Biologia plantarum 64: 744-752, 2020 | DOI: 10.32615/bp.2020.117

γ-Aminobutyric acid induces transcriptional changes contributing to salt tolerance in creeping bentgrass

Z. LI*, B.Z. CHENG, Y. PENG, Y. ZHANG
Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, P.R. China

γ-Aminobutyric acid (GABA) regulates plant tolerance to abiotic stresses; however, a transcriptomic change and key stress-related genes induced by GABA have not been investigated in plants during a prolonged period of salt stress. Roots of creeping bentgrass (Agrostis stolonifera) cv. Penncross were pretreated with or without 0.5 mM GABA solution for 2 days and then subjected to salt stress for 20 days (150 mM NaCl solution for 3 d, 200 mM NaCl for another 3 d, and 250 mM NaCl for 14 d) in controlled growth chambers. The application of GABA significantly increased GABA content in roots and alleviated a salt-stress induced decrease in GABA content in leaves. This was associated with a significant increase in salt tolerance as demonstrated by a significantly higher leaf relative water content, photochemical efficiency, performance index on absorption basis, and lower electrolyte leakage in GABA-pretreated plants as compared to untreated plants under salt stress. Transcriptomic analysis found that GABA-induced salt tolerance was closely associated with saccharide, amino acid, and lipid metabolism. The GABA upregulated key differentially expressed genes including cytochrome P450 (CYP450), zinc transporter 29 (ZTP29), alpha-amylase 3 (AMY3), 3-ketoacyl-CoA synthase 6 (KCS6), aldehyde oxidase (AO), acetyl-CoA carboxylase 1 (ACC1), and magnesium-chelatase (Mg-CHT) involved in zinc homeostasis, starch degradation, and the biosynthesis of wax, fatty acid, chlorophyll, and abscisic acid, which could contribute to GABA-regulated salt tolerance. Current findings prove that GABA application is an efficient approach to enhance salt tolerance of creeping bentgrass during a prolonged period of salt stress and also provide valuable information to better understand key candidate genes and regulatory pathways of GABA-induced salt tolerance in plants.

Keywords: abscisic acid, amino acid, fatty acid, lipid metabolism, starch degradation, wax, zinc homeostasis.

Received: July 17, 2020; Revised: August 5, 2020; Accepted: August 10, 2020; Published online: October 29, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LI, Z., CHENG, B.Z., PENG, Y., & ZHANG, Y. (2020). γ-Aminobutyric acid induces transcriptional changes contributing to salt tolerance in creeping bentgrass. Biologia plantarum64, 744-752. doi: 10.32615/bp.2020.117.
Download citation

