Biologia plantarum 55:178-182, 2011 | DOI: 10.1007/s10535-011-0026-6

Effect of aluminum on the in vitro activity of acid phosphatases of four potato clones grown in three growth systems

L. A. Tabaldi1, D. Cargnelutti2, G. Y. Castro1, J. F. Gonçalves1, R. Rauber1, D. A. Bisognin3, M. R. C. Schetinger2, F. T. Nicoloso1,*
1 Departamento de Biologia, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
2 Departamento de Química, CCNE, UFSM, Santa Maria, RS, Brasil
3 Departamento de Fitotecnia, Centro de Ciências Rurais, UFSM, Santa Maria, RS, Brasil

The aim of this study was to assess the effect of aluminum on the in vitro activity of acid phosphatases (APases) of four potato clones, Macaca and Dakota Rose (Al-sensitive), and SMIC148-A and Solanum microdontum (Al-tolerant), grown in vitro, in hydroponics or in a greenhouse. The enzyme was assayed in vitro in the presence of 0, 1.85, 3.70, 5.55 and 7.40 mM Al. In plantlets grown in vitro, root APases were inhibited by Al in all clones, while shoot APases were inhibited by Al in S. microdontum and Dakota Rose and increased in Macaca at all Al concentrations. In plantlets grown in hydroponics, root APases increased in Macaca at 1.85 mM Al, whereas decreased at all Al levels in S. microdontum. In greenhouse plantlets, root APases decreased at 7.40 mM Al in S. microdontum and SMIC148-A, and at 3.70, 5.55 and 7.40 mM Al in Dakota Rose. Shoot APases decreased in Macaca and SMIC148-A. Conversely, in Dakota Rose, APases increased at 1.85 and 3.70 mM Al. These results show that the effect of Al toxicity on in vitro APase activity depends not only on Al availability but also on the plant organ, genetic background, and the growth conditions. Therefore, it suggests that acid phosphatases activity assessed in vitro might not be a good parameter to validate the screening for adaptation of potato clones to Al toxicity.

Keywords: abiotic stress; phosphorus metabolism; Solanum tuberosum; Solanum microdontum; tolerance

Received: May 9, 2009; Accepted: December 15, 2009; Published: March 1, 2011Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Tabaldi, L.A., Cargnelutti, D., Castro, G.Y., Gonçalves, J.F., Rauber, R., Bisognin, D.A., Schetinger, M.R.C., & Nicoloso, F.T. (2011). Effect of aluminum on the in vitro activity of acid phosphatases of four potato clones grown in three growth systems. Biologia plantarum55(1), 178-182. doi: 10.1007/s10535-011-0026-6.
Download citation

