Biologia plantarum 59:783-787, 2015 | DOI: 10.1007/s10535-015-0540-z

Gene expression and enzyme activities of the D-mannose/L-galactose pathway influence L-ascorbic acid content in Myrciaria dubia

J. C. Castro1,*, M. Cobos2, J. D. Maddox3, S. A. Imán4, A. Egoavil1, J. Torres1, F. Gutierrez1
1 Unidad Especializada de Biotecnología, Centro de Investigaciones de Recursos Naturales de la Amazonía, Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
2 Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Iquitos, Perú
3 The Field Museum of Natural History, Chicago, USA
4 Instituto Nacional de Innovación Agraria, Iquitos, Perú

The aim of this work was to elucidate the molecular and biochemical mechanisms that control L-ascorbic acid (AsA) content variation in Myrciaria dubia. The AsA was quantified by high-performance liquid chromatography, gene expression by real-time quantitative PCR, and enzyme activities by spectrophotometric methods from leaves and immature fruits of two genotypes (Md-60,06 and Md-02,04) with pronounced (about 2 times) differences in the AsA content. In either genotype, the fruit peel had ∼ 1.5 times more AsA than the fruit pulp and ∼ 15.0 times more than the leaf. All tissues examined demonstrated the capability for AsA biosynthesis through the D-mannose/L-galactose pathway because mRNAs of the six key genes [GDP-D-mannose pyrophosphorylase (GMP), GDP-D-mannose-3',5'-epimerase (GME), GDP-L-galactose phosphorylase (GGP), L-galactose-1-phosphate phosphatase (GPP), L-galactose dehydrogenase (GDH), and L-galactono-1-4-lactone dehydrogenase (GLDH)] and catalytic activities of the corresponding enzymes (GMP, GDH, and GLDH) were detected. The differential expressions of genes and enzyme activities mostly correlated with the respective AsA content. Thus, the expression of several genes of the D-mannose/L-galactose pathway determined the AsA content variation in tissues of M. dubia.

Keywords: GDP-D-mannose-3',5'-epimerase; GDP-D-mannose pyrophosphorylase; GDP-L-galactose phosphorylase; L-galactono-1-4-lactone dehydrogenase; L-galactose dehydrogenase; L-galactose-1-phosphate phosphatase
Subjects: gene expression; ascorbic acid; D-mannose; L-galactose

Received: March 4, 2015; Revised: April 27, 2015; Accepted: April 29, 2015; Published: December 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Castro, J.C., Cobos, M., Maddox, J.D., Imán, S.A., Egoavil, A., Torres, J., & Gutierrez, F. (2015). Gene expression and enzyme activities of the D-mannose/L-galactose pathway influence L-ascorbic acid content in Myrciaria dubia. Biologia plantarum59(4), 783-787. doi: 10.1007/s10535-015-0540-z.
Download citation