Supplementary files

Download fileLI6534_Suppl.pdf

File size: 287.21 kB

References

  1. Ambrose, J.C., Shoji, T., Kotzer, A.M., Pighin, J.A., Wasteneys, G.O.: The Arabidopsis CLASP gene encodes a microtubule- associated protein involved in cell expansion and division. - Plant Cell 19: 2763-2775, 2007. Go to original source...
  2. Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. - Aust. J. biol. Sci. 15: 413-428, 1962. Go to original source...
  3. Blum, A., Ebercon, A.: Cell membrane stability as a measure of drought and heat tolerance in wheat. - Crop Sci. 21: 43-47, 1981. Go to original source...
  4. Che-Othman, M.H., Jacoby, R.P., Millar, A.H., Taylor, N.L.: Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. - New Phytol. 225: 1166-1180, 2020. Go to original source...
  5. Cheng, B., Li, Z., Liang, L., Cao, Y., Zeng, W., Zhang, X., Ma, X., Huang, L., Nie, G., Liu, W., Peng, Y.: The γ-aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation, dehydrins accumulation, and stress-related genes expression in white clover. - Int. J. mol. Sci. 19: 2520, 2018. Go to original source...
  6. Dong, Z.Y., Rao, M.P.N., Wang, H.F., Fang, B.Z., Liu, Y.H., Li, L., Xiao, M., Li, W.J.: Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. - Sci. total Environ. 686: 107-117, 2019. Go to original source...
  7. Duan, C.R., Carrow, N.R., Huck, T.M.: Turfgrass and Landscape Irrigation Water Quality: Assessment and Management. - CRC Press, Boca Raton 2009. Go to original source...
  8. Flowers, T.J., Galal, H.K., Bromham, L.: Evolution of halophytes: multiple origins of salt tolerance in land plants. - Funct. Plant Biol. 37: 604-612, 2010. Go to original source...
  9. Gao, Y., Li, M., Zhang, X., Yang, Q., Huang, B.: Upregulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum. - Plant Cell Environ. 43: 159-173, 2019.
  10. Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Regev, A.: De novo transcript sequence reconstruction from RNA- Seq using the Trinity platform for reference generation and analysis. - Nat. Protocols 8: 1494-1512, 2013. Go to original source...
  11. Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. - Calif. Agr. Exp. Sta. Circular 347: 357-359, 1950.
  12. Horváth, E., Gallé, G., Szepesi, G., Tari, I., Csiszár, J.: Changes in aldehyde oxidase activity and gene expression in Solanum lycopersicum L. shoots under salicylic acid pre-treatment and subsequent salt stress. - Acta biol. szegediensis 55: 83-85, 2011.
  13. Krishnan, S., Laskowski, K., Shukla, V., Merewitz, E.B.: Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass. - J. amer. Soc. hort. Sci. 138: 358-366, 2013. Go to original source...
  14. Krishnan, S., Merewitz, E.B.: Phytohormone responses and cell viability during salinity stress in two creeping bentgrass cultivars differing in salt tolerance. - J. amer. Soc. hort. Sci. 140: 346-355, 2015. Go to original source...
  15. Li, Y., Fan, Y., Ma, Y., Zhang, Z., Yue, H., Wang, L., Li, J., Jiao, Y.: Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress. - J. Plant Growth Regul. 36: 436-449, 2017a. Go to original source...
  16. Li, Z., Cheng, B., Zeng, W., Liu, Z., Peng, Y.: The transcriptional and post-transcriptional regulation in perennial creeping bentgrass in response to γ-aminobutyric acid (GABA) and heat stress. - Environ. exp. Bot. 162: 515-524, 2019. Go to original source...
  17. Li, Z., Cheng, B., Zeng, W., Zhang, X., Peng, Y.: Proteomic and metabolomic profilings reveal crucial function of γ-aminobutyric acid (GABA) on regulating ionic, water, and metabolic homeostasis in creeping bentgrass under salt stress. - J. Proteome Res. 19: 769-780, 2020. Go to original source...
  18. Li, Z., Yu, J., Peng, Y., Huang, B.: Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in, association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). - Physiol. Plant. 159: 42-58, 2017b. Go to original source...
  19. Li, Z., Zhang, Y., Zhang, X., Merewitz, E., Peng, Y., Ma, X., Huang, L., Yan, Y.: Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. - J. Proteome Res. 16: 3039-3052, 2017c. Go to original source...
  20. Lu, K., Liang, S., Wu, Z., Bi, C., Yu, Y.T., Wang, X.F., Zhang, D.P.: Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance. - J. exp. Bot. 67: 5009-5027, 2016. Go to original source...
  21. Ma, Y., Merewitz, E.: Polyamine content changes in creeping bentgrass exposed to salt stress. - J. amer. Soc. hort. Sci. 141: 498-506, 2016. Go to original source...
  22. Mao, G., Seebeck, T., Schrenker, D., Yu O.: CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. - BMC Plant Biol. 13: 169, 2013. Go to original source...
  23. Marcum, K.B.: Salinity tolerance of 35 bentgrass cultivars. - HortScience 36: 374-376, 2001. Go to original source...
