Biologia plantarum 64: 200-210, 2020 | DOI: 10.32615/bp.2020.011

Molecular characterization of the promoter of the stress-inducible ZmMYB30 gene in maize

J. LUO, C.M. YU, M. YAN, Y. H. CHEN*
School of Life Science, Nantong University, Jiangsu 226019, P.R. China

The ZmMYB30 is a member of the myeloblastosis (MYB) transcription factor superfamily, which has been shown to be a transcription regulator in abiotic stress tolerance in maize (Zea mays). To further identify the biological function of ZmMYB30 and reveal how its expression is induced in response to stress, we isolated the ZmMYB30 promoter and conducted a functional analysis. A 1461-bp promoter fragment was cloned and sequenced. Motif prediction using PlantCARE revealed several stress-responsive elements in the promoter sequence. Deletions in the promoter sequence affected the activity of the promoter and demonstrated that putative stress-responsive motifs, including TC-rich repeats (ATTCTCTAAC), abscisic acid responsive element (ABRE, ACGTG), and MYB binding site (MBS, CAACTG), played important roles in regulating the expression of ZmMYB30. Promoter β-glucuronidase (GUS) analysis also showed that GUS expression under the control of the ZmMYB30 promoter responded to drought and salinity. Many natural variations in the ZmMYB30 promoter sequence were found among 31 inbred maize lines, including 22 single nucleotide polymorphisms (SNPs), 17 insertion and deletion (InDels), and approximately 400-bp long deletions. The ZmMYB30 expression varied greatly among the different inbred lines. The long fragment deletion in the promoter region did not impair the ZmMYB30 expression, whereas SNP (-374) in the MBS motif in the 62R and LH82 lines greatly decreased the ZmMYB30 expression. A site-specific mutation in the MBS motif also decreased the expression of the reporter GUS gene driven by the ZmMYB30 promoter sequence. The expressions of three stress-responsive genes ZmSOS1, ZmSOS2, and ZmABF3 were found to be consistent with the ZmMYB30 expression. Our results provide new evidence to support the role of ZmMYB30 as an important regulator in maize stress tolerance.

Keywords: inbred maize line, MYB transcription factor, stress-responsive motif, stress tolerance.

Received: September 13, 2019; Revised: January 15, 2020; Accepted: January 20, 2020; Published online: March 6, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LUO, J., YU, C.M., YAN, M., & CHEN, Y.H. (2020). Molecular characterization of the promoter of the stress-inducible ZmMYB30 gene in maize. Biologia plantarum64, 200-210. doi: 10.32615/bp.2020.011.
Download citation

