG leaning for all types of models considered.

� necessary conditions for stability for models without lags of the endogenous

variables under heterogeneousmixed RLS/SG learning in terms of subeconomies
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for economies from a set of associated current value expectations models. These

conditions are also necessary (for any �xed degrees of inertia) for �-stability

under heterogeneous mixed RLS/SG learning for models without lags of the

endogenous variables.

The alternative criteria and su¢ cient conditions for stability under heterogeneous

learning derived using the alternative de�nition of Db-stability allow for further ellabo-

ration for various cases and are a subject for future research. The fundamental nature

of the approach adopted in the paper allows one to apply its results to a vast majority

of existing and prospective linear and linearized economic models (including estimated

DSGE models) with the adaptive learning of agents.



 



107

Chapter 3
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3.1 Introduction

The stabilization monetary policy design problem is very often studied in the New

Keynesian model. Using the environment of this model, we may study di¤erent monetary

policy rules to �nd out which is more e¢ cient in smoothing business cycle �uctuations

and also which monetary policy rule would not lead to an indeterminacy of equilibria

in our model. For a comprehensive overview of various interest rate rules in the New

Keynesian model, one can see Woodford [57]. Also, frequently cited papers on monetary

policy design are Clarida, Gali, and Gertler [17, 18]. Svensson [54] gives a clear distinction

between instrument and target rules and the implications of their use.

A number of recent studies also consider the New Keynesian model environment

with the adaptive learning of agents. Examples are Evans and Honkapohja [25, 26], Bullard

and Mitra [9], and Honkapohja and Mitra [35] on the stability of an economy under various

policy rules. Evans and Honkapohja [25, 26] take up the issue of stability under learning

for optimal monetary policies in economies with adaptive learning.

The concept of the adaptive learning of agents in economic models is introduced

as a speci�c form of bounded rationality advocated by Sargent [50]. According to his

argument, it is more natural to assume that agents face the same limitations economists

face (in a sense that economists have to learn the model structure and its parameter values

themselves) and view agents as econometricians when forecasting the future state of the

economy.

Using adaptive learning in an economy makes it possible to test the validity of

the rational expectations hypothesis by checking if a given dynamic model converges over

time to the rational expectations equilibrium (REE) implied by the model. It can also

be used as a selection device in models with multiple equilibria. Even if the model has

a unique REE, it is still of interest to see if the rational expectations (RE) hypothesis

holds under learning, which is done by checking if our model under learning converges to

a given REE. In both cases (multiple or unique REE), one has to check certain stability

conditions. After this analysis of stability conditions, the next step could be to study the

policy rules for e¤ectiveness and indeterminacy, assuming or making sure that the stability

conditions on the model structure are satis�ed.

Therefore, before we start analyzing particular monetary policies for e¢ ciency

(evaluating a particular type of policy: Taylor rule or an optimization-based rule with or
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without commitment), we should take a general type of a linear policy feedback rule, plug

it into our structural form of the New Keynesian model, and obtain some general linear

reduced form (RF) of this model. All things being equal (the same structural equations:

Phillips and IS curves), we can obtain di¤erent RFs depending on the policy rule used

by the policy maker. Hence, we obtain di¤erent REEs and di¤erent stability results.

Then we should study a given reduced form for stability in order to see if a given REE

is chosen. In this paper, we study the stability of a New Keynesian model under the

following classi�cation of policy rules introduced by Evans and Honkapohja [26].

Depending on the assumptions of the central bank about the expectations of

private agents (�rms, households), Evans and Honkapohja [26] divide all policy rules into

fundamentals�based rules and expectations�based rules. The fundamentals�based rule is

obtained if the policy maker assumes the RE of private agents, while the expectations�

based rule takes into account possibly non�rational expectations of agents (assuming that

these expectations are observable to the central bank).1

We consider the stability question under the assumption of heterogeneous learn-

ing of agents. As has been shown in Giannitsarou [31] and Honkapohja and Mitra [36], sta-

bility results may be di¤erent under homogeneous and heterogeneous learning. Honkapo-

hja and Mitra [36] also demonstrate that stability may depend on the interaction of struc-

tural heterogeneity and learning heterogeneity, and Honkapohja and Mitra [35] examine

how structural heterogeneity in the New Keynesian model may a¤ect stability results

under various types of policy rules.

Note that though Honkapohja and Mitra [35] consider heterogeneity in learning

in the New Keynesian model, their de�nition of heterogeneity implies a situation where

the central bank and private agents have (possibly) di¤erent learning algorithms with

(possibly) di¤erent parameters of these algorithms. They essentially consider the situation

when all private agents could be considered as one representative agent, and in this sense

learning of private agents considered by Honkapohja and Mitra [35] is homogeneous. In

some sense, the situation considered by Honkapohja and Mitra [35] could be called two-

sided learning in a structurally heterogeneous bivariate economy.

1We should note here that in Taylor�type rules, the current value of the interest rate depends on the
current values of in�ation and the output gap. In this paper, we study stability under feedback rules
that are derived from the policy maker minimization problem, in particular, we study their two categories
according to Evans and Honkapohja [26]: fundamentals�based and expectations�based. Stability under
Taylor�type rules, which do not fall under this classi�cation, will be studied later in a separate work.
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In this paper, we do not consider learning of the central bank and assume, fol-

lowing Evans and Honkapohja [26], that the policy maker takes the expectations of private

agents as given or assumes and knows the exact structure of their rational expectations; at

the same time, we fully exploit the case where private agents have heterogeneous learning.

The case of internal central bank forecasting (that includes Taylor rules) in the situation

of heterogeneous learning of private agents, which develops the model of Honkapohja and

Mitra [35] since they only consider the situation of a representative private agent, is the

topic of our further research.

It turns out that under the fundamentals�based linear feedback policy rule (optimi-

zation-based), learning in our model never converges to the REE of the model. Evans and

Honkapohja [26] demonstrate this instability result for the homogeneous recursive least

squares (RLS) and for the stochastic gradient (SG) learning,2 while we obtain a similar

instability result for the three types of heterogeneous learning considered by Giannitsarou

[31].

The other category of policy rules � expectations�based rules � is supposed to

react to agents�expectations. Under certain conditions, we can have stability under such

rules. Evans and Honkapohja [26] obtain a stability result for homogeneous RLS or for

SG learning. We obtain a stability result (with conditions on the model structure) for the

case of the three types of heterogeneous learning considered by Giannitsarou [31].

Originally, when heterogeneous learning in a general setup of self-referential lin-

ear stochastic models was studied by Giannitsarou [31], the purpose of introducing the

heterogeneous learning of agents was to see if the representative agents hypothesis in�u-

ences stability results, i.e., if one may always apply this hypothesis. For some cases, it is

demonstrated that it does make sense to consider the heterogeneous setup. Our paper is

about stability under monetary policy rules, so, though we, in fact, prove that the rep-

resentative agent hypothesis holds true for the New Keynesian model, the accent of our

paper is shifted away from testing the importance (in�uence) of the representative agent

2We in this paper and Honkapohja and Mitra [36] consider two possible algorithms used to re�ect
bounded rationality of agents: RLS and SG learning algorithms (which are examples of econometric
learning). Their description can be found, e.g., in Evans and Honkapohja [24], Honkapohja and Mitra
[36], Giannitsarou [31], and Evans, Honkapohja and Williams [27]. Both are used by agents to update
the estimates of the model parameters. Essentially, the di¤erence is as follows. The RLS algorithm has
two updating equations: one� for updating parameters entering the forecast functions, and the other� for
updating the second moments matrix (of the model state variables). The SG algorithm assumes this matrix
�xed.
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hypothesis.

We, essentially, apply the stability analysis of the model under heterogeneous

learning in the same manner the stability analysis of the model under homogeneous (when

all agents can be substituted with a representative agent) learning is applied in Evans

and Honkapohja [26].3 In our paper, we link the study of stability conditions under a

certain category of linear monetary policy rules of [26] with the study of stability under

heterogeneous learning of Giannitsarou [31].

We �rst show that in the New Keynesian�type models, stability can be ana-

lyzed using structural parameters, whatever the type of heterogeneous learning, using the

general criterion of Honkapohja and Mitra [36]. These results are the structural matrix

eigenvalues su¢ cient and necessary conditions for the stability of a structurally homo-

geneous model derived in this paper, and the aggregate economy su¢ cient conditions

derived in Kolyuzhnov [40], where the concept of stability under heterogeneous learning,

termed as ��stability, is introduced. Then we apply these results to derive stability and

instability results under heterogeneous learning for the two categories of feedback rules:

fundamentals�based and expectations�based, in the model with an arbitrary number of

agent types.

Summarizing all the above, our work now looks, on the one hand, like a link

between the study of stability under monetary policy rules for homogeneous learning

of Evans and Honkapohja [26] and the study of stability conditions under heterogeneous

learning of Giannitsarou [31] � the link through the ��stability conditions that we derived

for the general setup of Honkapohja and Mitra [36] and through the general stability

criterion of Honkapohja and Mitra [36]. On the other hand, this study can serve as

one more economic example demonstrating the application of ��stability su¢ cient and

necessary conditions.

The structure of the paper is as follows. In the next section, we present the basic

New Keynesian model. In Section 3, we discuss the general stability results under hetero-

3Evans and Honkapohja [26] study stability conditions under monetary policy rules for the case of
homogeneous learning. Their major input is (both for the one�sided learning and the two�sided learning)
to have shown that under fundamentals�based rules the REE of the model is always unstable, while under
the expectations based rule there is always stability. In the two cases, the reduced form of the model is
di¤erent, which has, as a consequence, the di¤erence in the stability results. So, the policy implication
of such a stability analysis is that, given the structure of the model (the two structural New Keynesian
equations), the central bank can in�uence (determine) the outcome of its policy by selecting the appropriate
optimal monetary policy: the one that guarantees convergence to a particular REE.
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geneous learning and the concept of ��stability introduced in Kolyuzhnov [40]. In Section

4, we give necessary and su¢ cient conditions for ��stability for structurally homogeneous

models. Section 5 describes the two types of optimal policy rules and the structure of the

reduced forms under each type. In Section 6, we provide stability and instability results

for the types of optimal monetary policies considered in application to the New Keynesian

model. Section 7 concludes.

3.2 Model

The model that we consider is a general New Keynesian model with observable

stationary AR(1) shocks. The structural form of the model looks as follows:

xt = c1 � �
�
it � bEt�t+1�+ bEtxt+1 + �01wt (3.1)

�t = c2 + �xt + � bEt�t+1 + �02wt, (3.2)

where the �rst equation is for the IS curve, and the second equation is for the Phillips

curve. wt =
h
w1t ::: wkt

i0
is a vector of observable AR(1) shocks4,

wit = �iwit�1 + �it; j�ij < 1; �it � iid
�
0; �2i

�
; i = 1; k (3.3)

To introduce heterogeneity into the model, we assume that we have S types of

private agents characterized by their share �h > 0 in the economy,
SP
h=1

�h = 1. So, bEtxt+1 =
4Typically, New Keynesian models include only an observable component, which is assumed to follow

an AR(1) process. However, there are speci�cations including both observable and unobservable shocks.
For example, Evans and Honkapohja [27], who study stability rules under recursive least squares learning,
include unobservable shocks to the New Keynesian model equations. In our case, a more general speci�-
cation with unobservable shocks would contain the additional term 
1�t in the IS curve and 
2�t in the
Phillips curve, where �t =

�
�1t ::: �mt

�0
are unobservable shocks, �it � iid

�
0; 
2i

�
, i = 1; :::;m, not

correlated with observable shocks gt.
Of course, these unobservables do not bring a di¤erence into the stability results (that is why we omit

them in the model analyzed), but introducing them into the setup has its own reasoning. For example,
it makes sense to introduce unobservable shocks into structural equations when we consider central bank
learning structural coe¢ cients of the model. If we have only observable shocks (which play a role of just
another regressor � some exogenous variable) as well as other observable regressors, we will evaluate the
equations�coe¢ cients exactly if we have a su¢ cient number of observations. In this case, learning is trivial:
the convergence will be very quick if initially we did not have enough observations but gained them over
a short period of time.
If we think of how these unobservable shocks can emerge at the micro foundations level, we may think of

the following economic interpretation. For example, let us assume that preference and technology shocks
consist of observable and unobservable components. As for preference shocks, we can imagine a qualitative
change in our preferences, such that we know how the shock has changed our preferences qualitatively,
but we cannot precisely measure this change quantitatively. A similar interpretation can be given to the
technological shock. What we have measured enters as an observable component, while the measurement
error (which always exists since we assume that our quantitative measurement of any change is imprecise)
is treated as an unobservable component.
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SP
h=1

�h bEht xt+1, bEt�t+1 = SP
h=1

�h bEht �t+1, where bEht xt+1 and bEht �t+1 are expectations (in
general, non�rational) of private agent of type h made at time t about the next period

output gap and in�ation, respectively.

The model (3.1), (3.2), and (3.3) is a general formulation of models derived from

microfoundations that are considered in macroeconomics and monetary economics litera-

ture5. The two basic equations of the New Keynesian model, which are the Phillips curve

and the IS curve, are derived from the optimal problems of the representative house-

hold and the representative monopolistically competitive �rm, with the assumption of the

Calvo [10] pricing mechanism in the �rms�price-setting decision. So the two New Keyne-

sian curves are derived using the optimality conditions of the private agents (households

and �rms). The derivation of these two curves for the standard New Keynesian model

setup can be found, e.g., in Walsh [55]. The description of the New Keynesian model can

also be found in Woodford [56, 57] and in Christiano, Eichenbaum, and Evans [16].

In solving their optimization problems, private agents are assumed to take the

interest rate (entering the IS curve equation) as given. The interest rate, in turn, is set

by the policy maker � the central bank. In various studies of monetary policy issues (in

the New Keynesian framework), it is normally assumed that the policy maker uses some

linear feedback rule to set the interest rate. In general, a feedback rule that is derived

from the loss function minimization problem determines how the interest rate reacts to the

expected values of the model�s endogenous variables (in�ation and output gap in the New

Keynesian model) and the model�s exogenous variables (various shocks, e.g., technology,

preference, and cost-push shocks). Instrument rules, like Taylor�type rules, are designed

to respond to the target variables (e.g., in�ation and the output gap). As is noted in the

introduction, Taylor�type rules will be considered in a separate study.

Plugging the feedback rule into the IS curve equation, we obtain the model

reduced form. Using the same New Keynesian equations (IS and Phillips curves), we can

obtain di¤erent reduced forms for di¤erent policy rules, i.e. other things being equal, the

reduced form structure depends on the policy rule. It depends not only on the type of it

(Taylor or optimization�based) but, as is demonstrated by Evans and Honkapohja [26],

5Our NK model includes the standard NK model. One may have di¤erent shocks for the IS and Phillips
curves by having appropriate zeroes in �01 and �

0
2 vectors of coe¢ cients. Learning and forecasting in�ation

and the output gap, of course, use all the shocks that appear in the rational expectations equilibrium
processes of these variables.
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on the assumption of the central bank about private agents expectations, resulting either

in the fundamentals�based or in the expectations�based category of feedback rules.

After plugging in some monetary policy rule of the central bank it, assuming that

the central bank knows the expectations of private agents or assumes and knows the form

of rational expectations of agents (we will talk about the types of optimal monetary policy

rules later), the model can be written in the reduced form that has a general representation

of a bivariate system with a stationary AR(1) observable shocks process

yt = �+AÊtyt+1 +Bwt, (3.4)

yt =
h
�t xt

i0
(3.5)

and (3.3).

In what follows, for the derivation of our stability results, we may allow for some general-

ization (as it is just a matter of notation compared to the bivariate model) and consider a

multivariate (not just a bivariate) system (3.4) with a stationary AR(1) observable shocks

process (3.3).

In our notation, the reduced form is written in such a way that it includes all

factors that appear in the structural form. This means that the absence of some factor

in the reduced form in our notation is expressed by the corresponding zero column of

matrix B. Note that here we adopt such a notation in order to be able later to consider

di¤erent speci�cations of learning algorithms that include factors from di¤erent sets.6 So

our notation is the most general possible.

In adaptive learning models of bounded rationality, it is assumed that agents do

not know the rational expectations equilibrium and instead have their own understanding

of the relation between variables in the model. The coe¢ cients in this relation (that are

called beliefs) are updated each period as new information on observed variables arrives

(in this respect, agents are modeled as if they were statisticians, or econometricians). For

the beginning, we assume that agents have the following perceived relation among the

variables in the economy, which is called the perceived law of motion (PLM)

yt = ah + �hwt,

6An example when a model reduced form may not include all shocks that are present as factors in the
model structural form can be found in Evans and Honkapohja [26], who used the New Keynesian model
setup of Clarida, Gali, Gertler [17].
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with ah =
h
ah1 ah2

i0
;�h =

24 
h11 
h12 ::: 
h1k


h21 
h22 ::: 
h2k

35 in the bivariate case,

that includes all components of wt. A bit later, we weaken this assumption. Though we

assume that the parameters of the PLM may di¤er across agents, we assume that the

structure of the PLMs is the same for all agents. We may also write the average (or

aggregate) PLM using the weights of agents.

yt = a+ �wt, where a =
SP
h=1

�ha
h;� =

SP
h=1

�h�
h: (3.6)

Thus, agents have the following forecast functions based on their PLMs:

bEht yt+1 = ah + �hdiag(�1; :::; �k)wt,

and consequently the average forecast function is given by

bEtyt+1 = SP
h=1

�h

�
ah + �hdiag(�1; :::; �k)wt

�
= a+ �diag(�1; :::; �k)wt. (3.7)

After plugging the average forecast function (3.7) corresponding to the average

PLM (3.6) into the reduced form (3.4), we derive the actual law of motion (ALM):

yt = Aa+ �+ (A�diag(�1; :::; �k) +Bwt) : (3.8)

The rational expectations equilibrium (REE) de�ned as Etyt+1 = bEtyt+1 = bEityt+1 (see,
e.g., Sargent [50] or Evans and Honkapohja [24] for the meaning of the RE concept) can be

calculated by equating the parameters of the average PLM (3.6) with the corresponding

parameters of the ALM (3.8). If we de�ne the T�map as a mapping of beliefs from the

average PLM (3.6) to the ALM (3.8),

T (a;�) = (Aa+ �;A�diag(�1; :::; �k) +B) , (3.9)

we will be able to write the REE condition as T (a;�) = (a;�).

Now, we will widen the set of PLMs considered. Let us start with the following

de�nition.

