Biologia plantarum 64: 87-94, 2020 | DOI: 10.32615/bp.2019.127

Reactive oxygen species derived from NADPH oxidase regulate autophagy

H. JING*, Z. WANG, L. ZHANG, G. ZHOU, Z. GU, Y. SHAN, Y. ZHOU, Z. YANG, Z. KONG
College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P.R. China

Reactive oxygen species (ROS) originating from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) play vital roles in regulating autophagy. However, the relationship between autophagy and NOX in common wheat (Triticum aestivum L.) is still unknown. In order to clarify the mechanism of autophagy in wheat, ROS content, NOX activity, and autophagy levels in root tip cells under condition of N or C deficiency were measured. The results showed that the N and C deficiency increased the production of superoxide anions (O2-.) and hydrogen peroxide (H2O2) via the NOX activation, leading to an increase in the number of autophagic bodies, in comparison to the control group. This showed that autophagy constitutively existed in the root tip cells of wheat seedlings. Interestingly, imidazole, a NOX inhibitor, inhibited the H2O2 and O2-. content and reduced the accumulation of autophagic bodies under N deficiency. Hydrogen peroxide and O2-. derived from NOX possibly regulated autophagy in wheat root tip cells. In order to further verify whether ROS regulated autophagy, exogenous ROS or a reductant was applied to the roots of wheat seedlings under N deficiency. The results showed that exogenous O2-. and H2O2 both induced the accumulation of autophagic bodies in the vacuoles of root tip cells. On the contrary, glutathione and ascorbic acid significantly decreased the accumulation of autophagic bodies. Therefore, this study confirmed that H2O2 and O2-. derived from NOX could regulate autophagy in root tip cells of wheat seedlings under stress.

Keywords: imidazole, H2O2, superoxide anion, Triticum aestivum.

Received: April 9, 2019; Revised: September 25, 2019; Accepted: October 21, 2019; Published online: February 4, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
JING, H., WANG, Z., ZHANG, L., ZHOU, G., GU, Z., SHAN, Y., ... KONG, Z. (2020). Reactive oxygen species derived from NADPH oxidase regulate autophagy. Biologia plantarum64, 87-94. doi: 10.32615/bp.2019.127.
Download citation