References

  1. Baroja, M.E., Aguirreolea, J., Sánchez-Díaz, M.: CO2 exchange of in vitro and acclimatized potato plantlets. - In: Carre, F., Chagvardieff, P. (ed.): Ecophysiology and Photosynthetic in vitro Cultures. Pp. 187-188. Centre d'Études de Cadarache, Saint-Paul-lez-Durance 1995.
  2. Bozzo, G.G., Raghothama, K.G., Plaxton, W.C.: Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. - Eur. J. Biochem. 269: 6278-6286, 2002. Go to original source...
  3. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantity of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  4. Delhaize, E., Ryan, P.R.: Aluminum toxicity and tolerance in plants. - Plant Physiol. 107: 315-321, 1995. Go to original source...
  5. Del Pozo, J.C., Allona, I., Rubio, V., Leyva, A., De la Peña, A., Aragoncillo, C., Paz-Ares, J.: A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilizing/oxidative stress conditions. - Plant J. 19: 579-589, 1999. Go to original source...
  6. Dong, B., Sang, W.L., Jiang, X., Zhou, J.M., Kong, F.X., Hu, W., Wang, L.S.: Effects of aluminum on physiological metabolism and antioxidant system of wheat (Triticum aestivum L.). - Chemosphere 47: 87-92, 2002. Go to original source...
  7. Duff, S.M.G., Sarath, G., Plaxton, W.C.: The role of acid phosphatase in plant phosphorus metabolism. - Physiol. Plant. 90: 791-800, 1994. Go to original source...
  8. Eticha, D., Thé, C., Welcker, C., Narro, L., Staß, A., Horst, W.J.: Aluminium-induced callose formation in root apices: inheritance and selection trait for adaptation of tropical maize to acid soils. - Field Crops Res. 93: 252-263, 2005. Go to original source...
  9. Gabbrielli, R., Grossi, L., Vergnano, O.: The effects of nickel, calcium and magnesium on the acid phosphatase activity of two Alyssum species. - New Phytol. 111: 631-636, 1989. Go to original source...
  10. Goodwin, S.B., Sutter, T.R.: Microarray analysis of Arabidopsis genome response to aluminum stress. - Biol. Plant. 53: 85-99, 2009. Go to original source...
  11. Hairiah, K., Noordwijk, J., Setijono, S.: Tolerance and avoidance of Al toxicity by Mucuna pruriens var. utilis at different levels of P supply. - Plant Soil 171: 77-81, 1995. Go to original source...
  12. Hazarika, B.N.: Acclimatization of tissue-cultured plants. - Curr. Sci. 85: 1704-1712, 2003.
  13. Horst, W.J., Schmohl, N., Kollmeier, M., Balułka, F., Sivaguru, M.: Does aluminium affect root growth of maize through interaction with the cell wall - plasma membrane - cytoskeleton continuum? - Plant Soil 215: 163-174, 1999. Go to original source...
  14. Kochian, L.V., Hoekenga, O.A., Piñeros, M.A.: How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. - Annu. Rev. Plant Biol. 55: 459-493, 2004. Go to original source...
  15. Liu, Q., Yang, J.L., He, L.S., Li, Y.Y., Zheng, S.J.: Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. - Biol. Plant. 52: 87-92, 2008. Go to original source...
  16. Luhová, L., Lebeda, A., Kutrová, E., Hederervá, D., Peç, P.: Peroxidase, catalase, amine oxidase and acid phosphatase activities in Pisum sativum during infection with Fusarium oxysporum and F. solani. - Biol. Plant. 50: 675-682, 2006. Go to original source...
  17. Marschner, H. (ed.): Mineral Nutrition of Higher Plants. - Academic Press, London 1995.
  18. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. - Physiol. Plant. 15: 473-497, 1962. Go to original source...
  19. Pereira, L.B., Tabaldi, L.A., Gonçalves, J.F., Jucoski, G.O., Pauletto, M.M., Weis, S.N., Nicoloso, F.T., Borher, D., Rocha, J.B.T., Schetinger, M.R.C.: Effect of aluminum on δ-aminolevulinic acid dehydratase (ALA-D) and the development of cucumber (Cucumis sativus). - Environ. exp. Bot. 57: 106-115, 2006. Go to original source...
  20. Pospíšilová, J., Tichá, I., Kadleček, P., Haizel, D., Plzáková, Š.: Acclimatization of micropropagated plants to ex vitro conditions. - Biol. Plant. 42: 481-497, 1999.
  21. Rai, L.C., Husaini, Y., Mallick, N.: pH-altered interaction of aluminum and fluoride on nutrient uptake, photosynthesis and other variables of Chlorella vulgaris. - Aquat. Toxicol. 42: 67-84, 1998. Go to original source...
  22. Shamsi, I.H., Wei, K., Zhang, G.P., Jilani, G.H., Hassan, M.J.: Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. - Biol. Plant. 52: 165-169, 2008. Go to original source...
  23. Tabaldi, L.A., Cargnelutti, D., Gonçalves, J.F., Pereira, L.B., Castro, G.Y., Maldaner, J., Rauber, R., Rossato, L.V., Bisognin, D.A., Schetinger, M.R.C., Nicoloso, F.T.: Oxidative stress is an early symptom triggered by aluminum in Al-sensitive potato plantlets. - Chemosphere 76: 1402-1409, 2009b. Go to original source...
  24. Tabaldi, L.A., Castro, G.Y, Cargnelutti, D., Skrebsky, E.C., Gonçalves, J.F., Rauber, R., Rossato, L.V., Schetinger, M.R.C., Bisognin, D.A., Nicoloso, F.T.: Micronutrient concentration in potato clones with distinct physiological sensitivity to Al stress. - Cienc. Rural 39: 379-385, 2009a.
  25. Tabaldi, L.A., Nicoloso, F.T., Castro, G.Y, Cargnelutti, D., Gonąlves, J.F., Rauber, R., Skrebsky, E.C., Schetinger, M.R.C., Morsch, V.M., Bisognin, D.A.: Physiological and oxidative stress responses of four potato clones to aluminum in nutrient solution. - Braz. J. Plant Physiol. 19: 211-222, 2007b. Go to original source...
  26. Tabaldi, L.A., Ruppenthal, R., Cargnelutti, D., Morsch, V.M., Pereira, L.B., Schetinger, M.R.C.: Effects of metal elements on acid phosphatase activity in cucumber (Cucumis sativus L.) seedlings. - Environ. exp. Bot. 59: 43-48, 2007a. Go to original source...
  27. Tejera Garcia, N.A., Oliveira, M., Iribarne, C., Lluch, C.: Partial purification and characterization of a non-specific acid phosphatase in leaves and root nodules of Phaseolus vulgaris. - Plant Physiol. Biochem. 42: 585-591, 2004. Go to original source...
  28. Yoneyama, T., Taira, M., Suzuki, T., Nakamura, M., Niwa, K., Watanabe, T., Ohyama, T.: Expression and characterization of a recombinant unique acid phosphatase from kidney bean hypocotyl exhibiting chloroperoxidase activity in the yeast Pichia pastoris. - Prot. Expression Purification 53: 31-39, 2007. Go to original source...
  29. Yu, M., Shen, R., Xiao, H., Xu, M., Wang, H., Wang, H, Zeng, Q., Bian, J.: Boron alleviates aluminum toxicity in pea (Pisum sativum). - Plant Soil 314: 87-98, 2009. Go to original source...
  30. Zheng, S.J., Yang, J.L.: Target sites of aluminum phytotoxicity. - Biol. Plant. 49: 321-331, 2005. Go to original source...
  31. Zimmermann, P., Regierer, B., Kossmann, J., Frossard, E., Amrhein, N., Bucher, M.: Differential expression of three purple acid phosphatases from potato. - Plant Biol. 6: 519-528, 2004. Go to original source...