De�nition 3.1 The active factors set is a subset of a set of histories of wit up to time

t and a constant used by agents in their PLMs.7

7Note that by the active factors set we mean not the variables that agents are actually aware of at
time t, but essentially those that are used by agents in their PLMs (a subset that may be smaller than the
subset of actually available variables).
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Following the de�nition, we renumber the subscripts corresponding to regressors

that are included into the agents�active factors set from 1 to k0, and denote the set of

subscripts taken from f1; :::; kg corresponding to the active factors set as eI. Assuming, as
before, that all agents have the same structure of their individual PLMs, agents now are

assumed to have the following average perceived law of motion (PLM):

yt = a+ e� ewt

with a =
h
a1 a2

i0
; e� =

24 e
11 e
12 ::: e
1k0e
21 e
22 ::: e
2k0
35 in the bivariate case,

where ewt consists of the components of wt included in the agents� active factors set.
Consequently, T�map (3.9) can be rewritten as

eT (a; e�) = �Aa+ �;Ae�diag(�1; :::; �k) + eB� ,
where eB consists of columns of matrix B that correspond to the active factors set.

Similarly, one may try to write the REE condition as eT (a; e�) = (a; e�): However,
in this case, it is clear that for the existence of a REE, agents have to include into their

active factors set those factors wit that correspond to non-zero columns of matrix B in the

reduced form. A PLM which consists only of such factors is a PLM that corresponds to

the so�called minimal state variable (MSV) solution. Also, in the above PLMs, we have

used the following assumption.

Assumption 3.1 Agents include in their PLM of each endogenous variable all factors

from their active factors set.8

Essentially, Assumption 3.1 postulates that we may write each agent�s PLM

equations in matrix form, without a priori setting coe¢ cients at some factors to zero. In

addition, we assume that all agents use the same set of factors (which in matrix form

means that they use the same vector). We also note here that a similar assumption on

8So, we exclude situations when agents do not include into the PLM equation of one endogenous variable
some factor having a zero coe¢ cient in matrix B of the reduced form, while including the same factor in the
PLM equation of the other endogenous variable, with this factor having a non�zero coe¢ cient in matrix B
of the reduced form. We assume that agents do not know the true structure of the reduced form and use
all the available information to form their expectations. So, if one factor is present in one PLM equation,
it is present in another PLM equation.
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the matrix formulation of PLMs has been made by Giannitsarou [31] and Honkapohja and

Mitra [36].9

The Propositions below state the necessary and su¢ cient conditions for the ex-

istence and uniqueness of a REE in a general multivariate model with stationary AR(1)

observable shocks. These conditions are well known, but we prefer to state them here

for the reader�s convenience. To formulate the following propositions, we return to the

initial numbering of shocks, denote the constant term in the active factors set of agents

as w0, and take �0 = 1 and B
0 = �. So now, i takes integer values from 0 to k. We will

denote this set as I0 and the corresponding set of subscripts taken from I0 = f0; 1; :::; kg

as eI0. Note that the constant term is always included as a factor in any active factors set;

therefore, 0 always belongs to I0:

Proposition 3.1 (Necessary and su¢ cient conditions for the existence of a REE) Under

Assumption 3.1, a REE solution exists if and only if the agents�active factors set includes,

among others, all wi such that Bi 6= 0 in the reduced form and rank(�iA�I) = rank(�iA�

I;Bi _) for i such that det (�iA� I) = 0 and Bi 6= 0.

Proof. See Appendix C.1. �

Proposition 3.2 (Necessary and su¢ cient conditions for the existence and uniqueness

of a REE): Under Assumption 3.1, a REE solution exists and is unique if and only if the

agents�active factors set includes, among others, all wi such that Bi 6= 0 in the reduced

form and for all wi included, det (�iA� I) 6= 0:

Proof. See Appendix C.1. �

So in what follows, we always assume that Assumption 3.1 and the necessary

and su¢ cient conditions10 for the existence of a REE hold true. Basically, we assume that
9Notice that here we also do not consider situations of the restricted perceptions equilibrium (RPE), the

discussion of which may be found, for example in Evans and Honkapohja [24]. In our terminology, for the
situation of the RPE, one has to assume that agents do not include into their active factors set some of the
factors that are present in a unique REE, that is, factors that correspond to non-zero coe¢ cients in matrix
B. Here, we introduce the notion of the active factors set only to allow for a considering of the PLMs
not only corresponding to the MSV, but also those that include more factors than enough to determine a
unique REE. It is done to derive the "strong ��stability" or "strong ��instability result." (Compare to the
notion of the "strong E�stability" in the homogeneous learning literature.)
10The propositions above have a similar meaning to Proposition 1 of Honkapohja and Mitra [36]: again,

the condition requires matrices participating in the derivation of the RE values of beliefs to be invertible.
So, the above propositions stress that we are aware of cases when an REE may not exist and of the
conditions that are required for its existence (and uniquness).
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in both equations of their PLM, agents use at least all the regressors that appear in the

right�hand side of the reduced form (3.4), and that the REE solution (either unique or

multiple) exists under this PLM. That is, in principle, we consider all possible PLMs that

satisfy these conditions.

After specifying PLMs of agents and conditions for the existence and uniqueness

of the REE, we are ready to introduce heterogeneous learning of agents into the economy

considered and derive conditions for the stability of the REE under this learning. Then,

we use these conditions to study stability under heterogenous learning in the general New

Keynesian model when optimal monetary policy rules are applied.

3.3 Heterogeneous Learning and the Concept of ��stability

The model (3.4) and (3.3) that we consider belongs to the class of multivariate

forward�looking economic models. Thus, we naturally employ the general framework and

notation from Honkapohja and Mitra [36], who were the �rst to formulate the general

criterion for the stability of a multivariate forward�looking economy under heterogeneous

learning.

Honkapohja and Mitra [36] consider the class of linear structurally heterogeneous

forward-looking models with S types of agents with di¤erent forecasts presented by

yt = �+
SP
h=1

AhÊ
h
t yt+1 +Bwt; (3.10)

wt = Fwt�1 + vt; (3.11)

where yt is an n � 1 vector of endogenous variables, wt is a k � 1 vector of exogenous

variables, vt is white noise, Êht yt+1 are (in general, non-rational) expectations of the en-

dogenous variable by agent type h, Mw = limt!1wtw
0
t is positive de�nite, and F is such

that wt follows a stationary VAR process.

The PLM is presented by (3.6). A part of agent types, h = 1; S0, is assumed to

use the RLS learning algorithm, while the rest, h = S0 + 1; S, are assumed to use the SG

learning algorithm.11 Moreover, all of them are assumed to use possibly di¤erent degrees

of responsiveness to the updating function that are presented by di¤erent degrees of inertia

11Essentially, the part of agents using RLS are assumed to be more sophisticated in their learning
because from an econometric point of view, the RLS algorithm is more e¢ cient since it uses information
on the second moments.
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�i > 0, constant coe¢ cients before the common for all agents decreasing gain sequence in

the learning algorithm.12

It is worth noting that the model (3.4) and (3.3) we consider belongs to the sub-

class of models considered by Honkapohja and Mitra [36], namely, a class of structurally

homogeneous forward�looking models. Structural heterogeneity in the setup of Honkapo-

hja and Mitra [36] is expressed through matrices Ah, which are assumed to incorporate

mass �h of each agent type. That is, Ah = �h � Âh, where Âh is de�ned as describing

how agents of type h respond to their forecasts. So these are the structural parameters

characterizing a given economy. Those may be basic characteristics of agents, like the ones

describing their preferences, endowments, and technology. Structural heterogeneity means

that all Âh�s are di¤erent for di¤erent types of agents. When Âh = A and
P
�h = 1; the

economy is structurally homogenous.

When we apply the conditions for a structurally homogeneous economy, Ah =

�hA, where
SX
h=1

�h = 1, and 1 > �h > 0; to the model (3.10) and (3.11) considered by

Honkapohja and Mitra [36], we get

yt = �+
SX
h=1

AhÊ
h
t yt+1 +Bwt = �+

SX
h=1

�hAÊ
h
t yt+1 +Bwt =

= �+A

SX
h=1

�hÊ
i
tyt+1| {z }

Êavert yt+1

+Bwt,

which is exactly the formulation of the structurally homogeneous model considered by

Giannitsarou [31].13 Thus, the conditions for stability valid for the (more general) class

of structurally heterogeneous forward�looking models remain valid for the class of struc-

turally homogeneous models.

After denoting zt = (1; wt) and �h;t = (ah;t;�h;t); the formal presentation of the

learning algorithms in this model can be written as follows14.

12Honkapohja and Mitra [36] use a more general formulation of the degrees of inertia.
13Heterogeneous learning in the structurally homogeneous case was considered by Giannitsarou [31]

for a more general class of self�referential linear stochastic models, which includes in itself the case of
forward�looking models. Since our setup does not assume lagged endogenous variables, we concentrate on
the structurally homogeneous case of forward�looking models that are a subclass of models considered by
Giannitsarou [31] and at the same time are a special case of the setup of Honkapohja and Mitra [36].
14We assume that the elements of matrix F are known to agents. Adding the learning of the shocks

process will basically not change anything in case agents do not misspecify the structure of the shocks
process as learning (through expectations) does not in�uence the behaviour of the exogenous shocks process,
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RLS: for h = 1; S0

�h;t+1 = �h;t + �h;t+1R
�1
h;tzt

�
yt � �0h;tzt

�0 (3.12)

Rh;t+1 = Rh;t + �h;t+1
�
zt�1z

0
t�1 �Rh;t

�
SG: for h = S0 + 1; S

�h;t+1 = �h;t + �h;t+1zt
�
yt � �0h;tzt

�0 . (3.13)

Honkapohja and Mitra [36] show that the stability of the REE, �t, in this model is

determined by the stability of the ODE15:

d�h
d�

= �h
�
T (�0)0 � �h

�
; h = 1; S0

d�h
d�

= �hMz

�
T (�0)0 � �h

�
; h = S0 + 1; S,

where Mz = limt!1Eztz
0
t.

The conditions for the stability of this ODE give the general criterion for the

stability result for this class of models presented in Proposition 5 in Honkapohja and

Mitra [36]. In the economy (3.10) and (3.11), the mixed RLS/SG learning (3.12) and

(3.13) converges globally (almost surely) to the minimal state variable (MSV) solution if

and only if matrices D1
 and Dw
F have eigenvalues with negative real parts, where

D1 =

0BBB@
�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA ;
 =

0BBB@
A1 � In � � � AS

...
. . .

...

A1 � � � AS � In

1CCCA (3.14)

Dw =

0BBB@
Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CCCA ;
Dwh = �hInk; h = 1; S0

Dwh = �h (Mw 
 In) ; h = S0 + 1; S


F =

0BBB@
F 0 
A1 � Ink � � � F 0 
AS

...
. . .

...

F 0 
A1 � � � F 0 
AS � Ink

1CCCA ;

and after some iterations the estimates of the elements of matrix F will almost converge to their true values.
Since we consider local convergence properties of the REE, one may say that we consider learning from
the point in time when these values are already known.
15In the general case, to obtain the associated ODE, one has to take the math expectation of the RHS

term (at the gain sequence) from the stochastic recursive algorithm (SRA) speci�cation of a learning algo-
rithm, with respect to the limiting distribution of the state vector. See Ch. 6.2 in Evans and Honkapohja
[24] for assumptions on the learning rule and state dynamics that have to hold so that we are able to apply
the theory on SRA and local convergence analysis and the general formula for ODE (6.5) on p. 126.
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with 
 denoting the Kronecker product.

Note that agents in the setup of Honkapohja and Mitra [36] are assumed to use

PLMs that correspond to the MSV solution, i.e., include all factors that appear in the

right-hand side of the reduced form. However, Honkapohja and Mitra [36] in their proof of

conditions for the stability of the system do not have restrictions on matrix B: This means

that we may, in principle, consider additional factors in learning that enter the reduced

form with zero coe¢ cients in matrix B for all agents. This means that we may consider

the criterion conditions for all possible PLMs that include (among others) all factors that

appear in the right-hand side of the reduced form, satisfying conditions for the existence

speci�ed in the previous chapter.

Kolyuzhnov [40] shows that in the "diagonal" environment, namely

F = diag(�1; :::; �k);Mw = diag

�
�21

1� �21
; :::;

�2k
1� �2k

�
; (3.15)

which we consider in this paper, the problem of �nding stability conditions for both D1


and Dw
F is simpli�ed to �nding stability conditions for D1
 and D1
�l;where 
�l is

obtained from 
 by substituting all Ah with �lAh, where j�lj < 1 as wt follows a stationary

VAR(1) process.


�l =

0BBB@
�lA1 � In � � � �lAS

...
. . .

...

�lA1 � � � �lAS � In

1CCCA ;8l = 0; :::; k; (�0 = 1): (3.16)

Kolyuzhnov [40] uses a special blocked� diagonal structure of matrix D1; which

is the feature of the dynamic environment in this class of models. In a sense, these

positive diagonal D�matrices may now be called positive blocked� diagonal ��matrices.

This makes it possible to formulate the concept of ��stability by analogy to the terminology

of the concept of D�stability about matrices that remain stable under multiplication by a

diagonal matrix with positive elements, studied for example in Johnson [37].

De�nition 3.2 Given n; the number of endogenous variables, and S, the number of agent

types, ��stability is de�ned as the stability of the economy under structurally heterogeneous

mixed RLS/SG learning for any (possibly di¤erent) degrees of inertia of agents, � > 0.

��stability, thus formulated, has the same meaning in models with heterogeneous

learning described above as the E�stability condition in models with homogeneous RLS
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learning. The E�stability condition is a condition for the asymptotic stability of an

REE under homogeneous RLS learning. The REE of the model is stable if it is locally

asymptotically stable under the following ODE:

d�

d�
= T (�)� �,

where � are the estimated parameters from agents PLMs, T (�) is a mapping of the PLM

parameters into the parameters of the actual law of motion (ALM), which is obtained

when we plug the forecast functions based on the agents�PLMs into the reduced form of

the model, and � is a "notional" ("arti�cial") time. The �xed point of this ODE is the

REE of the model.16

Note that the ��stability concept comprises stability under the three types of

heterogeneous learning considered by Giannitsarou [31]. It is worth noting that in the case

of heterogeneous learning in a structurally homogeneous economy, which we employ in the

current setup, the criterion of Honkapohja and Mitra [36] is simpli�ed to conditions on

the Jacobians considered by Giannitsarou [31]. First, to get the structurally homogeneous

economy as discussed earlier, one has to replace Ai in the setup of Honkapohja and Mitra

[36] with �iA. After that, one has to make the following simpli�cations in the setup

corresponding to a particular type of heterogeneous learning considered.

The �rst type of heterogeneous learning is characterized by di¤erent initial per-

ceptions of agents and equal degrees of inertia. This type is termed transiently hetero-

geneous learning by Honkapohja and Mitra [36]. The condition for stability under this

learning is easily derived from the criterion above by setting all ��s to be equal, and setting

S0 to S or to 0 in order to get transiently heterogeneous RLS or SG learning, respectively.

The second type of heterogeneous learning considered by Giannitsarou [31] is

such that agents use di¤erent degrees of inertia and the same type of learning algorithm

(RLS or SG). This is what Honkapohja and Mitra [36] call persistently heterogeneous

learning in a weak form. The Jacobians, for this case, are easily derived by setting S0 to S

or to 0 in order to have heterogeneous RLS or SG learning, respectively, and by allowing

16Notice that ��stability conditions on the Jacobian in the general forward�looking model of Honkapohja
and Mitra [36] do not depend on the particular equilibrium point (in the case of multiple equilibria) because
the system of di¤erential equations is linear in this setup, in which case the �rst derivatives of the RHS
of the associated ODE do not depend on a particular value of a RE equilibrium. So if stability conditions
are satis�ed for a given Jacobian, then all equilibrium points are stable. Convergence to a particular point
depends on the initial conditions. In this paper, we do not consider how equilibrium selection is made.



125

Type of heterogeneity Type of learning Assumptions in the general
H&M (2006) model

structurally structurally
heterogeneous homogeneous
Ah = �hÂh Ah = �hA

I Di¤erent initial perceptions RLS �h = � for all h, S0 = S
(transiently heterogeneous SG �h = � for all h, S0 = 0
learning)
II Di¤erent degrees of inertia RLS S0 = S
(persistently heterogeneous SG S0 = 0
learning in a weak form)
III Di¤erent learning algorithms RLS and SG
(persistently heterogeneous
learning in a strong form)

Table 3.1: Types of heterogeneity in learning.

for possibly di¤erent ��s.

The third type of heterogeneous learning considered by Giannitsarou [31] is char-

acterized by possibly di¤erent initial perceptions, possibly di¤erent degrees of inertia, and

by di¤erent agents using di¤erent learning algorithms (RLS or SG). Such type of learning

Honkapohja and Mitra [36] call persistently heterogeneous learning in a strong form. The

stability Jacobians for this case are derived by writing the general criterion for stability

for the structurally homogeneous case, i.e., by setting Ai = �iA.

The relation between the above�described formulations of the types of heteroge-

neous learning by Giannitsarou [31] and by Honkapohja and Mitra [36] can be conveniently

summarized in the following table17:

Notice that in the "diagonal" case (3.15), ��stability does not depend on S0.

Thus, if the economy (3.10), (3.11), and (3.15) is ��stable, it is stable under all three

types of heterogeneous learning and under RLS and SG homogeneous learning.

17Note that there is one type of heterogeneous learning that was not introduced by Giannitsarou [31]
but is introduced here. It is heterogeneity in the degrees of inertia under which all types of agents use the
SG learning algorithm. Although Honkapohja and Mitra [36] have the general criterion for stability in this
case (as discussed above), their formulation includes only forward�looking models. In the general setup of
self-referential structurally homogeneous models of Giannitsarou [31], the stability conditions under such
a type of learning (in Giannitsarou [31] notation, naturally extended from her proofs) would depend on
the stability of matrix JSG2 (�f ) = diag (�1; :::; �S) 
 I 
M (�f ) J

LS
1 (�f ), where �f is an REE, M (�f )

is de�ned similarly to Mz, and JLS1 (�f ) is a Jacobian that de�nes stability in case of the �rst type of
heterogeneity (di¤erent initial perceptions of agents) when all agents use RLS learning. For details, see
Giannitsarou [31] . Again, it is clear that in the forward�looking case these conditions for stability fall
under the general stability criterion of Honkapohja and Mitra [36] with S0 = 0 (see the table above).
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3.4 Conditions for ��stability of Structurally Homogeneous

Models

After establishing the universal role of the concept of ��stability for stability

under all three types of heterogeneous learning discussed above, we present necessary and

su¢ cient conditions. First, we provide the reader with a set of su¢ cient conditions for

��stability applicable to our setup, that is, for a class of structurally homogeneous models.