References

  1. Chen, T., Fluhr, R.: Singlet oxygen plays an essential role in the root's response to osmotic stress. - Plant Physiol. 177: 1717-1727, 2018. Go to original source...
  2. Chen, Y., Azad, M.B., Gibson, S.B.: Superoxide is the major reactive oxygen species regulating autophagy. - Cell Death Differ. 16: 1040-1052, 2009. Go to original source...
  3. Chung, T., Suttangkakul, A., Vierstra, R.D.: The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adductare regulated by development and nutrient availability. - Plant Physiol. 149: 220-234, 2009. Go to original source...
  4. El-Zahaby, H.M., Hafez, Y.M., Király, Z.: Effect of reactive oxygen species on plant pathogens in planta and on disease symptoms. - Acta phytopathol. entomol. hung. 39: 325-345, 2004. Go to original source...
  5. Evans, M.J., Choi, W.G., Gilroy, S., Morris, R.J.: A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. - Plant Physiol. 171: 1771-1784, 2016. Go to original source...
  6. Floyd, B.E., Morriss, S.C., Macintosh, G.C., Bassham, D.C.: What to eat: evidence for selective autophagy in plants -. J. integr. Plant Biol. 54: 907-920, 2012. Go to original source...
  7. Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D.G., Davies, J.M., Dolan, L.: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. - Nature 422: 442-446, 2003. Go to original source...
  8. Forte, M., Palmerio, S., Yee, D., Frati, G., Sciarretta, S.: Functional role of Nox4 in autophagy. - Adv. exp. Med. Biol. 982: 307-326, 2017. Go to original source...
  9. Han, S, Wang, Y., Zheng, X., Jia, Q., Zhao, J., Bai F., Hong, Y., Liu, Y.: Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana. - Plant Cell 27: 1316-1331, 2015. Go to original source...
  10. Inoue, Y., Suzuki, T., Hattori, M., Yoshimoto, K., Ohsumi, Y., Moriyasu, Y.: AtATG genes homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. - Plant Cell Physiol. 47: 1641-1652, 2006. Go to original source...
  11. Jing, H.J., Zhang, L., Li, H.Q., Shao, K.J., Wu, H., Wang, Y.H., He, G.Y., Tan, X.R.: Exogenous phytic acid inhibits early growth of wheat seedling (Triticum aestivum) by decreasing superoxide anion derived from NADPH oxidase. - Aust. J. Crop Sci. 6:1221-1227, 2012.
  12. Klionsky D.J.: Guidelines for the use and interpretation of assays for monitoring autophagy; 3rd Edition. - Autophagy 12: 1-222, 2016.
  13. Kuzuoglu-Ozturk, D., Yalcinkaya, O.C., Akpinar, B.A., Mitou, G., Korkmaz, G., Gozuacik, D., Budak, H.: Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. - Planta 236: 1081-1092, 2012. Go to original source...
  14. Laureano-Marín, A.M., Moreno, I., Romero, LC., Gotor, C.: Negative regulation of autophagy by sulfide is independent of reactive oxygen species. - Plant Physiol. 171: 1378-1391, 2016 Go to original source...
  15. Li, F., Chung, T., Pennington, J.G., Federico, M.L., Kaepple, H.F., Kaeppler, S.M., Otegui, M.S., Vierstra, R.D.: Autophagic recycling plays a central role in maize nitrogen remobilization. - Plant Cell 27: 1389-1408, 2015. Go to original source...
  16. Liu, Y., Bassham, D.C.: TOR is a negative regulator of autophagy in Arabidopsis thaliana. - PLoS ONE 5(7): e11883, 2010. Go to original source...
  17. Liu, Y., Xiong, Y., Bassham, D.C.: Autophagy is required for tolerance of drought and salt stress in plants. - Autophagy 5: 954-963, 2009. Go to original source...
  18. Liu, Y.K., He, C.Z.: Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. - Plant Cell Rep. 35: 995-1007, 2016. Go to original source...
  19. Liu, Y.M., Bassham, D.C.: Autophagy pathways for self-eating in plant cells. - Annu Rev. Plant Biol. 63: 215-237, 2012. Go to original source...
  20. Marino, D., Dunand, C., Puppo, A., Pauly, N.: A burst of plant NADPH oxidases. - Trends Plant Sci. 17: 9-15, 2012. Go to original source...
  21. Minibayeva, F., Dmitrieva, S., Ponomareva, A., Ryabovol, V.: Oxidative stress-induced autophagy in plants: the role of mitochondria. - Plant Physiol. Biochem. 59: 11-19, 2012. Go to original source...
  22. Monshausen, G.B., Bibikova, T.N., Messerli, M.A., Shi, C., Gilroy, S.: Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. - PNAS 104: 20996-21001, 2007. Go to original source...
  23. Morriss, S.C., Liu, X., Floyd, B.E., Bassham, D.C., MacIntosh, G.C.: Cell growth and homeostasis are disrupted in Arabidopsis rns2-2 mutants missing the main vacuolar RNase activity. - Ann. Bot. 120: 911-922, 2017. Go to original source...
  24. Oh-ye, Y., Inoue, Y., Moriyasu, Y.: Detecting autophagy in Arabidopsis roots by membrane- permeable cysteine protease inhibitor E-64d and endocytosis tracer FM4-64. - Plant Signal. Behav. 6: 1946-1949, 2011.
  25. Pei, D., Zhang, W., Sun, H., Wei, X., Yue, J., Wang, H.: Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses. - Plant Cell Rep. 33:1697-1710, 2014. Go to original source...
  26. Poillet-Perez, L., Despouy, G., Delage-Mourroux, R., Boyer-Guittaut, M.: Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. - Redox. Biol. 4: 184-192, 2015. Go to original source...
  27. Rituraj, P., Lakshya, B., Jaiprakash, S., Michela, P., Di, R.A., Parisa, L., Arindam, C., Joel, N., Marco, S., George, G.R.: NADPH oxidase promotes parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of parkinson's disease. - Sci. Rep. 6: 22866, 2016.
  28. Ryabovol, V.V., Minibayeva, F.V.: Autophagic proteins ATG4 and ATG8 in wheat: structural characteristics and their role under stress conditions. - Dokl. Biochem. Biophys. 458: 179-181, 2014. Go to original source...
  29. Ryter, S.W., Nakahira, K., Haspel, J.A., Choi, A.M.: Autophagy in pulmonary diseases. - Annu. Rev. Physiol. 74: 377-401, 2012. Go to original source...
  30. Sagi, M., Fluhr, R.: Production of reactive oxygen species by plant NADPH oxidases. - Plant Physiol. 141: 336-340, 2006. Go to original source...
  31. Sarath, G., Hou, G., Baird, L.M., Mitchell, R.B.: Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4-grasses. - Planta 226: 697-708, 2007. Go to original source...
  32. Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., Elazar, Z.: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. - EMBO J. 26: 1749-1760, 2007. Go to original source...
  33. Sciarretta, S., Volpe, M., Sadoshima, J.: NOX4 regulates autophagy during energy deprivation. - Autophagy 10: 699-701, 2014. Go to original source...
  34. Shin, J.H., Yoshimoto, K., Ohsumi, Y., Jeon, J.S., An, G.: OsATG10b, an autophagosome components, is needed for cell survival against oxidative stress in rice. - Mol. Cells 27: 67-74, 2009. Go to original source...
  35. Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M.A., Mittler, R.: Respiratory burst oxidases: the engines of ROS signaling. - Curr. Opin. Plant Biol. 14: 691-699, 2011. Go to original source...
  36. Wang, P., Mugume, Y., Bassham, D.C.: New advances in autophagy in plants: regulation, selectivity and function. - Seminars Cell. Dev. Biol. 80: 113-122, 2018.
  37. Wang, Y.J., Wei, X.Y., Jing, X.Q., Chang, Y.L., Hu, C.H., Wang, X., Chen, K.M.: The fundamental role of NOX family proteins in plant immunity and their regulation. - Int. J. mol. Sci. 17: 805, 2016. Go to original source...
  38. Xiong, Y., Contento, A.L., Bassham, D.C.: Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. - Autophagy 3: 257-258, 2007a. Go to original source...
  39. Xiong, Y., Contento, A.L., Nguyen, P.Q., Bassham, D.: Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. - Plant Physiol. 143: 291-299, 2007b. Go to original source...
  40. Yang, X., Bassham, D.C.: New insight into the mechanism and function of autophagy in plant cells. - Int. Rev. cell. mol. Biol. 320: 1-40, 2015. Go to original source...
  41. Yoshimoto, K.: Beginning to understand autophagy, an intracellular self-degradation system in plants. - Plant Cell Physiol. 53:1355-1365, 2012. Go to original source...
  42. Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., Shirasu, K.: Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. - Plant Cell 21: 2914-2927, 2010.
  43. Yue, J., Sun, H., Zhang, W., Pei, D., He, Y., Wang, H.: Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity. - BMC Plant Biol. 15: 95, 2015. Go to original source...
  44. Zhu, X., Shen, K., Bai, Y., Zhang, A., Xia, Z., Chao, J., Yao, H.: NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy. - Free Radical Biol. Med. 94: 230-242, 2016. Go to original source...