Biologia plantarum 62:479-488, 2018 | DOI: 10.1007/s10535-018-0770-y

Overexpression of transcription factor SlNAC35 enhances the chilling tolerance of transgenic tomato

G.-D. Wang1, Q. Liu1, X.-T. Shang1, C. Chen1, N. Xu1, J. Guan1,*, Q.-W. Meng2,*
1 School of Biological Science, Jining Medical University, Ri'zhao, P.R. China
2 College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, P.R. China

The NAC (NAM, ATAF1/2, and CUC2) transcription factor family participates in responses to various kinds of environmental stimuli in plants. However, the roles of NAC protein in cold resistance, especially in the cold resistance of tomatoes, are not completely understood. This study examined the roles of a tomato (Solanum lycopersicum) NAC transcription factor (SlNAC35) in resisting chilling using transgenic tomatoes. GUS staining and expression analysis revealed that SlNAC35 expression was induced at 4 °C, thereby suggesting its involvement in plant responses to chilling stress. Moreover, transgenic lines over-expressing SlNAC35 exhibited high chlorophyll content, fresh mass, and low accumulation of reactive oxygen species and membrane damage under chilling stress. These results indicated that SlNAC35 overexpression enhanced the chilling tolerance of transgenic tomatoes. High expressions of cold tolerance markers SlCOR518 and SlCOR413IM1 were observed under chilling stress in transgenic lines. This observation suggested that SlNAC35 overexpression enhanced the chilling tolerance of transgenic lines by involving the c-repeat binding factor-cold stress response (CBF-COR) signaling pathway and by regulating SlCOR expression.

Keywords: Arabidopsis thaliana; catalase; chlorophyll; malondialdehyde; reactive oxygen species; Solanum lycopersicum; superoxid dismutase
Subjects: transcription factors; gene expression; chilling tolerance; transgenic plants; catalase; superoxide dismutase; ROS; tomato

Received: July 16, 2017; Revised: November 9, 2017; Accepted: November 16, 2017; Published: September 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Wang, G.-D., Liu, Q., Shang, X.-T., Chen, C., Xu, N., Guan, J., & Meng, Q.-W. (2018). Overexpression of transcription factor SlNAC35 enhances the chilling tolerance of transgenic tomato. Biologia plantarum62(3), 479-488. doi: 10.1007/s10535-018-0770-y.
Download citation