We present (without proofs) the so�called aggregate economy su¢ cient condition for the

case of a structurally homogeneous model and the "same sign" su¢ cient condition for the

case of a structurally heterogeneous bivariate economy that were derived in Kolyuzhnov

[40]

Proposition 3.3 For the structurally homogeneous economy (3.4) and (3.3) to be ��

stable, it is su¢ cient that at least one of the following maximal aggregated ��coe¢ cients

(which are the coe¢ cients before the expectation term of a one�dimensional forward�

looking aggregate economy model, for details see Kolyuzhnov [40]): max
i

X
j

jaij j and

max
j

X
i

jaij j are less than one, where aij denotes an element in the ith row and the jth

column of A.

Proposition 3.4 In case n = 2, the economy (3.10), (3.11), and (3.15) is ��stable if

the corresponding matrix 
, de�ned in (3.14), is stable and the following "same sign"

condition holds true:

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] � 0; i 6= j;M1(��lAi) � 0

or

det (��lAi) � 0; [detmix (��lAi;��lAj) + detmix (��lAj ;��lAi)] � 0; i 6= j;M1(��lAi) � 0;

8l = 0; 1; :::; k; (�0 = 1);

where mix (��lAi;��lAj) denotes a matrix of structural parameters of a pairwise�mixed

economy and is composed by mixing columns of a pair of matrices �lAi; �lAj, for any i;

j = 1; S.

It is also possible to derive some necessary conditions and su¢ cient conditions

for ��stability in the structurally homogeneous case in terms of eigenvalues of the matrix
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of structural parameters of the reduced form, A. It is possible by a direct application of

the characteristic equation approach, where one requires all roots of the polynomial (that

are eigenvalues of the Jacobian matrix) to be less than zero for stability, the latter being

equivalent to the well-known Routh�Hurwitz conditions.

Proposition 3.5 If all eigenvalues of A are real and less than one, then the structurally

homogeneous system (3.4) and (3.3) with two agents is ��stable, that is, stable under the

three types of heterogeneous learning: agents with di¤erent initial perceptions with RLS or

SG learning, agents with possibly di¤erent degrees of inertia with RLS or SG learning, and

agents with di¤erent learning algorithms, RLS and SG. For the structurally homogeneous

system (3.4) and (3.3) with any number of agents to be ��stable, it is necessary that all

real roots of A be less than one. This gives a test for non���stability.

Proof. See Appendix C.1. �

In the proof of the proposition above, using the structure of the Jacobian matrices

in our setup, we have derived a su¢ cient condition for stability under all three types of

heterogeneous learning with two agent types. We did this using the criterion for stability

of Honkapohja and Mitra [36]. For the case of real roots of A, we have shown that in this

setup, the analysis of stability of a particular Jacobian turns into the analysis of stability

of A, which gives us very simple eigenvalues conditions. Also, using the general criterion

of Honkapohja and Mitra [36], we have proved here the necessary conditions for ��stability

(the failure of which is su¢ cient for non���stability) for the case of an arbitrary number

of agent types.

3.5 Optimal Policy Rules and the Structure of the Reduced

Forms

After deriving and stating the conditions for stability under the three types of

heterogeneous learning discussed in the previous section, we are ready to study the general

New Keynesian model (3.1), (3.2), and (3.3) for stability under heterogenous learning when

optimal monetary policy rules are applied. Here we describe the types of optimal policy

rules that are analyzed in this study.
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The policy maker is assumed to use the loss function minimization problem,

which comes from the �exible in�ation targeting approach (a policy regime adopted in

several countries in the 1990s), described and defended by Svensson [54]. The central

bank here has two options: adopt a discretionary policy, by solving the problem every

period, or commit to a rule that is once and for all derived from the minimization of the

in�nite horizon loss function. Svensson [54] and Cecchetti [12] advocate the �rst option,

which is essentially commitment to a certain behavior (minimizing the loss function) with

a reconsidering of the optimal rule every period to take new information into account.

They provide various arguments, like ine¢ ciency (in general) of instrument rules designed

to respond only to target variables or the way monetary policy decisions are made in

practice.

The in�nite horizon loss function of the policy maker for the �exible in�ation

targeting approach looks as follows:

1

2
Et

1X
i=0

�i
h
� (xt+i � �x)2 + (�t+i � ��)2

i
:

According to the discussion above, we assume the discretionary policy of the policy maker

and the problem of minimizing the loss function simpli�es to solving each period

min
1

2

h
� (xt � �x)2 + (�t � ��)2

i
+Rt (3.17)

subject to

�t = c2 + �xt + Ft

(the central bank takes the remainder terms of the loss function Rt; and the constraint

Ft = � bEt�t+1 + �2wt as given).
The classi�cation of the loss�function�optimization�based rules into fundamentals�

based and expectations�based rules provided below is due to Evans and Honkapohja [26].

The derivation of these rules and of the corresponding reduced forms is done by Evans

and Honkapohja [26] for a slightly more narrow setup than is assumed here (we assume

a general structure of autoregressive shocks); therefore in the derivations that follow, we

basically repeat their steps extending them for our setup.

3.5.1 Expectations�based Optimal Policy Rules

The expectations�based policy rule implies the central bank�s reaction to (pos-

sibly non-rational) expectations of private agents, assuming that these expectations are
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observable (or can be estimated). Its general form is it = �0+��Êt�t+1+�xÊtxt+1+�
0
wwt:

The coe¢ cients of this rule are obtained by solving the equilibrium conditions: struc-

tural equations with non�rational expectations of private agents (3.1) and (3.2) and

the �rst-order conditions (FOC) of the optimization problem of the central bank (3.17),

� (�t � ��) + � (xt � �x) = 0. Thus, the expectations�based policy rule is as follows:

it = �0 + ��Êt�t+1 + �xÊtxt+1 + �
0
wwt, where (3.18)

�0 = �
�
�2 + �

��1
��1

�
��� + ��x� �c2 �

�
�+ �2

�
c1
�
,

�� = 1 +
�
�2 + �

��1
��1��, �x = ��1, �w = ��1�1 +

�
�2 + �

��1
��1��2:

After plugging this policy rule into the IS curve equation, we get the following

reduced form.

yt = cE +AEÊtyt+1 + �
Ewt,

wt = Fwt�1 + �t,

yt =
h
�t xt

i0
, where F = diag(�i), j�ij < 1; �it � iid

�
0; �2i

�
; i = 1; n,

AE =

0@ ��
�
�2 + �

��1
0

���
�
�2 + �

��1
0

1A , (3.19)

cE =

0@ c2 + � (c1 � ��0)
c1 � ��0

1A , �E =
0@ �02

h
1� �2

�2+�

i
� �2

�2+�
�02

1A :

Note that the REE solution is not needed either for deriving matrix AE or for

deriving the coe¢ cients of the optimal expectations�based policy rule. The REE solution

will be needed for deriving the optimal fundamentals�based policy rule and, therefore, will

be derived in the corresponding part of the text.

3.5.2 Fundamentals�based Optimal Policy Rules

In general, the fundamentals�based policy rule (not necessarily optimal) has the

form

it =  0 +

nX
i=1

 wiwit =  0 +  
0
wwt: (3.20)

Later, we show that there exists a unique fundamentals�based optimal policy rule in this

setup and derive this rule.
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Plugging this policy rule into structural form (3.1) and (3.2), we get the following

reduced form:

yt = cF +AF bEtyt+1 + �Fwt,
wt = Fwt�1 + �t,

yt =
h
�t xt

i0
, where F = diag(�i), j�ij < 1; �it � iid

�
0; �2i

�
; i = 1; n,

AF =

0@ � + �� �

� 1

1A ; (3.21)

cF =

0@ c1 � � 0
c2 + � (c1 � � 0)

1A ; �F =

0@ �
�
�� 0w + �01

�
+ �02

�� 0w + �01

1A :

The optimal fundamentals�based rule, under the central banks� discretionary

policy, is obtained from the loss function minimization, with the central bank assuming

that private agents have RE. With the REE structure being yt = a+�wt, its general form

is it =  0+ 
0
wwt, where wt is a vector of exogenous variables. Using the equilibrium con-

ditions (economy�s structural equations (3.1) and (3.2), with the REE structure entering

them and the FOC of the central bank�s optimization problem), we obtain the coe¢ cients

of the REE and of the optimal fundamentals�based policy rule.

To get the REE, one has to write the ALM using the Phillips curve (3.2), the FOC

of the central bank�s optimization problem and the PLM in the general form, yt = a+�wt,

and then according to the RE principle, equate coe¢ cients of the resulting ALM (T�

mapping) with the corresponding coe¢ cients of the PLM. The resulting ALM looks like

�t =
c2 + � [��� + ��x]

�2 + �
+

��

�2 + �
[a1 + 
11�1w1t + :::+ 
1n�nwnt] +

�

�2 + �
�02wt

xt =
��� + ��x

�
� �

�
�t,

and the REE looks like

�t = a�1 +
nX
i=1


�1iwit (3.22)

xt = a�2 +
nX
i=1


�2iwit, where

a�1 =
c2 + � [��� + ��x]

�2 + � (1� �)
; a�2 =

��� + ��x

�
� �

�
a�1 =

��
�c2 + (1� �) [��� + ��x]

�2 + � (1� �)
,


�1i =
��2i�i

� (1� ��i) + �2
; 
�2i = �

�

�

�1i = �

��2i�i
� (1� ��i) + �2

; i = 1; n:
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To get the optimal fundamentals�based policy rule, one has to express it using

the IS curve (3.1), plugging into it the REE solution (3.22) derived above.

it = �
1

�

 
a�2 +

nX
i=1


�2iwit

!
+

 
a�1 +

nX
i=1


�1i�iwit

!
+
1

�

 
a�2 +

nX
i=1


�2i�iwit

!
+
1

�
�01wt:

As a result, the optimal fundamentals�based policy rule is

it =  �0 +  
�0
wwt, where (3.23)

 �0 = a�1,  
�
w =

1

�

h�

21 (�1 � 1) : : : 
2n (�n � 1)

�
+ �1

i
+
�

11�1 : : : 
1n�n

�
.

In both cases of optimal monetary policy rules, we plug the corresponding policy

rule into the structural equations and obtain the corresponding reduced form of the model.

These reduced forms were studied for stability under homogeneous RLS learning in the

Clarida, Gali, and Gertler [17, 18] formulation of the New Keynesian model by Evans and

Honkapohja [26] , who derived the stability results for the expectations�based rule and

the instability results for the fundamentals�based rule. We study stability and instability

for the two categories of rules under the heterogeneous learning of private agents in the

general setup of the New Keynesian model (3.1), (3.2), and (3.3).

3.6 Stability Problem in the New Keynesian Model

After deriving the reduced forms corresponding to the optimal monetary pol-

icy rules, we are ready to check them for ��stability. To do this, we have to test the

resulting matrix A of the reduced form (3.19) or (3.21) for the applicability of the su¢ -

cient and necessary conditions for ��stability. For the optimal expectations�based policy

rule, we have the following result.

Proposition 3.6 The general New Keynesian model with a stationary AR(1) observable

shocks process (3.1), (3.2), and (3.3) is ��stable when the optimal expectations�based policy

rule (3.18) is applied.18

Proof. We know that the corresponding A matrix in the optimal expectations�based pol-

icy rule case is AE =

0@ ��
�
�2 + �

��1
0

���
�
�2 + �

��1
0

1A. Using the su¢ cient condition in Proposi-
tion 3.4, we have that 
 is stable since its eigenvalues are determined from the following
18This result is not very surprising as Evans, Honkapohja, and Williams [27] have a convergence result

under the optimal expectations�based policy rule when all agents use SG learning.
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characteristic equation det
�
AE � I2 (1 + �)

�
(1 + �)2(S�1) = 0 and, therefore, are equal

to �1 and ��
�
�2 + �

��1 � 1, i. e., are negative, and we have that det (��lAi) = 0;

[detmix (-�lAi; -�lAj)+detmix (-�lAj ; -�lAi)]=0; i 6= j; M1(-�lAi)=-�l�h��
�
�2+�

��1 �
(�) 0; for all l = 0; 1; :::; k (�0 = 1), so the "same sign" condition holds true. Notice

that using the "aggregate economy" su¢ cient condition from Proposition 3.3, we can

write two aggregate ��coe¢ cients in the expectations�based policy rule case. These are

�max1 = max
i

X
j

jaij j = max
n
��
�
�2 + �

��1
; ��

�
�2 + �

��1o
and �max2 = max

j

X
i

jaij j =

� (�+ �)
�
�2 + �

��1
. It is clear that both coe¢ cients are less than one if � � 1. So,

the "aggregate economy" su¢ cient condition for ��stability is a more restrictive condition

compared to the "same sign" condition since it requires additional assumptions on the

structure of the economy. However, it can be with success applied in more than two di-

mensional economies, where similar "same sign" conditions are not su¢ cient for ��stability

(see Kolyuzhnov [40]). �

Note that Evans and Honkapohja [26] have a similar result for homogeneous

learning. The proposition below presents the instability result for the fundamentals�based

monetary policy rule.

Proposition 3.7 The general New Keynesian model with a stationary AR(1) observable

shocks process (3.1), (3.2), and (3.3) is non���stable when the fundamentals�based policy

rule (3.20), as well as the optimal fundamentals�based policy rule (3.23), is applied.

Proof. We know that the corresponding matrix A in the fundamentals�based policy rule

case is AF =

0@ � + �� �

� 1

1A. Using the "eigenvalues" necessary condition from Proposi-

tion 3.5,19 we get the eigenvalues of this matrix:.�1;2 = 1 +
�+���1

2 �
r�

�+���1
2

�2
+ ��.

Both of these eigenvalues are real, and eigenvalue �1 = 1 +
�+���1

2 +

r�
�+���1

2

�2
+ ��

is greater than one. So, the su¢ cient condition for non���stability is satis�ed. �

Again, Evans and Honkapohja [26] have a similar result for homogeneous learning.

19In principle, we could also use our necessary conditions for ��stability (derived in Kolyuzhnov [40])
to show the instability of the fundamentals�based rule. However, these may be more di¢ cult to check
than the necessary conditions on eigenvalues derived in this paper. Besides, the necessary conditions on
eigenvalues work for the case of an arbitrary number of agent types.
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Proposition 3.6 means that the REE in this model, resulting after implementing

the optimal expectations�based policy rule, is stable under the recursive least squares

and the stochastic gradient homogeneous learning and the three types of heterogeneous

learning: agents with di¤erent initial perceptions with the RLS or SG learning, agents with

di¤erent degrees of inertia with RLS or SG learning, and agents with di¤erent learning

algorithms, RLS and SG. Proposition 3.7 claims that the REE of this model with the

fundamentals�based policy rule is always unstable under any type of heterogeneous and

homogeneous learning of agents.

3.7 Conclusion

We have used the environment of the New Keynesian model to explore the ques-

tion of stability of two categories of optimal monetary policy rules under the assumption

of heterogeneous learning of private agents.

These two categories were introduced by Evans and Honkapohja [26], and this

division is based on the assumption about the central bank�s perception of private agents�

expectations: RE or possibly non-rational. Under the central bank assuming private agents

have RE, the fundamentals�based rule is obtained, while the case of the central bank

assuming possibly non-rational expectations of private agents results in the expectations�

based rule.

The purpose of this research was, on the one hand, to explore whether, given

structural homogeneity of the model, heterogeneity in the learning of agents in�uences the

stability results implied by the application of either of the two categories of policy rules.

Using the general criterion for stability of Honkapohja and Mitra [36] and the

su¢ cient ��stability conditions derived in Kolyuzhnov [40] for the case of heterogeneous

learning, we obtain results similar to those obtained by Evans and Honkapohja [26] for

the case of homogeneous learning. In particular, under the fundamentals�based policy

rule, the model economy is always unstable, so there is no convergence to the associated

REE of the model, while there is stability under the optimal expectations�based rule, and

the economy converges to the REE corresponding to the optimal monetary policy without

commitment.

The above�described results have been obtained using only the structure of the

model, so there is no dependence on heterogeneity of any type considered. This implies
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that in the New Keynesian model, the stability results are independent of heterogeneity

in learning, so the representative agent hypothesis is applicable in this setup.

The method of analysis presented in this paper allows us to check the applicability

of this hypothesis in the case of the heterogeneous learning of private agents in the New

Keynesian economy under Taylor�type rules (the case of internal central bank forecasting),

which do not fall under the classi�cation of Evans and Honkapohja [26]. This issue will

be considered in a separate study.
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A.1 Assumptions on the SRA from the stochastic approx-

imation literature (Benveniste, Métivier and Priouret

[3]) as they are given in Evans and Honkapohja [24, pp.

124-125]

(A.1) Assumption A in the paper

(A.2) For any compact subset Q � D, there exist C1,C2, q1, and q2 such that 8� 2 Q and

8t :

(i) jH(�; x)j � C1 (1 + jxjq1) ;

(ii) j�t(�; x)j � C2 (1 + jxjq2) :

(A.3) For any compact subset Q � D, the function H(�; x) satis�es 8�, �0 2 Q and x1,

x2 2 Rk :

(i)
���@H(�;x1)@x � @H(�;x2)

@x )
��� � L1 jx1 � x2j ;

(ii)
��H(�; 0)�H(�0; 0)�� � L2

��� � �0�� ;
(iii)

���@H(�;x)@x � @H(�0;x)
@x

��� � L2
��� � �0�� ;

for some constants L1, L2.

(B.1) Wt is iid with �nite absolute moments.

(B.2) For any compact subset Q � D:

sup
�2Q

jB (�)j �M and sup
�2Q

jA (�)j � � < 1,

for some matrix norm j�j, and A (�) and B (�) satisfy Lipschitz conditions on Q:

Here, I provide the reader with de�nitions and theorems adapted from the math-

ematics literature that I used for deriving conditions for �-stability. These results are

structured according to the approach that is used for deriving stability conditions.
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A.2 The general de�nition of stability and D-stability of a

matrix

De�nition A.1 Matrix A is stable if all the solutions of the system of ordinary di¤erential

equations _x(t) = Ax(t) converge toward zero as t converges to in�nity.

Theorem A.1 Matrix A is stable if and only if all its eigenvalues have negative real

parts.

De�nition A.2 (D�stability) Matrix A is D�stable if DA is stable for any positive

diagonal matrix D.

A.3 The Lyapunov theorem approach

Theorem A.2 (Lyapunov) A real n� n matrix A is a stable matrix if and only if there

exists a positive de�nite matrix H such that A0H +HA is negative de�nite.

Theorem A.3 (Arrow-McManus, 1958) Matrix A is D-stable if there exists a positive

diagonal matrix C such that A0C + CA is negative de�nite.