Supplementary files

Download filebpl-201504-0022_S1.pdf

File size: 213.98 kB

References

  1. Andersen, C.L., Jensen, J.L., Orntoft, T.F.: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. - Cancer Res. 64: 5245-5250, 2004. Go to original source...
  2. Badejo, A.A., Fujikawa, Y., Esaka, M.: Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra). - J. Plant Physiol. 166: 652-660, 2009. Go to original source...
  3. Bulley, S.M., Rassam, M., Hoser, D., Otto, W., Schünemann, N., Wright, M., MacRae, E., Gleave, A., Laing, W.: Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. - J. exp. Bot. 60: 765-778, 2009. Go to original source...
  4. Castro, J.C., Gutierrez, F., Acuña, C., Cerdeira, L.A., Tapullima, A., Cobos, M., Imán, S.A.: Variation of vitamin C and anthocyanins in Myrciaria dubia "camu camu". - Rev. Soc. Quím. Perú 79: 319-330, 2013.
  5. Castro, J.C., Egoávil A.C., Torres, J., Ramírez, R., Cobos, M., Imán, S.A.: Isolation of high-quality total RNA from leaves of Myrciaria dubia "camu camu". - Prep. Biochem. Biotechnol. 43: 527-538, 2013.
  6. Conklin, P.L., DePaolo, D., Wintle, B., Schatz, C., Buckenmeyer, G.: Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein phosphatase involved in the regulation of the ascorbic acid pool in plants. - J. exp. Bot. 64: 2793-2804, 2013. Go to original source...
  7. Conklin, P.L., Gatzek, S., Wheeler, G.L., Dowdle, J., Raymond, M.J., Rolinski, S., Isupov, M., Littlechild, J.A., Smirnoff, N.: Arabidopsis thaliana VTC4 encodes L-galactose-1-phosphatase, a plant ascorbic acid biosynthetic enzyme. - J. biol. Chem. 281: 15662-15670, 2006. Go to original source...
  8. Davey, M.W., Kenis, K., Keulemans, J.: Genetic control of fruit vitamin C contents. - Plant Physiol. 142: 343-351, 2006. Go to original source...
  9. Davis, A.J., Perugini, M.A., Smith, B.J., Stewart, J.D., Ilg, T., Hodder, A.N., Handman, E.: Properties of GDP-mannose pyrophosphorylase, a critical enzyme and drug target in Leishmania mexicana. - J. biol. Chem. 279: 12462-12468, 2004. Go to original source...
  10. Dunajska-Ordak, K., Skorupa-KŁaput, M., Kurnik, K., Tretyn, A., Tyburski, J.: Cloning and expression analysis of a gene encoding for ascorbate peroxidase and responsive to salt stress in beet (Beta vulgaris). - Plant mol. Biol. Rep. 32: 162-175, 2014. Go to original source...
  11. Foyer, C.H., Halliwell, B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. - Planta. 133: 21-25, 1976. Go to original source...
  12. Fracassetti, D., Costa, C., Moulay, L., Tomás-Barberán, F.A.: Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). - Food Chem. 139: 578-588, 2013. Go to original source...
  13. Franceschi, V.R., Tarlyn, N.M.: L-ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. - Plant Physiol. 130: 649-656, 2002. Go to original source...
  14. Gallie, D.R.: L-ascorbic acid: a multifunctional molecule supporting plant growth and development. - Scientifica 2013: 1-24, 2013. Go to original source...
  15. Gatzek, S., Wheeler, G.L., Smirnoff, N.: Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L- galactose synthesis. - Plant J. 30: 541-553, 2002. Go to original source...
  16. Gest, N., Gautier, H., Stevens, R.: Ascorbate as seen through plant evolution: the rise of a successful molecule?. - J. exp. Bot. 64: 33-53, 2013. Go to original source...
  17. Hancock, R.D., McRae, D., Haupt, S., Viola, R.: Synthesis of L-ascorbic acid in the phloem. - BMC Plant Biol. 3: 1-13, 2003. Go to original source...
  18. Imán, S., Bravo, L., Sotero, V., Oliva, C.: Vitamin C content in fruits of camu camu Myrciaria dubia (H.B.K) Mc Vaugh, in four states of maturation, coming from the collection of germplasm of the INIA Loreto, Peru. - Sci. Agropecul. 2: 123-130, 2011. Go to original source...
  19. Ledezma-Gairaud, M.L.: Validation of the method: determination of total vitamin C by high resolution liquid chromatography "HPLC"." - Tecnología En Marcha 417: 15-23, 1993.
  20. Li, M., Ma, F., Liang, D., Li, J., Wang, Y.: Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. - PloS One 5: e14281, 2010. Go to original source...
  21. Lorence, A., Chevone, B.I., Mendes, P., Nessler, C.L.: Myoinositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. - Plant Physiol. 134: 1200-1205, 2004. Go to original source...
  22. Melino, V.J., Soole, K.L., Ford, C.M.: Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. - BMC Plant Biol. 9: 145, 2009. Go to original source...
  23. Mellidou, I., Keulemans, J., Kanellis, A.K., Davey, M.W.: Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. - BMC Plant Biol. 12: 239, 2012. Go to original source...
  24. Roselló, S., Adalid, A.M., Cebolla-Cornejo, J., Nuez, F.: Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. - J. Sci. Food. Agr. 91: 1014-1021, 2011. Go to original source...
  25. Ruijter, J.M., Ramakers, C., Hoogaars, W.M.H., Karlen, Y., Bakker, O., Van den Hoff, M.J.B., Moorman, A.F.M.: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. - Nucl. Acids Res. 37: e45, 2009. Go to original source...
  26. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: A Laboratory Manual. 1st Ed. - Cold Spring Harbor Laboratory Press, Cold Spring Harbor - New York 1989.
  27. Simon, P.: Q-Gene: processing quantitative real-time RT-PCR data. - Bioinformatics 19: 1439-1440, 2003. Go to original source...
  28. Smirnoff, N., Wheeler, G.L.: Ascorbic acid in plants: biosynthesis and function. - Crit. Rev. Biochem. mol. Biol. 35: 291-314, 2000. Go to original source...
  29. Tedone, L., Hancock, R.D., Alberino, S., Haupt, S., Viola, R.: Long-distance transport of L-ascorbic acid in potato. - BMC Plant Biol. 4: 16, 2004. Go to original source...
  30. Valpuesta, V., Botella, M.A.: Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. - Trends Plant Sci. 9: 573-577, 2004. Go to original source...
  31. Wheeler, G.L., Jones, M.A., Smirnoff, N.: The biosynthetic pathway of vitamin C in higher plants. - Nature 393: 365-369, 1998. Go to original source...
  32. Wolucka, B.A., Van Montagu, M.: GDP-mannose-3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. - J. biol. Chem. 278: 47483-47490, 2003. Go to original source...
  33. Yang, X.Y., Xie, J.X., Wang, F.F., Zhong, J., Liu, Y.Z., Li, G.H., Peng, S.A.: Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp. - J. Plant Physiol. 168: 2196-2205, 2011. Go to original source...
  34. Zanatta, C.F., Cuevas, E., Bobbio, F.O., Winterhalter, P., Mercadante, A.Z.: Determination of anthocyanins from camu-camu (Myrciaria dubia) by HPLC-PDA, HPLC-MS, and NMR. - J. Agr. Food Chem. 53: 9531-9535, 2005. Go to original source...