Biologia plantarum 59:708-714, 2015 | DOI: 10.1007/s10535-015-0553-7

Application of ISSR-PCR, IRAP-PCR, REMAP-PCR, and ITAP-PCR in the assessment of genomic changes in the early generation of triticale

I. Szućko1,*, S. M. Rogalska1
1 Department of Cell Biology, Molecular Biology and Biotechnology Center, Faculty of Biology, University of Szczecin, Szczecin, Poland

Analysis of structural changes of octoploid triticale genomes was conducted in F2 and F3 generations. The plants were derived from crosses of five cultivars and breeding lines of hexaploid wheat (Triticum aestivum L.) with one cultivar of rye (Secale cereale L). The study used four marker systems: inter-simple sequence repeat (ISSR), inter-retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified polymorphism (REMAP), and a technique named inter-transposon amplified polymorphism (ITAP) developed by the authors. Most frequently, elimination of specific bands was observed, especially of rye bands. Depending on the cross combination, the percentage of eliminated rye bands ranged from 73.6 to 80.6 %. A lower percentage of wheat bands was eliminated, i.e., from 57.6 to 76.48 %, depending on the combination of crosses. The emergence of new types of bands in hybrids absent in the parental forms was the rarest phenomenon (14.5-17.9 %). The results indicate the ongoing process of genome rearrangements at the molecular level in the early generations of plant crosses that also involve repeated nucleotide sequences of DNA.

Keywords: dominant DNA markers; mobile elements; retrotransposons; transposons
Subjects: ISSR; IRAP; REMAP; ITAP; DNA markers; mobile element; retrotransposons; transposons; triticale

Received: December 18, 2014; Revised: June 10, 2015; Accepted: June 15, 2015; Published: December 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Szućko, I., & Rogalska, S.M. (2015). Application of ISSR-PCR, IRAP-PCR, REMAP-PCR, and ITAP-PCR in the assessment of genomic changes in the early generation of triticale. Biologia plantarum59(4), 708-714. doi: 10.1007/s10535-015-0553-7.
Download citation