A.4 The negative diagonal dominance approach

De�nition A.3 (introduced by McKenzie) A real n� n matrix A is dominant diagonal

if there exist n real numbers dj > 0; j = 1; :::; n, such that dj jajj j >
P
dijaij j : i 6= j); j =

1; : : : ; n: This is called the �column�diagonal dominance. The �row�diagonal dominance

is de�ned as the existence of di > 0 such that dijaiij >
P
dj jaij j : j 6= i); i = 1; : : : ; n.

Theorem A.4 (a su¢ cient condition for stability, McKenzie, 1960): If an n�n matrix

A is dominant diagonal and its diagonal is composed of negative elements ( aii < 0, all

i = 1; : : : ; n), then the real parts of all its eigenvalues are negative, i.e., A is stable.

Corollary A.1 If A has negative diagonal dominance, then it is D�stable.
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A.5 The characteristic equation approach

Theorem A.5 (Routh-Hurwitz necessary and su¢ cient conditions for the negativity of

eigenvalues of a matrix) Consider the following characteristic equation:

j�I �Aj= �n+b1�
n�1+:::+ bn�1�+ bn= 0

determining n eigenvalues � of a real n � n matrix A, where I is the identity matrix.

Then eigenvalues � all have negative real parts if and only if �1 > 0;�2 > 0; :::;�n > 0,

where

�k =

��������������

b1 1 0 0 0 � � � 0

b3 b2 b1 1 0 � � � 0

b5 b4 b3 b2 b1 � � � 0
...

...
...

...
...

. . .
...

b2k�1 b2k�2 b2k�3 b2k�4 b2k�5 � � � bk

��������������
:

A.6 The alternative de�nition of D�stability approach

Theorem A.6 (From Observation (iv) in Johnson [37]). Consider Mn(C); the set of

all complex n � n matrices, and Dn; the set of all n � n diagonal matrices with positive

diagonal entries. Take A 2 Mn(C) and suppose that there is an F 2 Dn such that FA

is stable. Then A is D�stable if and only if A � iD is non�singular for all D 2 Dn.

If A 2 Mn(R); the set of all n � n real matrices, then ��� in the above condition may

be replaced with �+�since, for a real matrix, any complex eigenvalues come in conjugate

pairs.

A.7 Proofs of propositions in Chapter 1

A.7.1 Proof for the form of the associated ODE for models with t �
1-dating of expectations and information available up to t � 1
(Models I and II)

I have that Models I and II under mixed RLS/SG learning are presented in the

standard form of SRA

�t = �t�1 + �tH (�t�1; Xt) + �
2
t�t (�t�1; Xt) ;
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Xt = A(�t�1)Xt�1 +B(�t�1)Wt;

where for the law of motion of beliefs for the RLS part for agent type h; I have

RLS: for h = 1; S0

H�h() = �h

h
S�1h;t�1zt�1z

0
t�1 [T (�t�1)� �t�1] + S�1h;t�1zt�1 (B�t + �"t)

0
i
; ��h() = 0;

HSh() = (�h)
�
ztz

0
t � Sh;t�1

�
; �Sh() =

�
�t+1 � �t

�2t

�
(�h)

�
ztz

0
t � Sh;t�1

�
;

where �Sh() is bounded since (ztz
0
t � Sh;t�1) has a limit, and

�t+1 � �t
�2t

� 1

�t+1
� 1

�t
1 is

bounded due to the additional technical assumption 2 in Assumption A

lim sup
t!1

��
1

�t+1

�
�
�
1

�t

��
<1;

thus, Assumtion A2 (ii) is satis�ed, and other required assumptions for the derivation of

the associated ODE of SRAs, see Apendix A.1 (conditions A1-A3, B1-B2 for Models I and

II are also satis�ed).

So, the right-hand side of the associated ODE d�
d� = h(�); where h(�) = lim

t!1
EH (�;Xt(�)) ;

for the RLS part looks as

RLS: for h = 1; S0

lim
t!1

H�h(�;Xt) = �hS
�1
h Mz [T (�)� �]

lim
t!1

HSh(�;Xt) = �h [(Mz � Sh)] :

Similarly, for the SG case

SG: for h = S0 + 1; S

H�h() = �h
�
zt�1z

0
t�1 [T (�t�1)� �t�1] + zt�1 (B�t + �"t)

0� ; ��h() = 0
lim
t!1

EH�h(�;Xt) = �hMz (T (�)� �) :

So, the associated ODE looks as

d�h
d�

= �hS
�1
h Mz

�
T (�0)0 � �h

�
; h = 1; S0

dSh
d�

= �h [(Mz � Sh)]
d�h
d�

= �hMz

�
T (�0)0 � �h

�
; h = S0 + 1; S:

1See footnote 24 on p.42 in Evans and Honkapohja [22].
2imposed as well by Evans and Honakapohja [22, p.32]
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As Sh �! Mz, this ODE asymptotically behaves as (can be proved along the lines of

Evans and Honkapohja [22, p. 42] by using Marcet and Sargent [43, Prop. 3]):

d�h
d�

= �h (T (�)� �h) ; h = 1; S0
d�h
d�

= �hMz (T (�)� �h) ; h = S0 + 1; S;

Q:E:D:

A.7.2 Proof for the form of the associated ODE for models with t-dating

of expectations (Models III and IV)

The proof is essentially similar to the proof for models with t � 1 dating of

expectations. Models III and IV under mixed RLS/SG learning are presented in the

standard form of SRA

�t = �t�1 + �tH (�t�1; Xt) + �
2
t�t (�t�1; Xt) ;

Xt = A(�t�1)Xt�1 +B(�t�1)Wt;

where for the law of motion of beliefs for the RLS part for agent type h; I have

RLS: for h = 1; S0

H�h() = �h

h
S�1h;t�1zt�1z

0
t�1 [T (�t�1)� �t�1] + S�1h;t�1zt�1 (�"t)

0
i
; ��h() = 0

HSh() = (�h)
�
ztz

0
t � Sh;t�1

�
; �Sh() =

�
�t+1 � �t

�2t

�
(�h)

�
ztz

0
t � Sh;t�1

�
;

where �Sh() is bounded since (ztz
0
t � Sh;t�1) has a limit, and

�t+1 � �t
�2t

� 1

�t+1
� 1

�t
3 is

bounded due to the additional technical assumption 4 in Assumption A

lim sup
t!1

��
1

�t+1

�
�
�
1

�t

��
<1;

thus, Assumtion A2 (ii) is satis�ed, and other required assumptions for the derivation of

the associated ODE of SRAs, see Apendix A.1 (conditions A1-A3, B1-B2 for Models III

and IV are also satis�ed).

So, the right-hand side of the associated ODE d�
d� = h(�); where h(�) = lim

t!1
EH (�;Xt(�))

for the RLS part looks as

3See footnote 24 on p.42 in Evans and Honkapohja [22].
4imposed as well by Evans and Honkapohja [22, p.32]
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RLS: for h = 1; S0

lim
t!1

H�h(�;Xt) = �hS
�1
h Mz [T (�)� �]

lim
t!1

HSh(�;Xt) = �h [(Mz � Sh)] :

Similarly, for the SG case

SG: for h = S0 + 1; S

H�h() = �h
�
zt�1z

0
t�1 [T (�t�1)� �t�1] + zt�1 (�"t)

0� ; ��h() = 0
lim
t!1

EH�h(�;Xt) = �hMz (T (�)� �) :

So, the associated ODE looks as

d�h
d�

= �hS
�1
h Mz

�
T (�0)0 � �h

�
; h = 1; S0

dSh
d�

= �h [(Mz � Sh)]
d�h
d�

= �hMz

�
T (�0)0 � �h

�
; h = S0 + 1; S:

As Sh �! Mz, this ODE asymptotically behaves as (can be proved along the lines of

Evans and Honkapohja [22, p. 42] by using Marcet and Sargent [43, Prop. 3]):

d�h
d�

= �h (T (�)� �h) ; h = 1; S0
d�h
d�

= �hMz (T (�)� �h) ; h = S0 + 1; S;

Q:E:D:

A.7.3 Proof of Criterion 1.1

The associated ODE for the SRA of Model I looks like

d�h
d�

= �h

0B@T (��01; :::;�0s�0| {z }
�

)� �h

1CA ; h = 1; S0

d�h
d�

= �hMz

0B@T (��01; :::;�0s�0| {z }
�

)� �h

1CA ; h = S0 + 1; S;
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where the T -map is given by

T

2666666664

a1;t

b1;t
...

aS;t

bS;t

3777777775
=

26664
�
�+

SP
h=1

�
Ah0ah;t +A

h
1ah;t + :::+A

h
�ah;t

��0
��

SP
h=1

Ah0bh;t

�
+

�
SP
h=1

Ah1bh;t

�
F + :::+

�
SP
h=1

Ah� bh;t

�
F � +BF .

�0
37775 =

24 Ta(�t)

Tb(�t)

35 :

First, transpose the ODE

d�0h
d�

= �h
�
T 0(�)� �0h

�
; h = 1; S0

d�0h
d�

= �h
�
T 0(�)� �0h

�
M 0
z; h = S0 + 1; S;

then vectorize with the vec operator using the rules vec(AB) = B0
Invec(A), where A has

dimension n� l and B - l�m; take (T 0(�)� �0h) as A , M 0
z - as B, d (vec(X)) = vec(dX)

dvec (�0h)

d�
= �hvec

�
T 0(�)� �0h

�
; h = 1; S0

dvec(�0h)

d�
= �hMz 
 Invec

�
T 0(�)� �0h

�
; h = S0 + 1; S:

After substituting for T 0(�); I obtain:

for h = 1; S0

dvec (�0h)

d�
= �hvec

 "
�+

SX
h=1

�P
r=0

Ahrah;t;
�X
r=0

 
SX
h=1

Ahr bh;t

!
F r +BF

#
� [ah;t; bh;t]

!

for h = S0 + 1; S

dvec(�0h)

d�
= �hMz
Invec

 "
�+

SX
h=1

�P
r=0

Ahrah;t;
�X
r=0

 
SX
h=1

Ahr bh;t

!
F r +BF

#
� [ah;t; bh;t]

!
:

Using vec(ABC) = (C 0 
A)vec(B):

for h = 1; S0

dvec (�0h)

d�
= �h

0BBBBB@
"
�+

SX
h=1

�P
r=0

Ahrah;t;
�X
r=0

F r0 

SX
h=1

Ahrvecbh;t + vecBF

#
�

2666664
ah;t

b1h;t
...

bkh;t

3777775

1CCCCCA
for h = S0 + 1; S
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dvec (�0h)

d�
= �hMz
In

0BBBBB@
"
�+

SX
h=1

�P
r=0

Ahrah;t;

�X
r=0

F r0 

SX
h=1

Ahrvecbh;t + vecBF

#
�

2666664
ah;t

b1h;t
...

bkh;t

3777775

1CCCCCA :

Now, I have to compute the Jacobian of the right hand side of this ODE, that is, to

take the derivative with respect to dvec(�0)=
�
(a1;t)

0 ;
�
b11;t
�0 ,..., �bk1;t�0 ,..., (aS;t)0 ;�b1S;t�0 ,...,�bkS;t�0�0 :

Use Mz =

24 1 0

0 Mw

35 :
It will have the following structure.

The �rst S0 row blocks look like26666666666666666

�1

�
�P
r=0

A1r-In

�
0 � � � �1

�P
r=0

AS0� 0 � � �

0 �1

�
�P
r=0

F r0 
A1r-Ink
�
� � � 0 �1

�P
r=0

F r0 
AS0� � � �
...

...
. . .

...
...

...

�S0
�P
r=0

A1� 0 � � � �S0

�
�P
r=0

AS0� -In

�
0 � � �

0 �S0
�P
r=0

F r0 
A1� � � � 0 �S0

�
�P
r=0

F r0 
AS0� -Ink
�
� � �

The last S � S0 row blocks look like

�S0+1[
�P
r=0

AS0+1r -I] 0 � � � �S0+1
�P
r=0

AS� 0

0 �S0+1K[
�P
r=0

F r0 
AS0+1r -I] � � � 0 �S0+1K
�P
r=0

F r0 
AS�
...

...
. . .

...
...

�S
�P
r=0

AS0+1� 0 � � � �S [
�P
r=0

AS� -I] 0

0 �SK
�P
r=0

F r0 
AS0+1� � � � 0 �SK[
�P
r=0

F r0 
AS� -I]

77777777777777775
K =Mw 
 In:

From the blocked structure, it is clear that the stability of this Jacobian can be

studied using two unrelated matrix blocks � for a�s and for b� s � the ones stated in

Criterion 1.1, Q:E:D:
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A.7.4 Proof of Criterion 1.2

The associated ODE for the SRA of Model II looks like

d�h
d�

= �h

0B@T (��01; :::;�0s�0| {z }
�

)� �h

1CA ; h = 1; S0

d�h
d�

= �hM1yw

0B@T (��01; :::;�0s�0| {z }
�

)� �h

1CA ; h = S0 + 1; S;

where the T -map is given by

T

2666666666666664

a1;t

b1;t

c1;t
...

aS;t

bS;t

cS;t

3777777777777775
=

266666664

�
�+

SP
h=1

�
Ah0ah;t+A

h
1ah;t+A

h
1bh;tah;t

��0
�
L+

�
SP
h=1

Ah0bh;t

�
+
�

SP
h=1

Ah1b
2
h;t

��0
��

SP
h=1

Ah0ch;t

�
+
�

SP
h=1

Ah1bh;tch;t

�
+
�

SP
h=1

Ah1ch;tF

�
+BF

�0

377777775
�

2664
Ta(�t)

Tb(�t)

Tc(�t)

3775 :

First transpose the ODE

d�0h
d�

= �h
�
T 0(�)� �0h

�
; h = 1; S0

d�0h
d�

= �h
�
T 0(�)� �0h

�
M 0
1yw; h = S0 + 1; S;

then vectorize with the vec operator using the rules vec(AB) = B0 
 Invec(A),

where A has dimension n�l and B - l�m; take (T 0(�)� �0h) as A ,M 0
z as B, d (vec(X)) =

vec(dX)

dvec (�0h)

d�
= �hvec

�
T 0(�)� �0h

�
; h = 1; S0

dvec(�0h)

d�
= �hM1yw 
 Invec

�
T 0(�)� �0h

�
; h = S0 + 1; S:

After substituting for T 0(�); I obtain:

for h = 1; S0
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dvec (�0h)

d�
=�hvec

0BBBBBBBB@

266666664

�
�+

SP
h=1

�
Ah0ah;t+A

h
1ah;t+A

h
1bh;tah;t

��0
�
L+

�
SP
h=1

Ah0bh;t

�
+
�

SP
h=1

Ah1b
2
h;t

��0
��

SP
h=1

Ah0ch;t

�
+
�

SP
h=1

Ah1bh;tch;t

�
+
�

SP
h=1

Ah1ch;tF

�
+BF

�0

377777775

0

-

2664
a0h;t

b0h;t

c0h;t

3775
0

1CCCCCCCCA
;

for h = S0 + 1; S

dvec(�0h)

d�
=�hM1yw
Invec

0BBBBBBBB@

266666664

�
�+

SP
h=1

�
Ah0ah;t+A

h
1ah;t+A

h
1bh;tah;t

��0
�
L+

�
SP
h=1

Ah0bh;t

�
+
�

SP
h=1

Ah1b
2
h;t

��0
�
SP
h=1

(Ah0+A
h
1bh;t)ch;t+

�
SP
h=1

Ah1ch;tF

�
+BF

�0

377777775

0

-

2664
a0h;t

b0h;t

c0h;t

3775
0

1CCCCCCCCA
.

Using vec(ABC) = (C 0 
A)vec(B):

for h = 1; S0

dvec (�0h)

d�
= �h

0BBBBBBBBBBBBBB@

266666664

�
�+

SP
h=1

�
Ah0ah;t +A

h
1ah;t +A

h
1bh;tah;t

��
vec

�
L+

�
SP
h=1

Ah0bh;t

�
+

�
SP
h=1

Ah1b
2
h;t

��
�
Ik 


SP
h=1

�
Ah0 +A

h
1bh;t

�
+ F 0 


SP
h=1

Ah1

�
vecch;t + vecBF

377777775
�

2666666666666664

ah;t

b1h;t
...

bnh;t

c1h;t
...

ckh;t

3777777777777775

1CCCCCCCCCCCCCCA
;

for h = S0 + 1; S

dvec(�0h)

d�
=�hM1yw
In

0BBBBBBBBBBBBBB@

266666664

�
�+

SP
h=1

�
Ah0ah;t+A

h
1ah;t+A

h
1bh;tah;t

��
vec

�
L+

�
SP
h=1

Ah0bh;t

�
+
�

SP
h=1

Ah1b
2
h;t

��
�
Ik 


SP
h=1

�
Ah0+A

h
1bh;t

�
+F 0 


SP
h=1

Ah1

�
vecch;t+vecBF

377777775
�

2666666666666664

ah;t

b1h;t
...

bnh;t

c1h;t
...

ckh;t

3777777777777775

1CCCCCCCCCCCCCCA
.
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Now, I have to compute the Jacobian of the right-hand side of this ODE, that is,

to take the derivative with respect to dvec(�0)=
�
(a1;t)

0 ;
�
b11;t
�0 ,..., �bk1;t�0 ,..., (aS;t)0 ;�b1S;t�0 ,...,�bkS;t�0�0 :

Using (as d(AX2) = A [(dX)X +XdX], vec(AB) = (B0 
 In) vec(A) = (Im 
A) vecB,

where A has dimension n � l and B - l � m) d (vec(X)) = vec(dX); vec(ABC) =

(C 0 
A)vec(B))

dvec

"
L+

 
SX
h=1

Ah0bh;t

!
+

 
SX
h=1

Ah1b
2
h;t

!#
=dvec (bh;t) =

= vecd

"
L+

 
SX
h=1

Ah0bh;t

!
+

 
SX
h=1

Ah1b
2
h;t

!#
=dvec (bh;t) =

=

 
vec

SX
h=1

Ah0dbh;t + vec

"
SX
h=1

Ah1 (dbh;t) bh;t +A
h
1bh;t (dbh;t)

#!
=dvec (bh;t) =

=

 
SX
h=1

In 

�
Ah0 +A

h
1bh;t

�
dvecbh;t +

SX
h=1

�
b0h;t 
Ah1

�
dvecbh;t

!
=dvec (bh;t) =

= In 

�
Ah0 +A

h
1bh;t

�
+ b0h;t 
Ah1 :

I arrive at the following structure of the Jacobian

J =

2666666666664

�1
�
R1 � I

�
� � � �1R

S0 �1R
S0+1 � � � �1R

S

...
. . .

...
...

. . .
...

�S0R
1 � � � �

�
S0R

S0 � I
�

�S0R
S0+1 � � � �S0R

S

�S0+1KR
1 � � � �S0+1KR

S0 �S0+1K
�
RS0+1 � I

�
� � � �S0+1KR

S

...
. . .

