Biologia Plantarum 63: 511-518, 2019 | DOI: 10.32615/bp.2019.046

Exogenous spermidine enhances expression of Calvin cycle genes andphotosynthetic efficiency in sweet sorghum seedlings under salt stress

A.I. EL SAYED1,*, M.A.M. EL-HAMAHMY2, M.S. RAFUDEEN3, M.K.H. EBRAHIM4,5
2 Department of Agricultural Botany, Faculty of Agriculture, Suez Canal University, 41522 Ismailia, Egypt
3 Department of Molecular and Cell Biology, University of Cape Town, Private Bag, 7701 Rondebosch, South Africa
4 Biology Department, Faculty of applied sciences, Umm Al- Qura University, postal code? Makkah Al-Mukarramah, KSA
5 Botany Department, Faculty of Science, Tanta University, 31257 Tanta, Egypt

Salinity adversely affects plants resulting in disruption to plant growth and physiology. Previously, it has been shown that these negative effects can be alleviated by various exogenous polyamines. However, the role of spermidine (Spd) in conferring salinity tolerance in sorghum is not well documented. The effect of exogenous Spd on the responses of sweet sorghum (Sorghum bicolor L.) seedlings to salt stress (150 mM NaCl) was investigated by measuring photosynthetic carbon assimilation, Calvin cycle enzyme activities, and the the expression of respective genes. Application of 0.25 mM Spd alleviated the negative effects of salt stress on efficiency of photosystem II and CO2 assimilation and increased the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and aldolase. Salt stress significantly lowered the transcriptions of genes encoding Rubisco large subunit, Rubisco small subunit, 3-phosphoglyceric acid kinase, glyceraldehyde-3-phosphate dehydrogenase, triose-3-phosphate isomerase, fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphate phosphatase, and sedoheptulose-1,7-bisphosphatase. However, transcriptions of genes encoding phosphoribokinase and Rubisco were up-regulated. The Spd application enhanced expressions of most of these genes. It appears Spd conferred salinity tolerance to sweet sorghum seedlings by enhancing photosynthetic efficiency through regulation of gene expressions and activities of key CO2 assimilation enzymes.

Keywords: aldolase, CO2 assimilation rate, NaCl, photosystem II, phylogenetic analysis, Rubisco.

Received: November 18, 2018; Revised: January 21, 2019; Accepted: January 29, 2019; Published online: July 12, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SAYED, A.I., EL-HAMAHMY, M.A.M., RAFUDEEN, M.S., & EBRAHIM, M.K.H. (2019). Exogenous spermidine enhances expression of Calvin cycle genes andphotosynthetic efficiency in sweet sorghum seedlings under salt stress. Biologia plantarum63, 511-518. doi: 10.32615/bp.2019.046.
Download citation