Supplementary files

Download fileLuo6324 Suppl.pdf

File size: 163.93 kB

References

  1. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. - Plant Cell 15: 63-78, 2003. Go to original source...
  2. Baldoni, E., Genga, A., Cominelli, E.: Plant MYB transcription factors: their role in drought response mechanisms. - Int. J. mol. Sci. 16: 15811-15851, 2015. Go to original source...
  3. Chen, Y.H., Li, H.J., Shi, D.Q., Yuan, L., Liu, J., Sreenivasan, R., Baskar, R., Grossniklaus, U., Yang, W.C.:The central cell plays a critical role in pollen tube guidance in Arabidopsis. - Plant Cell 19: 3563-3577, 2007. Go to original source...
  4. Chen, Y.H., Cao, Y.Y., Wang, L.J., Li, L.M., Yang, J., Zou, M.X.: Identification of MYB transcription factor genes and their expression during abiotic stresses in maize. - Biol. Plant. 62: 222-230, 2018. Go to original source...
  5. Cheng, M.C., Liao, P.M., Kuo, W.W., Lin T.P.: The sArabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. - Plant Physiol.162: 1566-1582, 2013. Go to original source...
  6. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., Zhu, J.K.: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. - Genes Dev. 17: 1043-1054, 2003. Go to original source...
  7. Dhadi, S.R., Deshpande, A., Ramakrishna, W.: A novel non-wounding transient expression assay for cereals mediated by Agrobacterium tumefaciens. - Plant mol. Biol. Rep. 30: 36-45, 2012. Go to original source...
  8. Garg, B., Lata, C., Prasad, M.: A study of the role of gene TaM YB2 and an associated SNP in dehydration tolerance in common wheat. - Mol. Biol. Rep. 39:10865-10871, 2012. Go to original source...
  9. Guiltinan M.J., Marcotte, W.R., Quatrano, R.S.: A plant leucine zipper protein that recognizes an abscisic acid response element. - Science 250: 267-271, 1990. Go to original source...
  10. Guo, H., Wang, L., Yang, C., Zhang, Y., Zhang, C., Wang, C.: Identification of novel cis-elements bound by BplMYB46 involved in abiotic stress responses and secondary wall deposition. - J. integr. Plant Biol. 60: 1000-1014, 2018. Go to original source...
  11. Guo, Y., Qiu, Q.S., Quintero, F.J., Pardo, J.M., Ohta, M., Zhang, C., Schumaker, K.S., Zhu, J.K.: Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. - Plant Cell 16: 435-449, 2004. Go to original source...
  12. Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., Guo, Z.F.: Signal transduction during cold, salt, and drought stresses in plants. - Mol. Biol. Rep. 39: 969-987, 2012. Go to original source...
  13. Jaradat, M.R., J.A. Feurtado, D. Huang, Y. Lu, and A.J. Cutler.: Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. - BMC Plant Biol. 13:1-19, 2013. Go to original source...
  14. Kerr, T.C.C., Abdel-Mageed, H., Aleman. L., Lee, J., Payton, P., Cryer, D., Allen, R.D.: Ectopic expression of two AREB/ABF orthologs increases drought tolerance in cotton (Gossypium hirsutum). - Plant Cell Environ. 41: 898-907, 2018. Go to original source...
  15. Kim, J.H., N.H. Nguyen, C.Y. Jeong, N.T. Nguyen, S.-W. Hong, H. Lee.: Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. - J. Plant Physiol. 170:1461-1465, 2013. Go to original source...
  16. Lescot, M,, Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., Rombauts, S.: PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. - Nucl. Acids Res. 30: 325-327, 2002. Go to original source...
  17. Liu, S., Wang, X., Wang, H., Xin, H., Yang, X., Yan, J., Li, J., Tran, L.S.P., Shinozaki, K., Yamaguchi-Shinozaki, K., Qin, F.: Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. - PLoS Genetics 9: e1003790-e1003790, 2013. Go to original source...
  18. Mao, H., Wang, H., Liu, S., Li, Z., Yang, X., Yan, J., Li, J., Tran, L.S.P., Qin, F.: A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. - Nature Commun. 6: 8326-8326, 2015. Go to original source...
  19. Pehlivan, N., Sun, L., Jarrett, P., Yang, X., Mishra, N., Chen, L., Kadioglu, A., Shen, G., Zhang, H.: Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. - Plant Cell Physiol. 57: 1069-1084, 2016. Go to original source...
  20. Persak, H., A. Pitzschke.: Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. - PLoS ONE. 8: e57547, 2013. Go to original source...
  21. Roy, S. : Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. - Plant Signal. Behav. 11: e1117723-e1117723, 2015.
  22. Samad, A.F.A., Sajad, M., Nazaruddin, N., Fauzi, I.A., Murad, A.M.A., Zainal, Z., Ismail, I.: MicroRNA and transcription factor: key players in plant regulatory network. - Front. Plant Sci. 8: 565-565, 2017. Go to original source...
  23. Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. - Proc. nat. Acad. Sci. USA 94: 1035-1040, 1997. Go to original source...
  24. Sun, Y., Dinneny, J.R.: Q&A??: How do gene regulatory networks control environmental responses in plants? - BMC Biol. 16: 38-38, 2018. Go to original source...
  25. Tan, W., Zhang, D., Zhou, H., Zheng, T., Yin, Y., Lin, H.: Transcription factor HAT1 is a substrate of SnRK2.3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought. - PLoS Genet. 14: e1007336-e1007336, 2018.
  26. Tran, L.S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. - Plant Cell 16: 2481-2498, 2004. Go to original source...
  27. Urban, A., Neukirchen, S., Jaeger, K.E: A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR -. Nucl. Acids Res. 25: 2227-2228, 1997. Go to original source...
  28. Viana, V.E., Busanello, C, Da Maia, L.C., Pegoraro, C., Costa de Oliveira, A.: Activation of rice WRKY transcription factors: an army of stress fighting soldiers? - Curr. Opin. Plant Biol. 45: 268-275, 2018. Go to original source...
  29. Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., Yang, X., Qin, F.: Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. - Nat.Genet. 48: 1233-1241, 2016. Go to original source...
  30. Xiang, Y., Sun, X., Gao, S., Qin, F., Dai, M.: Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. - Mol. Plants 10: 456-469, 2017. Go to original source...
  31. Xu, R., Wang, Y., Zheng, H., Lu, W., Wu, C., Huang, J., Yan, K., Yang, G., Zheng, C.: Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. - J. exp.Bot. 66: 5997-6008, 2015. Go to original source...
  32. Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. - Annu. Rev. Plant Physiol. 57: 781-803, 2006. Go to original source...
  33. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. - J. Comput. Biol. 7: 203-214, 2000. Go to original source...
  34. Zhao, Y., Cheng, X., Liu, X., Wu, H., Bi, H., Xu, H.: The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. - Front. Plant Sci. 9: 1426, 2018. Go to original source...
  35. Zhou, L.J., Zhang, C.L., Zhang, R.F., Wang, G.L., Li, Y.Y., Hao, Y.J.: The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis. - Plant Physiol. 179: 88-106, 2019. Go to original source...
  36. Zhu, J.K.: Abiotic stress signaling and responses in plants. - Cell 167: 313-324, 2016. Go to original source...