...
...

. . .
...

�SKR
1 � � � �SKR

S0 �SKR
S0+1 � � � �SK

�
RS � I

�

3777777777775
;

where I = In+n2+nk;K =M1yw 
 In;

Rh =

26664
Ah1 +

�
Ah0 +A

h
1
�b
�

�a0 
Ah1 0

0 �b0 
Ah1 + In 

�
Ah0 +A

h
1
�b
�

0
... �c0 
Ah1 F 0 
Ah1 + Ik 


�
Ah0 +A

h
1
�b
�
37775 :

This Jacobian is clearly the same as the one stated in Criterion 1.2, Q:E:D:
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A.7.5 Proof of Corollary 1.3

From the proof of Criterion 1.2, it follows that under heterogeneous RLS learning,

the stability of the MSV REE of Model II is governed by the stability of the Jacobian

J =

26664
�1
�
R1 � In+n2+nk

�
� � � �1R

S

...
. . .

...

�SR
1 � � � �S

�
RS � In+n2+nk

�
37775 ;

where

Rh =

26664
Ah1 +

�
Ah0 +A

h
1
�b
�

�a0 
Ah1 0

0 �b0 
Ah1 + In 

�
Ah0 +A

h
1
�b
�

0
... �c0 
Ah1 F 0 
Ah1 + Ik 


�
Ah0 +A

h
1
�b
�
37775 :

It is clear that since the stability part for b�s does not depend on a�s and c�s, one

may require this part to be stable.

D1
b =

0BBB@
�1
�
�b0 
A11 + In 


�
A10 +A

1
1
�b
�
� In2

�
� � � �1

�
�b0 
AS1 + In 


�
AS0 +A

S
1
�b
��

...
. . .

...

�S
�
�b0 
A11 + In 


�
A10 +A

1
1
�b
��

� � � �S
�
�b0 
AS1 + In 


�
AS0 +A

S
1
�b
�
� In2

�
1CCCA :

This would mean that b converges to �b: And given this convergence of b�s, the convergence

of a�s and c�s is provided by the remaining "own" Jacobian subsystems for a�s and c�s,

respectively

D1
 =

0BBB@
�1
�
A10 +A

1
1 +A

1
1
�b� In

�
� � � �1

�
AS0 +A

S
1 +A

S
1
�b
�

...
. . .

...

�S
�
A10 +A

1
1 +A

1
1
�b
�

� � � �S
�
AS0 +A

S
1 +A

S
1
�b� In

�
1CCCA ;

Dw
F =

0BBB@
�1
�
F 0 
A11 + Ik 


�
A10 +A

1
1
�b
�
� I
�
� � � �1

�
F 0 
AS1 + Ik 


�
AS0 +A

S
1
�b
��

...
. . .

...

�S
�
F 0 
A11 + Ik 


�
A10 +A

1
1
�b
��

� � � �S
�
F 0 
AS1 + Ik 


�
AS0 +A

S
1
�b
�
� I
�
1CCCA ;

I = Ink:

These are the su¢ cient conditions of Corollary 1.3, Q:E:D:
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A.7.6 Proof of Proposition 1.4

I have to consider conditions for stability for any positive (�1; :::; �S) of the fol-

lowing matrices:

D1
 =

0BBB@
�1In � � � 0
...

. . .
...

0 � � � �SIn

1CCCA
0BBB@

A10 + :::+A
1
� � In � � � AS0 + :::+A

S
�

...
. . .

...

A10 + :::++A
1
� � � � AS0 + :::+A

S
� � In

1CCCA
and

Dw
F =

0BBB@
Dw1 � � � 0
...

. . .
...

0 � � � DwS

1CCCA�

�

0BBB@
F 0� 
A1� + :::+ F 0 
A11 + Ik 
A10 � Ink � � � F 0� 
AS� + :::+ F 0 
AS1 + Ik 
AS0

...
. . .

...

F 0� 
A1� + :::+ F 0 
A11 + Ik 
A10 � � � F 0� 
AS� + :::+ F 0 
AS1 + Ik 
AS0 � Ink

1CCCA ;

where
Dwh = �hInk; h = 1; S0

Dwh = �h (Mw 
 In) ; h = S0 + 1; S
, F = diag(�1; :::; �k);Mw = diag

�
�21
1��21

; :::;
�2k
1��2k

�
:

The expression for Dw
F in the diagonal case looks as follows:

Dw
F = diag(�1; : : : ; �1| {z }
nk

; : : : ; �S0 ; : : : ; �S0| {z }
nk

;
�S0+1�

2
1

1��21
; : : : ;

�S0+1�
2
1

1��21| {z }
n

; : : : ;
�S0+1�

2
k

1��2k
; : : : ;

�S0+1�
2
k

1��2k| {z }
n

; : : :

: : : ;
�S�

2
1

1��21
; : : : ;

�S�
2
1

1��21| {z }
n

; : : : ;
�S�

2
k

1��2k
; : : : ;

�S�
2
k

1��2k| {z })
n

�

�

0BBBBBBBBBBBBBBBBBBB@

�P
i=0

�i1A
1
i � In � � � 0 � � �

�P
i=0

�i1A
S
i � � � 0

...
. . .

... � � �
...

. . .
...

0 � � �
�P
i=0

�ikA
1
i � In � � � 0 � � �

�P
i=0

�ikA
S
i

...
...

...
. . .

...
...

...
�P
i=0

�i1A
1
i � � � 0 � � �

�P
i=0

�i1A
S
i � In � � � 0

...
. . .

... � � �
...

. . .
...

0 � � �
�P
i=0

�ikA
1
i � � � 0 � � �

�P
i=0

�ikA
S
i � In

1CCCCCCCCCCCCCCCCCCCA

:

After some permutations of rows and columns that do not change the absolute value of

the determinant of Dw
F � �I, I obtain that the following characteristic equation for
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eigenvalues � of Dw
F

det [Dw
F � �I] = 0

is equivalent to

0 = det[diag((�1; : : : ; �1| {z }
n

; : : : ; �S0 ; : : : ; �S0| {z }
n

;
�S0+1�

2
1

1��21
; : : : ;

�S0+1�
2
1

1��21| {z }
n

; : : : ;
�S�

2
1

1��21
; : : : ;

�S�
2
1

1��21
)| {z }

n

; : : :

: : : ; (�1; : : : ; �1| {z }
n

; : : : ; �S0 ; : : : ; �S0| {z }
n

;
�S0+1�

2
k

1��2k
; : : : ;

�S0+1�
2
k

1��2k| {z }
n

; : : : ;
�S�

2
k

1��2k
; :::;

�S�
2
k

1��2k| {z }
n

))�

�diag(

2666664
�P
i=0

�i1A
1
i � In �

�In
�1

� � �
�P
i=0

�i1A
S
i

...
. . .

...
�P
i=0

�i1A
1
i � � �

�P
i=0

�i1A
S
i � In �

(1��21)�In
�S�

2
1

3777775 ; : : :

: : : ;

2666664
�P
i=0

�ikA
1
i � In � In �

�In
�1

� � �
�P
i=0

�ikA
S
i

...
. . .

...
�P
i=0

�ikA
1
i � In � � �

�P
i=0

�ikA
S
i � In �

(1��2k)�In
�S�

2
k

3777775)];

or, in matrix form:

0 = det

2664
~D1
�1 � �InS

~Dk
�k � �InS

3775 = kQ
l=1

det
h
~Dl
�l � �InS

i
;

where

~Dl =

0BBBBBBBBBBBB@

�1In � � � 0

. . .

�S0In
...

�S0+1�
2
l

1��2l
In

...
. . .

0 � � � �S�
2
l

1��2l
In

1CCCCCCCCCCCCA
;


�l =

0BBB@
A10 + �lA

1
1 + :::+ �

�
l A

1
� � In � � � AS0 + �lA

S
1 + :::+ �

�
l A

S
�

...
. . .

...

A10 + �lA
1
1 + :::+ �

�
l A

1
� � � � AS0 + �lA

S
1 + :::+ �

�
l A

S
� � In

1CCCA ;

l = 1; k:
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Thus, the analysis of the stability of Dw
F is equivalent to the analysis of the stability of

~Dl
�l , 8l = 1; k:

So, the analysis of the stability of Dw
F can be split into the analysis of the

stability of the unrelated matrix blocks. Changing notation �h :=
�h�

2
l

1��2l
> 0 for h =

S0 + 1; S for each case l = 1; k, I obtain that the analysis of stability of Dw
F for any

� > 0 is equivalent to the analysis of stability of k matrices D1
�l . Introducing notation

�0 = 1, I can write the general criterion for stability of a structurally heterogeneous

economy under mixed RLS/SG learning for the diagonal environment case under any

(possibly di¤erent) degrees of inertia of agents, � > 0; as follows: D1
�l is stable for all

l = 0; 1; :::; k. Q:E:D:

A.7.7 Proof of Proposition 1.5

I have to consider the conditions for stability for any positive (�1; :::; �S) of the

following matrices D1
 , Dy
b and Dw
F , where F = diag(�1; :::; �k):

The analysis of stability of Dw
F and D1
 is equivalent to the analysis of sta-

bility of D1
�l , 8l = 0; k (�0 = 1) � the result follows from the proof of Proposition 1.4

above, where one has to replace Ah0 with A
h
0 +A

h
1
�b; set Ahi ; i > 1 to zero, and set S = S0.

Q:E:D:

A.7.8 Proof of Criterion 1.6

The proof directly follows from the proof of Criterion 1.1, setting Ah0 � 0: Q:E:D:

A.7.9 Proof of Criterion 1.7

The proof directly follows from the proof of Criterion 1.2, setting Ah0 � 0: Q:E:D:

A.7.10 Proof of Corollary 1.8

The proof directly follows from the proof of Corollary 1.3, setting Ah0 � 0: Q:E:D:

A.7.11 Proof of Proposition 1.9

Follows directly from the proof of Proposition 1.4. Set Ah0 to zero.Q:E:D:
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A.7.12 Proof of Proposition 1.10

Follows directly from the proof of Proposition 1.5. Set Ah0 to zero. Q:E:D:

A.7.13 Proof of Proposition 1.11

The characteristic equation for eigenvalues of 
KR is given by������������������

R1 � I � �
�1
I � � � RS0 RS0+1 � � � RS

...
. . .

...
...

. . .
...

R1 � � � RS0 � I � �
�S0

I RS0+1 � � � RS

KR1 � � � KRS0 KRS0+1 �K � �
�S0+1

I � � � KRS

...
. . .

...
...

. . .
...

KR1 � � � KRS0 KRS0+1 � � � KRS �K � �
�S
I

������������������
= 0:

For equal degrees of inertia of agents for each type of learning algorithm, �i = �1; 8i =

1; :::; S0; �i = �1; 8i = S0 + 1; :::; S; it simpli�es to�����������������

R1 � I � �
�1
I � � � RS0 RS0+1 � � � RS

...
. . .

...
...

. . .
...

R1 � � � RS0 � I � �
�1
I RS0+1 � � � RS

KR1 � � � KRS0 KRS0+1 �K � �
�2
I � � � KRS

...
. . .

...
...

. . .
...

KR1 � � � KRS0 KRS0+1 � � � KRS �K � �
�2
I

�����������������
= 0:

Then, it is possible to obtain the following equivalent algebraic representations for this

characteristic equation�����������������������

�I � �
�1
I � � � 0 I + �

�1
I 0 � � � 0 0

...
. . .

...
...

...
. . .

...
...

0 � � � �I � �
�1
I I + �

�1
I 0 � � � 0 0

R1 � � � RS0�1 RS0 � I � �
�1
I RS0+1 � � � RS�1 RS

0 � � � 0 0 �K � �
�2
I � � � 0 K + �I

...
. . .

...
...

...
. . .

...
...

0 � � � 0 0 0 � � � �K � �
�2
I K + �I

KR1 � � � KRS0�1 KRS0 KRS0+1 � � � KRS�1 KRS �K � �
�2
I

�����������������������

= 0;
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��������������������������

-I- �
�1
I � � � 0 0 0 � � � 0 0

...
. . .

...
...

...
. . .

...
...

0 � � � -I- �
�1
I 0 0 � � � 0 0

R1 � � � RS0�1
S0P
1
Rh-I- �

�1
I RS0+1 � � � RS�1

SP
S0+1

Rh

0 � � � 0 0 -K- �
�2
I � � � 0 0

...
. . .

...
...

...
. . .

...
...

0 � � � 0 0 0 � � � -K- �
�2
I 0

KR1 � � � KRS0�1 K
S0P
1
Rh KRS0+1 � � � KRS�1 K

SP
S0+1

Rh-K- �
�2
I

��������������������������

= 0;

�
�1� �

�1

�q(S0�1)
������������������

S0P
h=1

Rh � I � �
�1
I RS0+1 � � � RS�1

SP
h=S0+1

Rh

0 �K � �
�1
I � � � 0 0

...
...

. . .
...

...

0 0 � � � �K � �
�2
I 0

K
S0P
h=1

Rh KRS0+1 � � � KRS�1 K
SP

h=S0+1

Rh �K � �
�2
I

������������������
= 0;

�
�1� �

�1

�q(S0�1) �
det

�
�K � �

�2
I

��S�S0�1
���������

S0P
h=1

Rh � I � �
�1
I

SP
h=S0+1

Rh

K
S0P
h=1

Rh K
SP

h=S0+1

Rh �K � �
�2
I

��������� = 0:

As
P
Rh =

24 1 0

0 F 0�

35 
PAh� + ::: +

24 1 0

0 F 0

35 
PAh1 + Ik+1 

P
Ah0 ; and K is

positive de�nite, then the condition for stability of Model I under mixed RLS/SG learning

with equal degrees of inertia of agents for each type of learning algorithm, �i = �RLS ;

8i = 1; :::; S0; �i = �SG; 8i = S0 + 1; :::; S; is exactly de�ned by the conditions of stability

of the corresponding average economy under mixed RLS/SG learning of two agents with

equal degrees of inertia for each type of learning algorithm, �RLS for RLS and �SG for SG:���������
S0P
h=1

Rh � I � �

�RLS
I

SP
h=S0+1

Rh

K
S0P
h=1

Rh K
SP

h=S0+1

Rh �K � �

�SG
I

��������� = 0:
Since

Rh=

26664
P
Ah1+

P�
Ah0+A

h
1
�b
�

�a0 

P
Ah1 0

0 �b0 

P
Ah1+In 


P�
Ah0+A

h
1
�b
�

0
... �c0 


P
Ah1 F 0 


P
Ah1+Ik 


P�
Ah0+A

h
1
�b
�
37775 ;
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�b corresponds to the average economy and is de�ned by (1.9) for Model II and in (1.16)

for Model IV, which may be rewritten as

L +

"�
S0P
h=1

Ah0

�
+

 
SP

h=S0+1

Ah0

!#
�b +

"�
S0P
h=1

Ah1

�
+

 
SP

h=S0+1

Ah1

!#
�b2 = �b (with

Ah0 � 0 for Model IV), and K is positive de�nite, the condition for stability of Model

II under mixed RLS/SG learning with equal degrees of inertia is exactly de�ned by the

conditions of stability of the corresponding average economy under mixed RLS/SG learning

of two agents with equal degrees of inertia.

The proof for Model III is completely similar to the proof for Model I above. Set

Ah0 � 0.

The proof for Model IV is completely similar to the proof for Model II above.

Set Ah0 � 0. Q:E:D:

A.7.14 Proof of Proposition 1.12 (for Model I and Model III without

lags, the diagonal case, mixed RLS/SG learning)

For 
�l ; repeat basically the same steps as in Kolyuzhnov [40]. Use the "columns"

negative diagonal dominance of 
�l , which is su¢ cient for the real parts of the eigenvalues

of D1
�l to be negative; look for a condition that would be su¢ cient for negative diagonal

dominance in this setup. As weights for rows use (�1( 1; :::;  n); :::; �s ( 1; :::;  n)), �i > 0;

 h > 0;
P
i
 i = 1;

P
h

�h = 1:

For any l take any block h and any column j8>>>>>><>>>>>>:

ah0jj + �la
h
1jj + :::+ �

�
l a
h
1jj � 1 < 0 - negative diagonal

�h j

���ah0jj + �lah1jj + :::+ ��l ah1jj � 1��� >
> (�1 + :::+ �s)

P
i
 i

���ah0ij + �lah1ij + :::+ ��l ah1ij����
��h j

���ah0jj + �lah1jj + :::+ ��l ah1jj��� - dominance
8j;8h;8l

m8>>>>>><>>>>>>:

ah0jj + �la
h
1jj + :::+ �

�
l a
h
1jj � 1 < 0

��h j
�
ah0jj + �la

h
1jj + :::+ �

�
l a
h
1jj

�
+ �h j >

> (�1 + :::+ �s)
P
i
 i

���ah0ij + �lah1ij + :::+ ��l ah1ij����
��h j

���ah0jj + �lah1jj + :::+ ��l ah1jj���
8j; 8h;8l

m

Case 1

8>><>>:
0 � ah0jj + �la

h
1jj + :::+ �

�
l a
h
1jj < 1P

i
 i

���ah0ij + �lah1ij + :::+ ��l ah1ij��� < �h j

�1 + :::+ �S| {z }
=1

8j; 8h;8l
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[

Case 2

8>>>>>>><>>>>>>>:

ah0jj + �la
h
1jj + :::+ �

�
l a
h
1jj < 0P

i
 i

���ah0ij + �lah1ij + :::+ ��l ah1ij��� < �h j

�1 + :::+ �S| {z }
=1

�

� 2'h j

�1 + :::+ �S| {z }
=1

�
ah0jj + �la

h
1jj + :::+ �

�
l a
h
1jj

� 8j; 8h;8l:

Since in the second case �l
�
ah0jj + �la

h
1jj + :::+ �

�
l a
h
1jj

�
< 0; one may formulate

the following su¢ cient condition
P
i
 i

���ah0ij + �lah1ij + :::+ ��l ah1ij��� < �h j 8j; 8h;8l. The

condition 1 > ah0jj + �la
h
1jj + ::: + ��l a

h
1jj is implied by this relation, and the condition of

case 2 is also satis�ed. To prove that 1 > ah0jj + �la
h
1jj + :::+ �

�
l a
h
1jj , notice that

P
i
 i

���ah0ij + �lah1ij + :::+ ��l ah1ij��� < �h j =)

=)

P
i6=j

 ijah0ij+�lah1ij+:::+��l ah1ijj
 j| {z }
>0

+
���ah0jj + �lah1jj + :::+ ��l ah1jj���| {z }

>0

< �h < 1 =)

=)
���ah0jj + �lah1jj + :::+ ��l ah1jj��� < 1 =) ah0jj + �la

h
1jj + :::+ �

�
l a
h
1jj < 1:

So this condition alone is su¢ cient. The derived su¢ cient condition follows from

P
i
 i

����ah0ij���+ j�lj ���ah1ij���+ :::+ j��l j ���ah1ij���� < �h j8j; 8h;8l:

This is the condition of Proposition 1.13.(For Model III, set ah0ij = 0 everywhere) Q:E:D:

A.7.15 Proof of Proposition 1.15 (for Model I, III without a lag, the

general non-diagonal case, heterogeneous RLS learning)

Prove that 
 and 
F are D-stable. May prove just for 
F as a more general

case, with the part for 
 derived then by setting F = I:

For 
F use the "columns" negative diagonal dominance of 
F , which is su¢ cient

for the real parts of the eigenvalues of Dw
F to be negative; look for a condition that

would be su¢ cient for negative diagonal dominance in this setup. As weights for rows

use (�1( 1; :::;  n); :::; �1 ( 1; :::;  n)| {z }
k

; :::; �S( 1; :::;  n); :::; �S ( 1; :::;  n)| {z }
k

), �i > 0;  h > 0;P
i
 i = 1;

P
h

�h = 1:
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Take any block h, any row l of F , and any column j8>>><>>>:
f �lla

h
�jj + :::+ flla

h
1jj + a

h
0jj � 1 < 0 - negative diagonal

�h j

���f �llah�jj+...+fllah1jj+ah0jj � 1��� > (�1+...+�s)P
i
 i(
Pk

r=1 jf �lrj
���ah�ij���+...