Supplementary files

Download fileEL Sayed6122 Suppl.pdf

File size: 904.36 kB

References

  1. Baker, NR.: A possible role for photosystem II in environmental perturbations of photosynthesis. - Physiol. Plant. 81: 563-570, 1991. Go to original source...
  2. Barhoumi, Z., Djebali, W., Chaibi, W., Abdelly, C., Smaoui, A.: Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. - J. Plant Res. 120: 529-537, 2007. Go to original source...
  3. Bouchereau, A., Aziz, A., Larher, F., Martin-Tanguy, J.: Polyamines and environmental challenges: recent development. - Plant Sci. 140: 103-125, 1999. Go to original source...
  4. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. - Ann. Biochem. 72: 248-254, 1976. Go to original source...
  5. Burzyński, M., Żurek, A.: Effects of copper and cadmium on photosynthesis in cucumber cotyledons. - Photosynthetica 45: 239-244, 2007. Go to original source...
  6. Chai, Y.Y., Jiang, C.D., Shi, L., Shi, T.S., Gu, W.B.: Effects of exogenous spermine on sweet sorghum during germination under salinity. - Biol. Plant. 54: 145-148, 2010. Go to original source...
  7. Chattopadhayay, M.K., Tiwari, B.S., Chattopadhyay, G., Bose, A., Sengupta, D.N., Ghosh, B.: Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. - Physiol. Plant. 116: 192-199, 2002. Go to original source...
  8. Das, S., Bose, A., Ghosh, B.: Effect of salt stress on polyamine metabolism in Brassica campestris. - Phytochemistry 39: 283-285, 1995. Go to original source...
  9. Duan, J., Li, J., Guo, S., Kang, Y.: Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. - J. Plant Physiol. 165: 1620-1635, 2008. Go to original source...
  10. ElSayed, A.I., Rafudeen, M.S., El-Hamahmy, M.A.M., Odero, D.C., Hossain, M.S.: Enhancing antioxidant systems by exogenous spermine and spermidine in wheat (Triticum aestivum) seedlings exposed to salt stress. - Funct. Plant Biol. 45: 745-759, 2018. Go to original source...
  11. Farooq, M., Wahid, A., Lee, D.J.: Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. - Acta Physiol. Plant. 31: 937-945, 2009. Go to original source...
  12. Furbank, R.T., Taylor, W.C.: Regulation of photosynthesis in C3 and C4 plants: a molecular approach. - Plant Cell 7: 797-807, 1995. Go to original source...
  13. Ioannidis, N.E., Sfichi, L., Kotzabasis, K.: Putrescine stimulates chemiosmotic ATP synthesis. - BBA Bioenergetics 1757: 821-828, 2006. Go to original source...
  14. Jiang, X.Y., Song, J., Fan, H., Zhao, K.F.: Regulation of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress. - J. Plant Physiol. mol. Biol. 26: 539-544, 2000.
  15. Kalaji, H.M., Bosa, G.K., Kościelniak, J., Żuk-Gołaszewska, K.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. exp. Bot. 73: 64-72, 2011. Go to original source...
  16. Kasukabe, Y., He, L.X., Nada, K., Misawa, S.H, Ihara, I., Tachibana, S.: Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana. - Plant Cell Physiol. 45: 712-722, 2004. Go to original source...
  17. Kossmann, J., Sonnewald, U., Willmitzer, L.: Reduction of the chloroplastic fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. - Plant J. 6: 637-650, 1994. Go to original source...
  18. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 227: 680, 1970. Go to original source...
  19. Larkin, M.A., Blackshileds, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X ver. 2.0. - Bioinformatics 23: 2947-2948, 2007. Go to original source...
  20. Lichtenthaler, H.K.: Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382, 1987. Go to original source...
  21. Liu, J., Yu, B., Liu, Y.: Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H+-ATPase and H+-PPase activities in barley roots. - Plant Growth Regul. 49: 119-126, 2006. Go to original source...
  22. Lu, C., Vonshak, A.: Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. - Physiol. Plant 114: 405-413, 2002. Go to original source...
  23. Lu, K.X., Cao, B.H., Feng, X.P., He, Y., Jiang, D.A.: Photosynthetic response of salt-tolerant and sensitive soybean varieties. - Photosynthetica 47: 381-387, 2009. Go to original source...
  24. Lv, G.-Y., Guo, X.-G., Xie, L.-P., Xie, C.-G., Zhang, X.-H., Yang, Y., Xiao, L., Tang Y.-Y., Pan, X.-L., Guo A.-G., Xu H.: Molecular characterization, gene evolution, and expression analysis of the fructose-1, 6-bisphosphate aldolase (FBA) gene family in wheat (Triticum aestivum L.). - Front. Plant Sci. 8: 1030, 2017. Go to original source...
  25. Mehta, P., Jajoo, A., Mathur, S., Bharti, S.: Chlorophyll α fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. - Plant Physiol. Biochem. 48: 16-20, 2010. Go to original source...