  24. Muchate, N.S., Nikalje, G.C., Rajurkar, N.S., Suprasanna, P., Nikam, T.D.: Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. - Bot. Rev. 82: 371-406, 2016. Go to original source...
  25. Nagalakshmi, U., Waern, K., Snyder, M.: RNA-Seq: A method for comprehensive transcriptome analysis. - Curr. Protocols mol. Biol. 89: 1-13, 2010.
  26. Omarov, R.T., Sagi, M., Lips, H.: Regulation of aldehyde oxidase and nitrate reductase in roots of barley (Hordeum vulgare L.) by nitrogen source and salinity. - J. exp. Bot. 49: 897-902, 1998. Go to original source...
  27. Poshina, D.N., Raik, S.V., Poshin, A.N., Skorik, Y.A.: Accessibility of chitin and chitosan in enzymatic hydrolysis: a review. - Polymer Degrad. Stabil. 156: 269-278, 2018. Go to original source...
  28. Priya, M., Sharma, L., Kaur, R., Bindumadhava, H., Nayyar, H.: GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. - Sci. Rep. 9: 7788, 2019. Go to original source...
  29. Rossi, L., Borghi, M., Francini, A., Lin, X., Xie, D.Y., Sebastiani, L.: Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). - J. Plant Physiol. 204: 8-15, 2016. Go to original source...
  30. Santelia, F., Martinoia, G.: MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. - Plant Cell Physiol. 24: 5399-5406, 2006.
  31. Shao, F., Zhang, L., Wilson, I., Qiu, D.: Transcriptomic analysis of Betula halophila in response to salt stress. - Int. J. mol. Sci. 19: 3412, 2018. Go to original source...
  32. Szepesi, Á., Csiszár, J., Gémes, K., Horváth, E., Horváth, F., Simon, M.L., Tari, I.: Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. - J. Plant Physiol. 166: 914-925, 2009. Go to original source...
  33. Tarkowski, Ł.P., Signorelli, S., Höfte, M.: GABA and related amino acids in plant immune responses: emerging mechanisms of action. - Plant Cell Environ. 43: 1103-1116, 2020. Go to original source...
  34. Terasaka, K., Blakeslee, J., Titapiwatanakun, B., Peer, W., Bandyopadhyay, A., Makam, S., Lee, O.R., Richards, E., Murphy, A., Sato, F., Yazaki, K.: PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. - Plant Cell 17: 2922-2939, 2005. Go to original source...
  35. Thalmann, M., Pazmino, D., Seung, D., Horrer, D., Nigro, A., Meier, T., Kölling, K., Pfeifhofer, H.W., Zeeman, S.C., Santelia, D.: Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. - Plant Cell 28: 1860-1878, 2016.
  36. Todd, J., Post-Beittenmiller, D., Jaworski, J.G.: KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. - Plant J. 17: 119-130, 1999. Go to original source...
  37. Tran, T.V., Shu, F., Giles, H.E., Lambrides, C.J.: Salinity tolerance among a large range of bermudagrasses (Cynodon spp.) relative to other halophytic and non-halophytic perennial C4 grasses. - Environ. exp. Bot. 145: 121-129, 2018. Go to original source...
  38. Wan, S., Wang, W., Zhou, T., Zhang, Y., Chen, J., Xiao, B., Yang, Y., Yu, Y.: Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress. - Plant Growth Regul. 84: 481-492, 2018. Go to original source...
  39. Wang, M., Xu, Q., Yu, J., Yuan, M.: The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress. - Plant Mol. Biol. 73: 467-479, 2010. Go to original source...
  40. Wang, M., Xu, Q., Yuan, M.: Zinc homeostasis is involved in unfolded protein response under salt stress. - Plant Signaling Behav. 6: 77-79, 2011. Go to original source...
  41. Wang, Y., Gu, W., Meng, Y., Xie, T., Li, L., Li, J., Wei, S.: γ-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. - Sci. Rep. 7: 43609, 2017. Go to original source...
  42. Xu, C., Sibicky, T., Huang, B.: Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. - Plant Cell Rep. 29: 595-615, 2010. Go to original source...
  43. Xu, Y., Burgess, P., Huang, B.: Transcriptional regulation of hormone-synthesis and signaling pathways by overexpressing cytokinin-synthesis contributes to improved drought tolerance in creeping bentgrass. - Physiol. Plant. 161: 235-256, 2017. Go to original source...
  44. Yang, Y., Guo, Y.: Unraveling salt stress signaling in plants. - J. integr. Plant Biol. 60: 58-66, 2018. Go to original source...
  45. Zhang, Q., Zhao, M., Qian, H., Lu, T., Zhang, Q., Liu, W.: Enantioselective damage of diclofop acid mediated by oxidative stress and acetyl-CoA carboxylase in nontarget plant Arabidopsis thaliana. - Environ. Sci. Technol. 46: 8405-8412, 2012. Go to original source...
  46. Zhao, S.Y., Zeng, W.H., Li, Z., Peng, Y.: Mannose regulates water balance, leaf senescence, and genes related to stress tolerance in white clover under osmotic stress. - Biol. Plant. 64: 406-416, 2020. Go to original source...
  47. Zhou, M., Li, D., Li, Z., Hu, Q., Luo, H.: Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. - Plant Physiol. 161: 1375-1391, 2013. Go to original source...