+
Pk

r=1 jflrj
���ah1ij���+ ���ah0ij���)� �h j ���f �llah�jj + :::+ fllah1jj + ah0jj��� - dominance

8j;8h;8l

m8>>><>>>:
f �lla

h
�jj + :::+ flla

h
1jj + a

h
0jj � 1 < 0

��h j
�
f �lla

h
�jj+...+flla

h
1jj+a

h
0jj

�
+�h j > (�1+...+�s)

P
i
 i(
Pk

r=1 jf �lrj
���ah�ij���+...

+
Pk

r=1 jflrj
���ah1ij���+ ���ah0ij���)� �h j ���f �llah�jj + :::+ fllah1jj + ah0jj���

8j;8h;8l

m

Case 1

8>><>>:
0 � f �lla

h
�jj + :::+ flla

h
1jj + a

h
0jj < 1P

i
 i

�Pk
r=1 jf �lrj

���ah�ij���+ :::+Pk
r=1 jflrj

���ah1ij���+ ���ah0ij���� < �h j

�1 + :::+ �S| {z }
=1

8j; 8h;8l

[

Case 2

8>>>>>><>>>>>>:

f �lla
h
�jj + :::+ flla

h
1jj + a

h
0jj < 0P

i
 i

�Pk
r=1 jf �lrj

���ah�ij���+ :::+Pk
r=1 jflrj

���ah1ij���+ ���ah0ij���� <
<

�h j

�1 + :::+ �S| {z }
=1

� 2'h j

�1 + :::+ �S| {z }
=1

�
f �lla

h
�jj + :::+ flla

h
1jj + a

h
0jj

� 8j; 8h;8l:

Since in the second case f �lla
h
�jj + :::+ flla

h
1jj + a

h
0jj < 0; formulate the following

su¢ cient condition

P
i
 i

 
kX
r=1

jf �lrj
���ah�ij���+ :::+ kX

r=1

jflrj
���ah1ij���+ ���ah0ij���

!
< �h j8j;8h;8l:

The condition 1 > f �lla
h
�jj+ :::+flla

h
1jj+a

h
0jj is implied by this relation, and the condition

of case 2 is also satis�ed. To prove that 1 > f �lla
h
�jj + :::+ flla

h
1jj + a

h
0jj , notice that

P
i
 i

 
kX
r=1

jf �lrj
���ah�ij���+ :::+ kX

r=1

jflrj
���ah1ij���+ ���ah0ij���

!
< �h j =)

=)

P
i6=j

 i(
Pk
r=1jf�lrjjah�ijj+:::+

Pk
r=1jflrjjah1ijj+jah0ijj)

 j| {z }+
+

 
kX
r=1

jf �lrj
���ah�ij���+ :::+ kX

r=1

jflrj
���ah1ij���+ ���ah0ij���

!
| {z }

>0

< �h < 1 =)

=)
kX
r=1

jf �lrj
���ah�ij���+ :::+ kX

r=1

jflrj
���ah1ij���+ ���ah0ij��� < 1 =)
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=) jf �ll j
���ah�ij���+ :::+ jfllj ���ah1ij���+ ���ah0ij��� < 1 =) ���f �llah�ij + :::+ fllah1ij + ah0ij��� < 1 =)

=) f �lla
h
�jj + :::+ flla

h
1jj + a

h
0jj < 1:

So this condition alone is su¢ cient for �-stability. For Model III, set ah0ij to zero everywhere

above. Thus, this is the condition of Proposition 1.15. Q:E:D:

A.7.16 Proof of Proposition 1.16

Prove that 
, 
F ; and 
b corresponding to the models are D-stable. For 


and 
F ; the proof is similar to the proof of Proposition 1.15 above. Replace ah0ij with

ah0ij +
�
Ah1
�b
�
ij
and set

Pk
r=1 jf �lrj to zero for � > 1 for Model II, and replace ah0ij with�

Ah1
�b
�
ij
and set

Pk
r=1 jf �lrj to zero for � > 1 for Model IV.

Proof for 
b is similar to the proof for 
F . As weights for rows use

(�1( 1; :::;  n); :::; �1 ( 1; :::;  n)| {z }
n

; :::; �S( 1; :::;  n); :::; �S ( 1; :::;  n)| {z }
n

); �i > 0;  h > 0;

P
i
 i = 1;

P
h

�h = 1; where the number of repetitions k from the previous case is replaced

for n to re�ect the dimension of �b: Then everywhere in the proof, replace F with �b and

use summations of elements in rows of �b up to n and not up to k: Q:E:D:

A.7.17 Proof of Proposition 1.17

For �AGmodl ( ; �):

For Model I

1. �AGmodl ( ; �)
��
��any
 �any

= S
X
h

�h
X
i

 i
X
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� �
� S

X
h

�h
X
j

X
i

 imax
h;i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� =
= S

X
j

 X
h

X
i

�h i

!
| {z }

=1

max
h;i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� �
= max

l
S
X
j

max
h;i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� = �AGmax1 :

2. �AGmod ( ; �)
��
�=

1
S

 �any

= S
X
h

1

S|{z}
�h

X
i

 i
X
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� =
=
X
h

X
i

 i
X
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� �
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�
 X

i

 i

!
| {z }

=1

max
i

X
h

X
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� �
� max

l
max
i

X
h

X
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� = �AGmax2 :

3. �AGmod ( ; �)
��
��any
 =

1
n

= S
X
h

�h
X
i

1

n|{z}
 i

X
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� �
� S

X
i

1

n

X
h

X
j

�hmax
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� =
= S

X
i

1

n
max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij���
0@X

h

X
j

�h

1A
| {z }

=n

=

= S
X
i

max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� �
� max

l
S
X
i

max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� = �AGmax3 :

4. �AGmod ( ; �)
��
�=

1
S

 =
1
n

= S
X
h

1

S|{z}
�h

X
i

1

n|{z}
 i

X
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� =
=
X
h

X
i

1

n

X
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� �
�
X
h

1

n

X
j

max
j

X
i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� =
=
X
h

max
j

X
i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� 1nX
j

1| {z }
=1

�

� max
l

X
h

max
j

X
i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� = �AGmax4 :

To prove the proposition for �AGmod ( ; �) forModel III, set ah0ij = 0 in the proof above.

For �AGmodweighted l ( ; �):

To prove for Model I, replace ah0ij+�la
h
1ij+ :::+�

�
l a
h
�ij with

���ah0ij���+Pk
r=1 jflrj

���ah1ij���+ :::+Pk
r=1 jf �lrj

���ah�ij��� in the proof above for steps 1 and 4 and with ���ah0ij��� +Pk
r=1 jfrlj

���ah1ij��� +
:::+

Pk
r=1 jf �rlj

���ah�ij��� for steps 2 and 3.
To prove the proposition for �AGmodweighted l ( ; �) for Model III, set a

h
0ij = 0 in the proof for

Model I.

For �AGmodweighted p ( ; �):

for f-type aggregation
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To prove the proposition for Model II, replace ah0ij with a
h
0ij+

�
Ah1
�b
�
ij
and set

Pk
r=1 jf �lrj

and
Pk

r=1 jf �lrj to zero for � > 1 in the proof for Model I.

To prove the proposition for Model IV, replace ah0ij with
�
Ah1
�b
�
ij
and set

Pk
r=1 jf �lrj andPk

r=1 jf �rlj to zero for � > 1 in the proof for Model I.

for b-type aggregation

The proof is analogous to the proof for f-type aggregation. One only uses b instead of

f , changes the index of rows and columns from l to q, and uses summation up to n and

not up to k:Q:E:D:

A.7.18 Proof of Proposition 1.18

For Model I

1. for �AGmax1 = max
l
S
P
j
max
h;i

���ah0ij + �lah1ij + :::+ ��l ah�ij���:
�AGmax1 = max

l
S
P
j
max
h;i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� < 1. Let�s prove that there

exist weights  and � such that

P
i
 i

�
ah0ij + �la

h
1ij + :::+ �

�
l a
h
�ij

�
= j < �h8j; 8h;8l:

Let us take �h =
1
S 8h, and

 j = Smax
h;i

����ah0ij + �lah1ij + :::+ ��l ah�ij����+
>0z }| {

1� S
P
j
max
h;i

����ah0ij + �lah1ij + :::+ ��l ah�ij����
n

8j;8l:

These can be considered as weights since

SP
h=1

�h = 1; 0 < �h < 1 and
nP
j=1

 j = 1; 0 <  j < 1:

Notice that

 j
S
> max

h;i

����ah0ij + �lah1ij + :::+ ��l ah�ij���� =P
i
 imax

h;i

����ah0ij + �lah1ij + :::+ ��l ah�ij���� =
=
P
i
 i

����ah0ij + �lah1ij + :::+ ��l ah�ij���� ;8j; 8h;8l;
or after rewriting:

P
i
 i

����ah0ij + �lah1ij + :::+ ��l ah�ij���� <  j �h|{z}
= 1
S

;8j;8h, 8l:

4. for �AGmax4 = max
l

P
h

max
j

P
i

���ah0ij + �lah1ij + :::+ ��l ah�ij���
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�AGmax4 = max
l

P
h

max
j

P
i

���ah0ij + �lah1ij + :::+ ��l ah�ij��� < 1: Let�s prove that there
exist weights  and � such that

P
i
 i

����ah0ij + �lah1ij + :::+ ��l ah�ij���� = j < �h8j; 8h;8l:

Let us take  j =
1
n 8j,

�h = max
j

P
i

����ah0ij + �lah1ij + :::+ ��l ah�ij����+
>0z }| {

1�
P
h

max
j

P
i

����ah0ij + �lah1ij + :::+ ��l ah�ij����
S

8h;8l:

These are weights as
SP
h=1

�h = 1; 0 < �h < 1 and
SP
j=1

 j = 1; 0 <  j < 1.

Notice that

�h > max
j

P
i

����ah0ij + �lah1ij + :::+ ��l ah�ij���� =P
i

����ah0ij + �lah1ij + :::+ ��l ah�ij���� ;8j; 8h;8l

or after rewriting:

P
i

1
nz}|{
 i

����ah0ij + �lah1ij + :::+ ��l ah�ij����
 j|{z}
1
n

< �h;8j;8h,8l:

To prove the proposition for �AGmax2 = max
l
max
i

P
h

P
j

���ah0ij + �lah1ij + :::+ ��l ah�ij���
and �AGmax3 = max

l
S
P
i
max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij���, I �rst derive a su¢ cient condi-
tion for � �stability that follows from the "rows" diagonal dominance condition, which is

also su¢ cient for stability of matrices D1
�l. Therefore, my derivation of this condition

resembles the steps in the proof of Proposition 1.12. Use (d1; :::; dn; :::; d1; :::; dn), di > 0;P
i
di = 1 as weights for columns.

For any l; take any block h and any row i:8>>><>>>:
ah0ii + �la

h
1ii + :::+ �

�
l a
h
�ii � 1 < 0 - negative diagonal

di
��ah0ii+�lah1ii+...+��l ah�ii � 1�� >P

h

P
j
dj

���ah0ij+�lah1ij+...+��l ah�ij����
�di

��ah0ii + �lah1ii + :::+ ��l ah�ii�� - dominance
8i; 8h;8l

m8>>><>>>:
ah0ii + �la

h
1ii + :::+ �

�
l a
h
�ii � 1 < 0

�di
�
ah0ii+�la

h
1ii+...+�

�
l a
h
�ii

�
+di >

P
h

P
j
dj

���ah0ij+�lah1ij+...+��l ah�ij����
�di

��ah0ii + �lah1ii + :::+ ��l ah�ii��
8i;8h;8l

m
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Case 1

8><>:
0 � ah0ii + �la

h
1ii + :::+ �

�
l a
h
�ii < 1P

h

P
j
dj

���ah0ij + �lah1ij + :::+ ��l ah�ij��� < di
8i;8h;8l

[

Case 2

8><>:
ah0ii + �la

h
1ii + :::+ �

�
l a
h
�ii < 0P

h

P
j
dj

���ah0ij+�lah1ij+...+��l ah�ij���<di-2di �ah0ii+�lah1ii+...+��l ah�ii� 8i;8h;8l:

Since in the second case ah0ii + �la
h
1ii + ::: + ��l a

h
�ii < 0; formulate the following

su¢ cient condition:
P
h

P
j
dj

���ah0ij + �lah1ij + :::+ ��l ah�ij��� < di 8i;8h;8l. The condition 1 >

ah0ii+�la
h
1ii+ :::+�

�
l a
h
�ii is implied by this relation, and the condition of case 2 is also satis-

�ed. To prove that 1 > ah0ii+�la
h
1ii+:::+�

�
l a
h
�ii, notice that

P
h

P
j
dj

���ah0ij + �lah1ij + :::+ ��l ah�ij��� <
di =)

=)
P
h

P
j 6=i

dj

���ah0ij + �lah1ij + :::+ ��l ah�ij���| {z }
>0

+

+
P
h

di

���ah0ii + �lah1ii + :::+ ��l ah�ii���| {z }
>0

< di < 1 =)

=)
���ah0ii + �lah1ii + :::+ ��l ah�ii��� < 1 =) ah0ii + �la

h
1ii + :::+ �

�
l a
h
�ii < 1:

So this condition alone is su¢ cient for ��stability.

Next, I use the derived su¢ cient condition to prove Proposition 4.18 for �AGmax2 =

max
l
max
i

P
h

P
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� and �AGmax3 = max
l
S
P
i
max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij���.
2. for �AGmax2 = max

l
max
i

P
h

P
j

���ah0ij + �lah1ij + :::+ ��l ah�ij���:
�AGmax2 = max

l
max
i

P
h

P
j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� < 1: Let�s prove that there
exist weights d = (d1; :::; dn; :::; d1; :::; dn), di > 0;

P
i
di = 1, such that

P
h

P
j
dj

����ah0ij + �lah1ij + :::+ ��l ah�ij���� < di8i;8h;8l:

Let us take dj = 1
n 8j.

Notice that

P
h

P
j

����ah0ij + �lah1ij + :::+ ��l ah�ij���� 5 max
i

P
h

P
j

����ah0ij + �lah1ij + :::+ ��l ah�ij���� < 1;8i;8h;8l;
or after rewriting:

P
h

P
j

1

n|{z}
dj

����ah0ij + �lah1ij + :::+ ��l ah�ij���� < 1

n|{z}
di

;8i;8h;8l.

3. for �AGmax3 = max
l
S
P
i
max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij���:
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�AGmax3 = max
l
S
P
i
max
h;j

���ah0ij + �lah1ij + :::+ ��l ah�ij��� < 1: Let�s prove that there

exist weights d = (d1; :::; dn; :::; d1; :::; dn), di > 0;
P
i
di = 1, such that

P
h

P
j
dj

����ah0ij + �lah1ij + :::+ ��l ah�ij���� < di8i;8h;8l:

Let us take

di = Smax
h;j

����ah0ij + �lah1ij + :::+ ��l ah�ij����+
>0z }| {

1� S
P
i
max
h;j

����ah0ij + �lah1ij + :::+ ��l ah�ij����
n

8i; 8l:

These can be taken as weights since
nP
i=1

di = 1; 0 < di < 1.

Notice that

di > Smax
h;j

����ah0ij + �lah1ij + :::+ ��l ah�ij���� = nP
j=1

dj| {z }
=1

SP
h=1|{z}
=S

max
h;j

����ah0ij + �lah1ij + :::+ ��l ah�ij���� =
=
X
h

X
j

dj

����ah0ij + �lah1ij + :::+ ��l ah�ij���� ;8i;8h;8l:
To prove the proposition for Model III, just set ah0ij = 0 in the proof above.

A.7.19 Proof of Proposition 1.20

For Model I

1. for �AGmax1 = max
l
S
P
j
max
h;i

����ah0ij���+Pk
r=1 jflrj

���ah1ij���+ :::+Pk
r=1 jf �lrj

���ah�ij����:
�AGmax1 = max

l
S
P
j
max
h;i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
< 1:

Let�s prove that there exist weights  and � such that

P
i
 i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
= j < �h8j; 8h;8l:

Let us take �h =
1
S 8h, and

 j = Smax
h;i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
+

+

>0z }| {
1� S

P
j
max
h;i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
n

8j;8l:
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These can be considered as weights since

SP
h=1

�h = 1; 0 < �h < 1and
nP
j=1

 j = 1; 0 <  j < 1:

Notice that

 j
S
> max

h;i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
=

=
P
i
 imax

h;i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
=

=
P
i
 i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
;8j; 8h;8l;

or after rewriting:

P
i
 i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
<  j �h|{z}

= 1
S

;8j; 8h;8l:

4. for �AGmax4 = max
l

P
h

max
j

P
i

����ah0ij���+Pk
r=1 jflrj

���ah1ij���+ :::+Pk
r=1 jf �lrj

���ah�ij����:
�AGmax4 = max

l

P
h

max
j

P
i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
< 1:

Let�s prove that there exist weights  and � such that

P
i
 i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
= j < �h8j; 8h;8l:

Let us take  j =
1
n 8h,

�h = max
j

P
i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
+

+

>0z }| {
1�

P
h

max
j

P
i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
S

8j; 8l:

These are weights as
SP
h=1

�h = 1; 0 < �h < 1 and
SP
j=1

 j = 1; 0 <  j < 1.