  26. Miyagawa, Y., Tamoi, M., Shigeoka, S.: Overexpression of a cyanobacterial fructose-1,6/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. - Nat. Biotechnol. 19: 965-969, 2001. Go to original source...
  27. Mustroph, A., Albrecht, G.: Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol. Plant. 117: 508-520, 2003. Go to original source...
  28. Negrão, S., Schmöckel, S.M., Tester, M.: Evaluating physiological responses of plants to salinity stress. - Ann. Bot. 119: 1-11, 2017. Go to original source...
  29. Oelze, M.L., Vogel, M.O., Alsharafa, K., Kahmann, U., Viehhauser, A., Maurino, V.G., Dietz, K.J.: Efficient acclimation of the chloroplast antioxidant defence of Arabidopsis thaliana leaves in response to a 10- or 100-fold light increment and the possible involvement of retrograde signals. - J. exp. Bot. 63: 1297-1313, 2012. Go to original source...
  30. Parida, A.K., Das, A.B.: Salt tolerance and salinity effects on plants: a review. - Ecotoxicol. Environ. Saf. 60: 324-349, 2005. Go to original source...
  31. Paschalidis, K.A., Roubelakis-Angelakis, K.A.: Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. - Plant Physiol. 138: 142-152, 2005. Go to original source...
  32. Pfaffl, M.W.: A new mathematical model for relative quantification in real-time RT-PCR. - Nucl. Acids Res. 29: e45, 2001. Go to original source...
  33. Raines, C.A.: The Calvin cycle revisited. - Photosynth. Res. 75: 1-10, 2003. Go to original source...
  34. Raines, C.A.: Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. - Plant Cell Environ. 29: 331-339, 2006. Go to original source...
  35. Roy, P., Niyogi, K., SenGupta, D.N., Ghosh, B.: Spermidine treatment to rice seedlings recovers salinity stress induced damage of plasma membrane and PM-bound H+ ATPase in salt-tolerant and salt-sensitive rice cultivars. - Plant Sci. 168: 583-591, 2005. Go to original source...
  36. Roychoudhury, A., Basu, S., Sengupta, D.N.: Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. - J Plant Physiol. 168: 317-328, 2011. Go to original source...
  37. Ruijter, J.M., Ramakers, C., Hoogaars, W., Bakker, O., Van den Hoff, M.J.B., Karlen, Y., Moorman, A.F.M.: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. - Nucl. Acids Res. 37: e45, 2009. Go to original source...
  38. Spreitzer, R.J.: Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414: 141-149, 2003. Go to original source...
  39. Shu, S., Yuan, L.-Y., Guo, S.-R., Sun, J., Liu, C.-J.: Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. - Afr. J. Biotechnol. 11: 6064-6074. 2012. Go to original source...
  40. Shu, S., Chen, L., Lu, W., Sun, J., Guo, S., Yuan, Y., Li, J., Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings. - J. Plant Res. 127: 763-773, 2014. Go to original source...
  41. Smith, G.A., Buxton, D.R.: Temperate zone sweet sorghum ethanol production potential. - Bioresour. Technol. 43: 71-75, 1993. Go to original source...
  42. Steduto, P., Katerji, N., Puertos-Molina, H., Unlu, M., Mastrorilli, M., Rana, G.: Water-use efficiency of sweet sorghum under water stress conditions. Gas exchange investigations at leaf and canopy scales. - Field Crops Res. 54: 22--234, 1997. Go to original source...
  43. Steel, R.G.D., Torrie, J.H., Diskey, D.A.: Principles and Procedures of Statistics: a Biometrical Approach. 3rd Ed. - McGraw-Hill, New York 1997.
  44. Takahashi, Y., Cong, R., Sagor, G.H.M., Niitsu, M., Berberich, T., Kusano, T.: Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. - Plant Cell Rep. 29: 955-965., 2010. Go to original source...
  45. Tamoi, M., Nagaoka, M., Miyagawa, Y., Shigeoka, S.: Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. - Plant Cell Physiol. 47: 380-390, 2006. Go to original source...
  46. Tang, S., Zhang, H., Li, L., Liu, X., Chen, L., Chen, W., Ding, Y.: Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. - Funct. Plant Biol. 45: 911-921, 2018. Go to original source...
  47. Uematsu, K., Suzuki, N., Iwamae, T., Inui, M., Yukawa, H.: Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. - J. exp. Bot. 63: 3001-3009, 2012. Go to original source...
  48. Verma, S., Mishra, S.N.: Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. - J. Plant Physiol. 162: 669-677, 2005. Go to original source...
  49. Wang, H., Gu, M., Cui, J., Shi, K., Zhou, Y., Yu, J.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. - J. Photochem. Photobiol. B: Biol. 96: 30-37, 2009. Go to original source...
  50. Xia, J.R., Li, Y.J., Zou, D.H.: Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. - Aquatic Bot. 80: 129-137, 2004. Go to original source...
  51. Yang, X., Liang, Z., Wen, X., Lu, C.: Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. - Plant mol. Biol. 66: 73-86, 2008. Go to original source...