Supplementary files

Download filebpl-201504-0014_S1.pdf

File size: 94.32 kB

References

  1. Achrem, M., Kalinka, A., Rogalska, S.: Assessment of genetic relationships among Secale taxa by using ISSR and IRAP markers and the chromosomal distribution of the AAC microsatellite sequence. - Turk. J. Bot. 38: 213-225, 2014. Go to original source...
  2. Adams, K.L., Wendel, J.F.: Novel patterns of gene expression in polyploid plants. - Trends Genet. 21: 539-542, 2005. Go to original source...
  3. Bento, M., Gustafson, J.P., Viegas, W., Silva, M.: Size matters in Triticeae polyploids: larger genomes have higher remodeling. - Genome 54: 175-183, 2011. Go to original source...
  4. Bento, M., Gustafson, P., Viegas, W, Silva M.: Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. - Theor. appl. Genet. 121: 489-497, 2010. Go to original source...
  5. Bento, M., Pereira, H.S., Rocheta, M., Gustafson, P., Viegas, W., Silva, M.: Polyploidization as a reaction force in plant genome evolution: sequence rearrangements in triticale. - PLoSOne 1: 1-11, 2008. Go to original source...
  6. Chang, R.Y., O'Donoughue, L.S., Bureau, T.E.: Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. - Theor. appl. Genet. 102: 773-781, 2001.
  7. Chen, Z.J., Ni, Z.: Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. - Bioessays 28: 240-252, 2006. Go to original source...
  8. Fernandez, E., Figueiras, M., Benito, C.: The use of ISSR and RAPD markers for detecting DNA polymorphism. Genotype identification and genetic diversity among barley cultivars with known origin. - Theor. appl. Genet. 104: 845-851, 2002. Go to original source...
  9. Ghislain, M., Zhang, D., Fajardo, D., Huamann, Z., Hijmans, R.H.: Marker-assisted sampling of the cultivated Andean potato Solanum phureja collections using RAPD markers. - Genet. Res. Crop. Evol. 46: 547-555, 1999. Go to original source...
  10. Jiang, B., Lou, Q., Wu, Z., Zhang, W., Wang, D., Mbira, K.G., Weng, Y., Chen, J.: Retrotrasnposon- and microsatellite sequence-associated genomic changes in early generations of a newly synthesized allotetraploid Cucumis × hytivus Chen & Kirkbride. - Plant mol. Biol. 77: 225-233, 2011. Go to original source...
  11. Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., Schulman, A.H.: Analysis of plant diversity with retrotranspozon-based molecular markers. - Heredity 106: 520-530, 2011. Go to original source...
  12. Kalendar, R., Grob, T., Regina, M., Suoniemi, A., Schulman, A.: IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. - Theor. appl. Genet. 98: 704-711, 1999. Go to original source...
  13. Kalinka, A.: [Genome Changes in Wheat-Rye Allopoliploids.] - PhD Thesis. University of Szczecin, Szczecin 2010. [In Pol.]
  14. Kashkush, K., Feldman, M., Levy, A.A.: Gene loss, silencing and activation in a newly synthesized wheat allopolyploid. - Genetics 160: 1651-1659, 2002.
  15. Kraithstein, Z., Yaakov, B., Khasdan, V., Kashkush, K.: Genetic and epigenetic dynamics of retrotransposon after allopoliploidization of wheat. - Genetics 186: 801-812, 2010. Go to original source...
  16. Li, Y., Karol, A.B., Fahima, T., Nevo, E.: Microsatellites within genes: structure, function, and evolution. - Mol. Biol. Evol. 21: 991-1007, 2004. Go to original source...
  17. Liu, B., Brubaker, C.L., Mergeai, G., Cronn, R.C., Wendel, J.F.: Polyploid formation in cotton is not accompanied by rapid genome changes. - Genome 44: 321-330, 2001. Go to original source...
  18. Liu, B., Xu, C., Zhao, N., Qi, B., Kimatu, J.N., Pang, J., Han, F.: Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. - J. Genet. Genomics 36: 519-528, 2009. Go to original source...
  19. Liu, K., Somerville, S.: Cloning and characterization of a highly repeated DNA sequence in Hordeum vulgare L. - Genome 39: 1159-1168, 1996. Go to original source...
  20. Ma, X.F., Fang, P., Gustafson, J.P.: Polyploidyzation-induced genome variation in triticale. - Genome 47: 839-848, 2004. Go to original source...
  21. Ma, X.F., Gustafson, J.P.: Timing and rate of genome variation in triticale following allopolyploidization. - Genome 49: 950-958, 2006. Go to original source...
  22. Ma, X.F., Gustafson, J.P.: Allopoliploidization-accommodated genomic sequence changes in triticale. - Ann. Bot. 101: 825-832, 2008. Go to original source...
  23. Madlung, A., Tygai, A.P., Watson, B., Jiang, H., Kagochi, T., Doerge, R.W., Martienssen, R., Comai, L.: Genomic changes in synthetic Arabidopsis polyploids. - Plant J. 41: 221-230, 2005. Go to original source...
  24. Matos, M., Pinto-Carnide, O., Benito, C.: Phylogenetic relationship among Portuguese rye based on isozyme, RAPD and ISSR markers. - Hereditas 134: 229-236, 2001. Go to original source...
  25. Ozkan, H., Tuna, M., Arumuganathan, A.: Nonadditive changes in genome size during allopolyploidyzation in the wheat (Aegilops-Triticum) group. - J. Heredity 94: 260-264, 2003. Go to original source...
  26. Rogalska, S., Cybulska-Augustyniak, J., Kalwinek, A.: Aneuploidy in Polish cultivars of winter triticale. - Genet. Polon. 32: 11-16, 1991.
  27. Shaked, H., Kashkush, K., Ozkan, H., Feldman, M., Levy, A.A.: Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. - Plant Cell 13: 1749-1759, 2001. Go to original source...
  28. Sharma, A., Namdeo, A.G., Mahagik, K.R.: Molecular markers in plant genome analysis. - Pharmacognosy Rev. 2: 23-34, 2008.
  29. Vaillancourt, A., Nikongolo, K., Michael, P., Mehes, M.: Identification, characterisation, and chromosome locations of rye and wheat specific ISSR and SCAR markers useful for breeding purposes. - Euphytica 159: 297-306, 2008. Go to original source...
  30. Voytas, D.F., Naylor, G.J.P.: Rapid flux in plant genomes. - Nat. Genet. 20: 6-7, 1998. Go to original source...
  31. Wang, J., Tian, L., Lee, H.-S., Wei, N.E., Jiang, H., Watson, B., Madlung, A., Osborn, T.C., Doerge, R.W., Comai, L., Chen, Z.J.: Genome wide nonadditive gene regulation in Arabidopsis allotetraploids. - Genetics 172: 507-517, 2006. Go to original source...
  32. Ziętkiewicz, E., Rafalski, A., Labuda, D.: Genome fingerprinting by simple sequence repeat (SSR) - anchored polymerase chain reaction amplification. - Genomics 20: 176-183, 1994. Go to original source...