Notice that

�h > max
j

P
i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
=
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=
P
i

 ���ah0ij���+ kX
r=1

jflrj
���ah1ij���+ :::+ kX

r=1

jf �lrj
���ah�ij���

!
;8j;8h;8l;

or after rewriting:

P
i

1
nz}|{
 i

����ah0ij���+Pk
r=1 jflrj

���ah1ij���+ :::+Pk
r=1 jf �lrj

���ah�ij����
 j|{z}
1
n

< �h;8j; 8h;8l:

To prove the proposition for

�AGmax2 = max
l
max
i

P
h

P
j

 ���ah0ij���+ kX
r=1

jfrlj
���ah1ij���+ :::+ kX

r=1

jf �rlj
���ah�ij���

!

and �AGmax3 = max
l
S
P
i
max
h;j

����ah0ij���+Pk
r=1 jfrlj

���ah1ij���+ :::+Pk
r=1 jf �rlj

���ah�ij����, I �rst de-
rive a su¢ cient condition for � �stability that follows from the "rows" diagonal dominance

condition, which is also su¢ cient for �-stability of matrices 
 and 
F ; prove for 
F as

a more general case, with the part for 
 then derived by setting F = I: Therefore, my

derivation of this condition resembles the steps in the proof of Proposition 1.15. Use

(d1; :::; dn; :::; d1; :::; dn), di > 0;
P
i
di = 1 as weights for columns.

Take any block h, any column of F l, and any row i8>>>>>><>>>>>>:

f �lla
h
�ii + :::+ flla

h
1ii + a

h
0ii � 1 < 0 - negative diagonal

di
��f �llah�ii + :::+ fllah1ii + ah0ii � 1�� >P

h

P
j
dj(
Pk

r=1 jf �rlj
���ah�ij���+ :::

+
Pk

r=1 jfrlj
���ah1ij���+ ���ah0ij���)�

�di
��f �llah�ii + :::+ fllah1ii + ah0ii�� - dominance

8i; 8h;8l

m 8>>>>>><>>>>>>:

f �lla
h
�ii + :::+ flla

h
1ii + a

h
0ii � 1 < 0

�di
�
f �lla

h
�ii + :::+ flla

h
1ii + a

h
0ii

�
+ di >

P
h

P
j
dj(
Pk

r=1 jf �rlj
���ah�ij���+ :::

+
Pk

r=1 jfrlj
���ah1ij���+ ���ah0ij���)�

�di
��f �llah�ii + :::+ fllah1ii + ah0ii��

8i;8h;8l

m

Case 1

8><>:
0 � f �lla

h
�ii + :::+ flla

h
1ii + a

h
0ii < 1P

h

P
j
dj(
Pk

r=1 jf �rlj
���ah�ij���+ :::+Pk

r=1 jfrlj
���ah1ij���+ ���ah0ij���) < di

8i;8h;8l

[
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Case 2

8>>>><>>>>:
f �lla

h
�ii + :::+ flla

h
1ii + a

h
0ii < 0P

h

P
j
dj(
Pk

r=1 jf �rlj
���ah�ij���+ :::+

+
Pk

r=1 jfrlj
���ah1ij���+ ���ah0ij���) < di � 2d

�
if
�
lla

h
�ii + :::+ flla

h
1ii + a

h
0ii

� 8i; 8h;8l:

Since in the second case f �lla
h
�ii + ::: + flla

h
1ii + ah0ii < 0; one may formulate the

following su¢ cient condition:

P
h

P
j
dj(

kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij���) < di8i; 8h;8l:

The condition 1 > f �lla
h
�ii+ :::+ flla

h
1ii+ a

h
0ii is implied by this relation, and the condition

of case 2 is also satis�ed. To prove that 1 > f �lla
h
�ii + :::+ flla

h
1ii + a

h
0ii, notice that

P
h

P
j
dj(

kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij���) < di =)

P
h

P
j 6=i

dj(
kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij���)| {z }

>0

+

+
P
h

di(

kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij���)| {z }

>0

< di =)

=)
kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij��� < 1 =)

=) jf �ll j
���ah�ij���+ :::+ jfllj ���ah1ij���+ ���ah0ij��� < 1 =) f �lla

h
�ii + :::+ flla

h
1ii + a

h
0ii < 1

So this condition alone is su¢ cient for ��stability.

Next, I use the derived su¢ cient condition to prove Proposition 1.20 for

�AGmax2 = max
l
max
i

P
h

P
j

 ���ah0ij���+ kX
r=1

jfrlj
���ah1ij���+ :::+ kX

r=1

jf �rlj
���ah�ij���

!

and

�AGmax3 = max
l
S
P
i
max
h;j

 ���ah0ij���+ kX
r=1

jfrlj
���ah1ij���+ :::+ kX

r=1

jf �rlj
���ah�ij���

!
:

2. for �AGmax2 = max
l
max
i

P
h

P
j

����ah0ij���+Pk
r=1 jfrlj

���ah1ij���+ :::+Pk
r=1 jf �rlj

���ah�ij����:
�AGmax2 = max

l
max
i

P
h

P
j

 ���ah0ij���+ kX
r=1

jfrlj
���ah1ij���+ :::+ kX

r=1

jf �rlj
���ah�ij���

!
< 1:
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Let�s prove that there exist weights d = (d1; :::; dn; :::; d1; :::; dn), di > 0;
P
i
di = 1, such

that
P
h

P
j
dj(
Pk

r=1 jf �rlj
���ah�ij���+ :::+Pk

r=1 jfrlj
���ah1ij���+ ���ah0ij���) < di 8i;8h, 8l.

Let us take dj = 1
n 8j.

Notice thatP
h

P
j

 
kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij���

!
5

5 max
i

P
h

P
j

 
kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij���

!
< 1;8i; 8h;8l;

or after rewriting:

P
h

P
j

1

n|{z}
dj

 
kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij���

!
<

1

n|{z}
di

;8i; 8h;8l:

3. for �AGmax3 = max
l
S
P
i
max
h;j

����ah0ij���+Pk
r=1 jfrlj

���ah1ij���+ :::+Pk
r=1 jf �rlj

���ah�ij����:
�AGmax3 = max

l
S
P
i
max
h;j

����ah0ij���+Pk
r=1 jfrlj

���ah1ij���+ :::+Pk
r=1 jf �rlj

���ah�ij���� < 1:

Let�s prove that there exist weights d = (d1; :::; dn; :::; d1; :::; dn), di > 0;
P
i
di = 1, such

that
P
h

P
j
dj(
Pk

r=1 jf �rlj
���ah�ij���+ :::+Pk

r=1 jfrlj
���ah1ij���+ ���ah0ij���) < di 8i;8h, 8l.

Let us take di = Smax
h;j

�Pk
r=1 jf �rlj

���ah�ij���+ :::+Pk
r=1 jfrlj

���ah1ij���+ ���ah0ij����+

+

>0z }| {
1� S

P
i
max
h;j

 
kX
r=1

jf �rlj
���ah�ij���+ :::+ kX

r=1

jfrlj
���ah1ij���+ ���ah0ij���

!
n

8i, 8l: These can

be taken as weights since
nP
i=1

di = 1; 0 < di < 1.

Notice that di > Smax
h;j

�Pk
r=1 jf �rlj

���ah�ij���+ :::+Pk
r=1 jfrlj

���ah1ij���+ ���ah0ij���� =
=

nP
j=1

dj| {z }
=1

SP
h=1|{z}
=S

max
h;j

�Pk
r=1 jf �rlj

���ah�ij���+ :::+Pk
r=1 jfrlj

���ah1ij���+ ���ah0ij���� =
=
P
h

P
j
dj(
Pk

r=1 jf �rlj
���ah�ij���+ :::+Pk

r=1 jfrlj
���ah1ij���+ ���ah0ij���);8i;8h, 8l:

To prove the proposition for Model III, set ah0ij = 0 in the proof above.

A.7.20 Proof of Proposition 1.21

For the maximal aggregate �-coe¢ cients of f -type, the proof is a direct repetition

of proof 1.20, where one has to replace ah0ij with a
h
0ij +

�
Ah1
�b
�
ij
and to set

Pk
r=1 jf �lrj and
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Pk
r=1 jf �rlj to zero for � > 1 for Model II, and to replace ah0ij with

�
Ah1
�b
�
ij
and to setPk

r=1 jf �lrj and
Pk

r=1 jf �rlj to zero for � > 1 for Model IV.

For the maximal aggregate �-coe¢ cients of b-type, the proof is similar to the

proof for the maximal aggregate ��coe¢ cients of f�type. Use b instead of f , change

the index of rows and columns from l to q, and use summation up to n and not up to k:

Q:E:D:
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Appendix B

Appendix to Chapter 2
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B.1 Proofs of propositions in Chapter 2

B.1.1 Proof of Criterion 2.8

Model I (III) (Model II (IV), in which all roots of �b lie inside the unit circle) is

�-stable if and only if the corresponding matrix 
KR is Db-stable. Take F as an identity

matrix, and D as diag( 1�1 ; :::;
1
�1
; :::; 1�S ; :::;

1
�S
), �h > 0; h = 1; S in the alternative de�nition

of Db-stability of 
KR and write down the characteristic equation for eigenvalues with �i

substituted for eigenvalue. No eigenvalue must equal �i, so the following determinant

must not equal zero.������������������

R1-(I- i�1 I) � � � RS0 RS0+1 � � � RS

...
. . .

...
...

. . .
...

R1 � � � RS0-(I- i
�S0

I) RS0+1 � � � RS

KR1 � � � KRS0 KRS0+1-(K- i
�S0+1

I) � � � KRS

...
. . .

...
...

. . .
...

KR1 � � � KRS0 KRS0+1 � � � KRS-(K- i�S I)

������������������
6= 0:

By subtracting the S0 row block from the row blocks from 1 to S0 � 1 and

subtracting the S row block from the row blocks from S0 + 1 to S � 1, I obtain an

equivalent condition���������������������

-(I- i�1 I) � � � 0 -(I- i
�S0

I) 0 � � � 0

...
. . .

...
...

...
. . .

...

0 � � � -(I- i
�S0�1

I) -(I- i
�S0

I) 0 � � � 0

R1 � � � RS0�1 RS0-(I- i
�S0

I) RS0+1 � � � RS

0 � � � 0 0 -(K- i
�S0+1

I) � � � -(K- i�S I)
...

. . .
...

...
...

. . .
...

KR1 � � � KRS0�1 KRS0 KRS0+1 � � � KRS-(K- i�S I)

���������������������

6= 0

By multiplying each column block from the right by (I � i
�h
I)�1 for h = 1; S0

and by (K � i
�h
I)�1 for h = S0 + 1; S. (it is possible to do since i

�h
is not an eigenvalue of

I or K as I and K are positive de�nite), and adding all column blocks from 1 to S0 � 1

to the Sth0 column block and adding all column blocks from S0 + 1 to S � 1 to the Sth
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column block, I obtain the following equivalent condition������������������������

-(I- i�1 I) � � � 0 0 0 � � � 0
...

. . .
...

...
...

. . .
...

0 � � � -(I- i
�S0�1

I) 0 0 � � � 0

R1 � � � RS0�1
S0P
h=1

�
Rh

I� i
�h
I

�
-I RS0+1 � � �

SP
h=S0+1

�
Rh

K� i
�h
I

�
0 � � � 0 0 -(K- i

�S0+1
I) � � � 0

...
. . .

...
...

...
. . .

...

KR1 � � � KRS0�1
S0P
h=1

�
KRh
I� i

�h
I

�
KRS0+1 � � �

SP
h=S0+1

�
KRh
K� i

�h
I

�
-I

������������������������

6= 0;

where, to simplify notation, AB means B�1A

Due to the blocked structure of the matrix under the determinant and due to the

already mentioned fact that i
�h
is not an eigenvalue of I or K; the condition is equivalent

to ���������
S0P
h=1

��
I � i

�h
I
��1

Rh

�
� I

SP
h=S0+1

��
K � i

�h
I
��1

Rh

�
S0P
h=1

��
I � i

�h
I
��1

KRh

�
SP

h=S0+1

��
K � i

�h
I
��1

KRh

�
� I

��������� 6= 0:
Since K, K � i

�h
I ,and I � i

�h
I are symmetric the last condition is equivalen to���������

S0P
h=1

��
I � i

�h
I
��1

Rh

�
� I

SP
h=S0+1

��
K � i

�h
I
��1

Rh

�
K

S0P
h=1

��
I � i

�h
I
��1

Rh

�
K

SP
h=S0+1

��
K � i

�h
I
��1

Rh

�
� I

��������� 6= 0:
Multiply the second row block from the right by K�1 and then subtract the result in the

row block from the �rst row block (it is possible to do as K is positive de�nite) to obtain�������
�I K�1

S0P
h=1

��
I � i

�h
I
��1

Rh

�
SP

h=S0+1

��
K � i

�h
I
��1

Rh

�
�K�1

������� 6= 0:
Multiply the second column block from the right by K and then add the �rst column

block to the second one to obtain the following equivalent condition�������
�I 0

S0P
h=1

��
I � i

�h
I
��1

Rh

�
S0P
h=1

��
I � i

�h
I
��1

Rh

�
+K

SP
h=S0+1

��
K � i

�h
I
��1

Rh

�
� I

������� 6= 0:
This last condition is equivalent to

det

"
S0P
h=1

�
�Rh
I� i

�h
I

�
+

SP
h=S0+1

�
�KRh
K� i

�h
I

�
+ I

#
6= 0:
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Further derivations are striaightforward, Q:E:D:

B.1.2 Proof of Proposition 2.9

The proof follows from the proof of Criterion 2.8. Take Rh = Ah0+�lA
h
1+:::+�

�
l A

h
�

and K = I. Q:E:D:

B.1.3 Proof of Proposition 2.10

The proof follows from the proof of Criterion 2.8. Take, subsequently, Rh =

Ah0 + Ah1 + Ah1
�b and K = I, Rh = �b0 
 Ah1 + In 


�
Ah0 +A

h
1
�b
�
and K = I, and Rh =

F 0 
Ah1 + Ik 

�
Ah0 +A

h
1
�b
�
and K = I, setting Ah0 � 0 for Model IV, Q:E:D:

B.1.4 Proof of Proposition 2.11

The proof follows from the proof of Criterion 2.8. Take subsequently Rh =

Ah0+�lA
h
1+A

h
1
�b and K = I, Rh = �b0
Ah1+In


�
Ah0 +A

h
1
�b
�
and K = I, Model IV setting

Ah0 � 0 for Model IV. Q:E:D:

B.1.5 Proof of Proposition 2.12

For the case of n = 1, the condition of the alternative criterion for stability

of Models without lags (Model I and Model III) under mixed RLS/SG learning for the

diagonal environment case under any (possibly di¤erent) degrees of inertia of agents, � > 0;

according to Proposition 2.9, simpli�es the requirement for 
�l to be stable and for at

least one of the following to hold true

SP
h=1

1
�h

1+ 1

�2
h

�
�Ah0 � �lAh1 � :::� ��l Ah�

�
6= 0

 
SP
h=1

1
1+ 1

�2
h

�
�Ah0 � �lAh1 � :::� ��l Ah�

�
+ 1

!
6= 0; for all l = 0; 1; :::; k(�0 = 1);

with Ah0 � 0 for Model III everywhere above.

The �rst "same sign" condition follows directly from the �rst inequality above as

��s take any positive values. The second condition that follows from the second inequality

is proved below.
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Necessity: Follows directly from the proof of Proposition 2.19. Note that in the

univariate economy setup, any sum of minors Mk consists of elements

�h1�h2 :::�hk(
�
�Ah10 � �lAh11 � :::� ��l Ah1�

�
+ :::+

�
�Ahk0 � �lA

hk
1 � :::� ��l Ahk�

�
+ 1);

where (h1; :::; hp) are indeces of agents from a subeconomy, and that if the sum of nonneg-

ative elements (
�
�Ah10 � �lAh11 � :::� ��l Ah1�

�
+ :::+

�
�Ahk0 � �lA

hk
1 � :::� ��l Ahk�

�
+1 is

greater or equal to zero as ��s take any positive values) is strictly greater than zero, then

at least one of them has to be strictly positive:

Su¢ ciency: I have�
�Ah10 � �lAh11 � :::� ��l Ah1�

�
+ :::+

�
�Ahk0 � �lA

hk
1 � :::� ��l Ahk�

�
+ 1 = 0

for any subeconomy (h1; :::; hp) and for each group of subeconomies of size p, 9
�
h�1(l); :::; h

�
p(l)
� ...�

�Ah
�
1
0 � �lA

h�1
1 � :::� ��l A

h�1
�

�
+ :::+

�
�Ah

�
p

0 � �lA
h�p
1 � :::� ��l A

h�p
�

�
+ 1 > 0;

and have to prove that

 
SP
h=1

1
1+ 1

�2
h

�
�Ah0 � �lAh1 � :::� ��l Ah�

�
+ 1

!
6= 0 .

I group separately the terms corresponding to the non-positive
�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
�s

and the terms corresponding to the strictly positive
�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
�s.

Schematically, I will have24 1

1 + 1
�21

�
A10 + �lA

1
1 + :::+ �

�
l A

1
�

��
+ :::+

1

1 + 1
�2k

�
Ak0 + �lA

k
1 + :::+ �

�
l A

k
�

��35
| {z }

�0

+

+

"
1

1 + 1
�21

�
A10 + �lA

1
1 + :::+ �

�
l A

1
�

�+
+ :::+

1

1 + 1
�2m

(Am0 + �lA
m
1 + :::+ �

�
l A

m
� )

+

#
| {z }

�1

� 1:

If the �rst sum is strictly less than zero, then the whole expression is less than zero since

the sum of something less than zero with something that at maximum equals one is less

than one. If the �rst sum is equal to zero, then the second sum (if there are any positive�
Ah0 + �lA

h
1 + :::+ �

�
l A

h
�

�
�s at all) has to be less than 1. The last result follows from

the fact that for the whole economy, I have to have that
�
�A10 � �lA11 � :::� ��l A1�

�
+

:::+
�
�AS0 � �lAS1 � :::� ��l AS�

�
+ 1 > 0; a necessary condition that follows directly from

the stability of 
�l (see Proposition 2.19); that is, excluding zero terms, I have to have

��lA+1 � ::: � �lA
+
m + 1 > 0, which proves the claim as 0 < 1

1+ 1

�21

< 1. This proves the

su¢ ciency part of the second condition in Proposition 2.12. Q:E:D:
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B.1.6 Proof of Proposition 2.14

For the case of n = 1, alternative su¢ cient conditions for �-stability in the

univariate case of Models with lags (Model II, IV ), where �b < 1; under heterogeneous

RLS learning for the diagonal environment case under any (possibly di¤erent) degrees of

inertia of agents, � > 0; according to Proposition 2.10, are simpli�ed to the requirements:


�l is stable and at least one of the following holds true
SP
h=1

1
�h

1+ 1

�2
h

�
�Ah0 � �lAh1 �Ah1�b

�
6= 0 

SP
h=1

1
1+ 1

�2
h

�
�Ah0 � �lAh1 �Ah1�b

�
+ 1

!
6= 0 ; for all l = 0; 1; :::; k (�0 = 1)

and


b is stable and at least one of the following holds true
SP
h=1

1
�h

1+ 1

�2
h

�
�Ah0 � 2Ah1�b

�
6= 0 

SP
h=1

1
1+ 1

�2
h

�
�Ah0 � 2Ah1�b

�
+ 1

!
6= 0;

where Ah0 � 0 for Model IV everywhere above.

The proof for the 
�l part of the statement follows directly from the proof of

Proposition 2.12 in the su¢ ciency part. Replace Ah0 with A
h
0 +A

h
1
�b and set Ahr � 0; r > 1.

The proof for the 
b part of the statement also follows from the proof of Propo-

sition 2.12. Replace Ah0 with A
h
0 + Ah1

�b, set Ahr � 0; r > 1 and use �b instead of �l. In the

corresponding results of Proposition 2.19, use �b instead of �l that leaves the result of this

proposition intact since we consider a univariate model, and �b has dimension one.

B.1.7 Proof of Proposition 2.15

For the case of n = 2, the condition of the alternative criterion for stability

of models without lags (Model I and Model III) under mixed RLS/SG learning for the

diagonal environment case under any (possibly di¤erent) degrees of inertia of agents, � > 0;

according to Proposition 2.9, contains the requirement for 
�l to be stable and for the

following condition to hold true:

det

�
SP
h=1

�
�(Ah0+�lAh1+:::+��l Ah� )

1+ i
�h

�
+ I

�
= 1+det

�(A10+�lA11+:::+��l A1� )
1+ i

�1

+:::+det
�(AS0+�lAS1+:::+��l AS� )

1+ i
�S

+

+
M1(�(A10+�lA11+:::+��l A1� ))

1+ i
�1

+ :::+
M1(�(AS0+�lAS1+:::+��l AS� ))

1+ i
�S

+
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+detmix

�
�(A10+�lA11+:::+��l A1� )

1+ i
�1

;
�(A20+�lA21+:::+��l A2� )

1+ i
�2

�
+ :::+

+detmix

�
�(AS�10 +�lA

S�1
1 +:::+��l A

S�1
� )

1+ i
�S�1

;
�(AS0+�lAS1+:::+��l AS� )

1+ i
�S

�
=

= 1+

 
1� i

�1

1+ 1

�21

!2
det
�
�(A10 + �lA11+...+��l A1� )

�
+...+

 
1� i

�S

1+ 1

�2
S

!2
det
�
�(AS0 + �lAS1+...+��l AS� )

�
+

+

 
1� i

�1

1+ 1

�21

!
M1

�
�(A10+�lA11+...+��l A1� )

�
+...+

 
1� i

�S

1+ 1

�2
S

!
M1

�
�(AS0+�lAS1+...+��l AS� )

�
+...+

+

 
1� i

�1

1+ 1

�21

! 
1� i

�2

1+ 1

�22

!
[detmix

�
�(A10 + �lA11 + :::+ ��l A1� );�(A20 + �lA21 + :::+ ��l A2� )

�
+

+detmix
�
�(A20 + �lA21 + :::+ ��l A2� );�(A10 + �lA11 + :::+ ��l A1� )

�
] + :::+

+

 
1� i

�S�1
1+ 1

�2
S�1

! 
1� i

�S

1+ 1

�2
S

!
[detmix

�
�(AS�10 +�lA

S�1
1 +...+��l A

S�1
� );�(AS0+�lAS1+...+��l AS� )

�
+

+detmix
�
�(AS0 + �lAS1 + :::+ ��l AS� );�(AS�10 + �lA

S�1
1 + :::+ ��l A

S�1
� )

�
] 6= 0

for all l = 0; 1; :::; k; (�0 = 1):

Now, take real and imaginary parts to obtain

Redet

�
SP
h=1

�
�(Ah0+�lAh1+:::+��l Ah� )

1+ i
�h

�
+ I

�
= 1+

1� 1
�21�

1 + 1
�21

�2 det ��(A10 + �lA11 + :::+ ��l A1� )�+:::+

+
1� 1

�2S�
1 + 1

�2S

�2 det ��(AS0 + �lAS1 + :::+ ��l AS� )�+ 1

1 + 1
�21

M1(�(A10+�lA11+ :::+��l A1� ))+ :::+

+
1

1 + 1
�2S

M1(�(AS0 + �lAS1 + :::+ ��l AS� )) + :::+

+
1� 1

�1�2�
1 + 1

�21

��
1 + 1

�22

� det[mix ��(A10 + �lA11 + :::+ ��l A1� );�(A20 + �lA21 + :::+ ��l A2� )�+
+detmix

�
�(A20 + �lA21 + :::+ ��l A2� );�(A10 + �lA11 + :::+ ��l A1� )

�
] + :::+

+
1� 1

�S�1�S�
1+ 1

�2S�1

��
1+ 1

�2S

� [detmix��(AS�10 +�lA
S�1
1 +...+��l A

S�1
� );�(AS0+�lAS1+...+��l AS� )

�
+

+detmix
�
�(AS0 + �lAS1 + :::+ ��l AS� );�(AS�10 + �lA

S�1
1 + :::+ ��l A

S�1
� )

�
]
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Imdet

�
SP
h=1

�
�(Ah0+�lAh1+:::+��l Ah� )

1+ i
�h

�
+ I

�
=

� 2i
�1�

1 + 1
�21

�2 det ��(A10 + �lA11 + :::+ ��l A1� )�+:::+
+

� 2i
�S�

1 + 1
�2S

�2 det ��(AS0 + �lAS1 + :::+ ��l AS� )�+ � i
�1

1 + 1
�21

M1(�(A10+�lA11+ :::+��l A1� ))+ :::+

+
� i
�S

1 + 1
�2S

M1(�(AS0 + �lAS1 + :::+ ��l AS� )) + :::+

+
�i
�
1
�1
+ 1

�2

�
�
1 + 1

�21

��
1 + 1

�22

� [detmix ��(A10 + �lA11 + :::+ ��l A1� );�(A20 + �lA21 + :::+ ��l A2� )�+
+detmix

�
�(A20 + �lA21 + :::+ ��l A2� );�(A10 + �lA11 + :::+ ��l A1� )

�
] + :::+

+
�i
�

1
�S�1

+ 1
�S

�
�
1+ 1

�2S�1

��
1+ 1

�2S

� [detmix��(AS�10 +�lA
S�1
1 +...+��l A

S�1
� );�(AS0+�lAS1+...+��l AS� )

�
+

+detmix
�
�(AS0 + �lAS1 + :::+ ��l AS� );�(AS�10 + �lA

S�1
1 + :::+ ��l A

S�1
� )

�
]

for all l = 0; 1; :::; k (�0 = 1) for all l = 0; 1; :::; k (�0 = 1).

The "same sign" su¢ cient condition for this case can be seen from the Im part.

They are su¢ cient for the Im part to be either nonnegative or nonpositive.

For all l = 0; 1; :::; k (�0 = 1).

det
h
�(Ah0 + �lAh1 + :::+ ��l Ah� )

i
� 0;

[detmix
�
�(Ai0 + �lAi1 + :::+ ��l Ai� );�(A

j
0 + �lA

j
1 + :::+ �

�
l A

j
� )
�
+

+detmix
�
�(Aj0 + �lA

j
1 + :::+ �

�
l A

j
� );�(Ai0 + �lAi1 + :::+ ��l Ai� )

�
] � 0;8i 6= j;

M1(�(Ah0 + �lAh1 + :::+ ��l Ah� )) � 0;

or

det
h
�(Ah0 + �lAh1 + :::+ ��l Ah� )

i
� 0;

[detmix
�
�(Ai0 + �lAi1 + :::+ ��l Ai� );�(A

j
0 + �lA

j
1 + :::+ �

�
l A

j
� )
�
+

+detmix
�
�(Aj0 + �lA

j
1 + :::+ �

�
l A

j
� );�(Ai0 + �lAi1 + :::+ ��l Ai� )

�
] � 0;8i 6= j;

M1(�(Ah0 + �lAh1 + :::+ ��l Ah� )) � 0:

If all inequalities above hold with equality (that would mean a zero Im part), then

the Re part equals 1 from the expression for Re above. This proves that these conditions

are su¢ cient for ��stability in this setting. For Model III, set Ah0 � 0 everywhere above.
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B.1.8 Proof of Propositions 2.17, 2.18, 2.19, and 2.20

First, prove Proposition 2.19. Proposition 2.17 is a special case of Proposition

2.19 for l = 0 (�0 = 1). According to Proposition 2.3, the necessary condition for stability

in this case is the stability of matrix D1
�l , de�ned in (2.15) and (2.16) (where A
h
0 � 0

for Model III), respectively. The rest of the proof essentially follows the lines of the proof

of Proposition 12 in Kolyuzhnov [40]. I have to consider matrix � = D(�
). A necessary

and su¢ cient condition for stability (in a mathematics de�nition that is opposite to the

de�nition used throughout the text of this paper) of this matrix is that the real parts of

the eigenvalues of D(�
) must be greater than zero. For the condition on eigenvalues to

hold true, it is necessary that all sums of the principal minors of D (�
) grouped by the

same size are greater than zero.

It follows from the fact that, on the one hand, the characteristic equation for

eigenvalues of � has the form

det (� + I�) = det �+�Mn�1 + �2Mn�2 + :::+ �n�1M1 + �
n = 0, where � = ��

is the eigenvalue of �; and Mk is the sum of all principal minors of � of size k,

while, on the other hand, the same characteristic equation can be written in

terms of the product decomposition of the polynomial:

(�+ �1) � � � (�+ �n) = �1:::�n| {z }
>0

+:::+�n�2(�1�2 + :::+ �n�1�n)| {z }
>0

+�n�1(�1 + :::+ �n)| {z }
>0

+�n = 0:

Thus, all Mk > 0.

By writing this condition in terms of D(�
), one obtains that in each size group,

the sum of minors is subdivided into groups of sums of minors that contain the same

number of columns of each block of (�
), i.e. �(Ah0+�lAh1+:::+��l Ah��In). The coe¢ cient

before such particular sum has the form (�h1)
j1 (�h2)

j2 :::
�
�hp
�jp . This coe¢ cient uniquely

speci�es the sum of minors by the size, the number of columns from each block, and from

which subeconomy it is formed, (h1; :::; hp). The size of minors in such a group is equal

to the total power of the coe¢ cients, j1 + ::: + jp, and the subscripts of ��s denote from

which block of (�
) the columns are taken, while the power of each � indicates how many

columns are taken from this particular block.

Let us �x one subeconomy (say, formed by blocks 1, 2, and 3) and consider the

limit of inequalities for the sum of minors, with ��s for other blocks going to zero. Doing

the same operation for all subeconomies, I will derive the condition in the statement of
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Proposition 2.19. Therefore, Proposition 2.17 also holds true, and Propositions 2.18 and

2.20 are derived from Propositions 2.17 and 2.19, respectively, by setting all ��s for all

subeconomies equal to 1.
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Appendix C

Appendix to Chapter 3
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C.1 Proofs of propositions in Chapter 3

C.1.1 Proof of Propositions 3.1 and 3.2

The PLM in general form is yt = a + �wt. If wi is not included in the PLM, it

is re�ected in the corresponding zero column of �. The REE conditions can be written as

(�iA� In)
h

1i : : : 
ni

i0
+Bi = 0, i 2 I0.

It is clear that in case i is not included into the active factors set, that ish

1i : : : 
ni

i0
= 0, then in order to have a REE solution, Bi has to be equal to

0, so that one can omit only those factors in the PLM that have a zero column in B in

the reduced form. Equivalently, it is clear that if Bi 6= 0, then, in order to have a REE

solution, one should not have
h

1i : : : 
ni

i0
= 0, that is, one has to include wi into the

active factors set.

In case i is included in the active factors set, that is
h

1i : : : 
ni

i0
6= 0, the

REE solution exists if and only if the following conditions hold true.

Bi = 0, or (Bi 6= 0 and det (�iA� I) 6= 0), or (Bi 6= 0 and det (�iA� I) = 0 and

rank(�iA� I) = rank(�iA� I;Bi _)).

Combining the two cases we get the statement in Proposition 3.1.

For Proposition 3.2, one has only to transform the last conditions to guarantee

the uniqueness of the solution.

In case i is included in the active factors set, that is
h

1i : : : 
ni

i0
6= 0, the

REE solution exists and is unique if and only if the following condition holds true.

det (�iA� I) 6= 0.

C.1.2 Proof of Proposition 3.5 (Necessary conditions and su¢ cient con-

ditions in terms of eigenvalues for the structurally homogeneous

case)

We have to study matrix D1
�l for stability under any �h > 0, where D1 and


�l are de�ned in (3.14) and (3.16), respectively. Thus, we consider

det
�

�l �D

�1
1 �I

�
= det

26664
�lA1 �

�
1 + �

�1

�
I � � � �lAS

...
. . .

...

�lA1 � � � �lAS �
�
1 + �

�S

�
I

37775 = 0,
8l = 0; :::; k; (�0 = 1),
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where Ah = �hA,
P
�h = 1.

It is clear from the structure of the matrix above that � = ��i0 is a root if and

only if at least one of the following holds true: �A is singular or there exists at least one

other �j that equals �i0 . (If A is singular, then �h = ��h; h = 1; S are the roots. That is,

if none of ��0s is the root, then A is non-singular.)

Assume that A is non-singular and all �h�s are di¤erent, that is, assume that none

of ��0s is the root. If there are roots other than ��0hs (the case of eigenvalues �h = ��h < 0

is obvious), then they satisfy the characteristic equation for obtaining the eigenvalues of

D1
�l that are not equal to ��h:

det
�

�l �D

�1
1 �I

�
= det

26664
�lA1 �

�
1 + �

�1

�
I � � � �lAS

...
. . .

...

�lA1 � � � �lAS �
�
1 + �

�S

�
I

37775 =
(subtracting the last row from other rows)

= det

26666666664

�
�
1 + �

�1

�
I 0 � � � 0

�
1 + �

�S

�
I

0 �
�
1 + �

�2

�
I � � � 0

�
1 + �

�S

�
I

...
...

. . .
...

...

0 0 � � � �
�
1 + �

�S�1

�
I

�
1 + �

�S

�
I

�lA1 �lA2 � � � �lAS�1 �lAS �
�
1 + �

�S

�
I

37777777775
=

(for � 6= �h 8h)

=

�
1 +

�

�1

�
� :::�

�
1 +

�

�S

�
det

266666664

�I � � � 0 I
...

. . .
...

...

0 � � � �I I
�lA1�
1+ �

�1

� � � � �lAS�1�
1+ �

�S�1

� �lAS�
1+ �

�S

� � I

377777775
=

(adding all columns to the last one)

=

�
1 +

�

�1

�
�:::�

�
1 +

�

�S

�
det

2666666664

�I � � � 0 0
...

. . .
...

...

0 � � � �I 0

�lA1�
1+ �

�1

� � � � �lAS�1�
1+ �

�S�1

� �
�lA1
1+ �

�1

+ :::+ �lAS
1+ �

�S

� I
�

3777777775
=
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=

�
1 +

�

�1

�
� :::�

�
1 +

�

�S

�
(�1)n(S�1) det

"
�lA1
1 + �

�1

+ :::+
�lAS
1 + �

�S

� I
#
= 0:

As we consider � 6= ��h, the last equation is equivalent to

det

"
��lA1
1 + �

�1

+ :::+
��lAS
1 + �

�S

+ I

#
= 0, where Ah = �hA;

P
�h = 1.

After some calculations, we obtain

det

"
�lA

 
��1
1 + �

�1

+ :::+
��S
1 + �

�S

!
+ I

#
= 0,

and �nally

�l�k

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= 1

for those �k, eigenvalues of A, that are not equal to zero. If all �k = 0, then A is a zero

matrix, and the only eigenvalues of D
 are ��h�s.

As complex eigenvalues of a real matrix A come in conjugate pairs, the system

above is equivalent to8>><>>:
�l Re (�k)Re

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
� �l Im (�k) Im

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
= 1

�l Im (�k)Re

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
+ �l Re (�k) Im

�
�1

1+ �
�1

+ :::+ �S
1+ �

�S

�
= 0

for each pair of conjugate eigenvalues. In case of a real eigenvalue, Im (�k) = 0; the

corresponding system simpli�es to

�l Re (�k)

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= �l�k

 
�1

1 + �
�1

+ :::+
�S

1 + �
�S

!
= 1:

For any S we have that for eigenvalues � to be negative, it is necessary that
1

�l�k
�1

1
�l�k�1:::�S

> 0 and therefore that �l�k < 1;8l = 0; :::; k; (�0 = 1). As j�lj < 1;8l = 1; k, the

latter condition is equivalent to �k < 1.

For S = 2, the system corresponding to a real eigenvalue looks as follows:8>><>>:
�l�k

�
�1

1+ �
�1

+ �2
1+ �

�2

�
= 1

�2 + �
1

�l�k

�
1
�1
+ 1
�2

�
�
�
�1
�2
+
�2
�1

�
1

�l�k�1�2

+
1

�l�k
�1

1
�l�k�1�2

= 0:

The Routh�Hurwitz conditions for the negativity of real parts of � are necessary

and su¢ cient and look as follows:8>><>>:
1

�l�k
�1

1
�l�k�1�2

> 0

1
�l�k

�
1
�1
+ 1
�2

�
�
�
�1
�2
+
�2
�1

�
1

�l�k�1�2

> 0

.



192

The system of inequalities above is equivalent to8><>:
�l�k < 1

�l�k <
1
�1
+ 1
�2

�1
�2
+
�2
�1

.

Since
1
�1
+ 1
�2

�1
�2
+
�2
�1

> 1, as 1��1
�1

+ 1��2
�2

> 0; the last system of inequalities is equivalent to

�l�k < 1;8l = 0; :::; k; (�0 = 1). As j�lj < 1;8l = 1; k, the latter condition is equivalent to

�k < 1.

Thus, the su¢ cient condition for stability for the case of S = 2 is that all eigen-

values of A are real and less than 1; and the necessary condition for stability for any S is

that all real eigenvalues of A have to be less than 1. Q:E:D:
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