Supplementary files

Download filebpl-201803-0009_S1.pdf

File size: 73.52 kB

References

  1. Aslam, M., Sinha, V.B., Singh, R.K., Anandhan, S., Pande, V., Ahmed, Z.: Isolation of cold stress-responsive genes from Lepidium latifolium by suppressive subtraction hybridization. - Acta Physiol. Plant. 32: 205-210, 2010. Go to original source...
  2. Bollhoner, B., Prestele, J., Tuominen, H.: Xylem cell death: emerging understanding of regulation and function. - J. exp. Bot. 63: 1081-1094, 2012. Go to original source...
  3. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254, 1976. Go to original source...
  4. Bu, Q., Jiang, H., Li, C.B., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., Li, C.: Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. - Cell Res. 18: 756-767, 2008. Go to original source...
  5. Cai, G.H., Wang, G.D., Wang, L., Pan, J.W., Liu, Y., Li, D.Q.: ZmMKK1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. - Plant Sci. 214: 57-73, 2014. Go to original source...
  6. Chen, S.P., Kuo, C.H., Lu, H.H., Lo, H.S., Yeh, K.W.: The sweet potato NAC-domain transcription factor IbNAC1 is dynamically coordinated by the activator IbbHLH3 and the repressor IbbHLH4 to reprogram the defense mechanism against wounding. - PloS Genet. 12: e1006397, 2016b. Go to original source...
  7. Chen, S.P., Lin, I.W., Chen, X.Y., Huang, Y.H., Chang, S.C., Lo, H.S., Lu, H.H., Yeh, K.W.: Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. - Plant J. 86: 234-248, 2016a. Go to original source...
  8. Chinnusamy, V., Zhu, J., Zhu, J.K.: Cold stress regulation of gene expression in plants. - Trends Plant Sci. 12: 444-451, 2007. Go to original source...
  9. Choi, H.W., Kim, Y.J., Lee, S.C., Hong, J.K., Hwang, B.K.: Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. - Plant Physiol. 145: 890-904, 2007. Go to original source...
  10. Christiansen, M.W., Gregersen, P.L.: Members of the barley NAC transcription factor gene family show differential coregulation with senescence-associated genes during senescence of flag leaves. - J. exp. Bot. 65: 4009-4022, 2014. Go to original source...
  11. Delessert, C., Kazan, K., Wilson, I.W., Van der Straeten, D., Manners, J., Dennis, E.S., Dolferus, R.: The transcription factor ATAF2 represses the expression of pathogenesisrelated genes in Arabidopsis. - Plant J. 43: 745-757, 2005. Go to original source...
  12. Fang, Y.J., Liao, K.F., Du, H., Xu, Y., Song, H.Z., Li, X.H., Xiong, L.Z.: A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. - J. exp. Bot. 66: 6803-6817, 2015. Go to original source...
  13. Giacomelli, L., Masi, A., Ripoll, D.R., Lee, M.J., Van Wijk, K.J.: Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. - Plant mol. Biol. 65: 627-644, 2007. Go to original source...
  14. Hao, Y.J.,Wei, W., Song, Q.X., Chen, H.W., Zhang, Y.Q.,Wang, F., Chen, S.Y.: Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. - Plant J. 68: 302-313, 2011. Go to original source...
  15. Hénanff, G.L., Profizi, C., Courteaux, B., Rabenoelina, F., Gérard, C., Clément, C., Baillieul, F., Cordelier, S., Dhondt- Cordelier, S.: Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. - J. exp. Bot. 64: 4877-4893, 2013.
  16. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T.: A simple and general method for transferring genes into plants. - Science 227: 1229-1231, 1985.
  17. Hussey, S.G., Mizrachi, E., Creux, N.M., Myburg, A.A.: Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. - Front. Plant Sci. 4: 325, 2013. Go to original source...
  18. Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Do Choi, Y., Kim, M., Reuzeau, C., Kim, J.K.: Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. - Plant Physiol. 153: 185-197, 2010. Go to original source...
  19. Knight, M.R., Knight, H.: Low-temperature perception leading to gene expression and cold tolerance in higher plants. - New Phytol. 195: 737-751, 2012. Go to original source...
  20. Kong, F.Y., Deng, Y.S., Zhou, B., Wang, G.D., Wang, Y., Meng, Q.W.: A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. - J. exp. Bot. 65: 143-158, 2014. Go to original source...
  21. Lin, R., Zhao, W., Meng, X., Wang, M., Peng, Y.: Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. - Plant Sci. 172: 120-130, 2007. Go to original source...
  22. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought and low temperature responsive gene, respectively, in Arabidopsis. - Plant Cell 10: 1391-1406, 1998. Go to original source...
  23. Ma, N.N., Zuo, Y.Q., Liang, X.Q., Yin, B., Wang, G.D., Meng, Q.W.: The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. - Physiol. Plant. 149: 474-486, 2013. Go to original source...
  24. Mitter, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002. Go to original source...
  25. Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: NAC transcription factors in plant abiotic stress responses. - Biochim. biophys. Acta 1819: 97-103, 2012.
  26. Olsen, A.N., Ernst, H.A., Leggio, L.L., Skriver, K.: NAC transcription factors: structurally distinct, functionally diverse. - Trends Plant Sci. 10: 79-87, 2005. Go to original source...
  27. Pandurangaiah, M., Rao, G.L., Sudhakarbabu, O., Nareshkumar, A., Kiranmai, K., Lokesh, U., Thapa, G., Sudhakar, C.: Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. - Mol. Biotechnol. 56: 758-769, 2014. Go to original source...
  28. Puranik, S., Sahu, P.P., Srivastava, P.S., Prasad, M.: NAC proteins: regulation and role in stress tolerance. - Cell 17: 369-381, 2012. Go to original source...
  29. Ricachenevsky, F.K., Menguer, P.K., Sperotto, R.A.: kNACking on heaven's door: how important are NAC transcription factors for leaf senescence and Fe/Zn remobilization to seeds? - Front. Plant Sci. 4: 226, 2013. Go to original source...
  30. Rao, M.V., Davis, K.R.: Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. - Plant J. 17: 603-614, 1999. Go to original source...
  31. Shan, W., Kuang, J.F., Lu, W.J., Chen, J.Y.: Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1. - Plant Cell Environ. 37: 2116-2127, 2014. Go to original source...
  32. Shi, Y.T., Ding, Y.L., Yang, S.H.: Cold signal transduction and its interplay with phytohormones during cold acclimation. - Plant Cell Physiol. 56: 7-15, 2015. Go to original source...
  33. Song, S.Y., Chen, Y., Chen, J., Dai, X.Y., Zhang, W.H.: Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. - Planta 234: 331-345, 2011. Go to original source...
  34. Stockinger, E.J., Gilmour, S.J., Thomashow, M.F.: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. - Proc. nat. Acad. Sci. USA 94: 1035-1040, 1997. Go to original source...
  35. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. - Annu. Rev. Plant Biol. 50: 571-599, 1999. Go to original source...
  36. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. - Genome Biol. 3: 1-12, 2002. Go to original source...
  37. Voitsik, A.M., Muench, S., Deising, H.B., Voll, L.M.: Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. - BMC Plant Biol. 13: 85, 2013. Go to original source...
  38. Wang, G.D., Zhang, S., Ma, X.C., Wang, Y., Kong, F.Y., Meng, Q.W.: A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. - Physiol. Plant. 158: 45-64, 2016. Go to original source...
  39. Wang, X., Basnayake, B.M., Zhang, H., Li, G., Li, W., Virk, N., Mengiste, T., Song, F.: The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. - Mol. Plant microbe Interact. 22: 1227-1238, 2009. Go to original source...
  40. Zheng, X., Chen, B., Lu, G., Han, B.: Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. - Biochem. biophys. Res. Commun. 379: 985-989, 2009. Go to original source...
  41. Zhong, R., Lee, C., Ye, Z.H.: Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. - Trends Plant Sci. 15: 625-632, 2010. Go to original source...
  42. Zong, X.J., Li, D.P., Gu, L.K., Liu, L.X., Hu, X.L., Li, D.Q.: Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. - Planta 229: 485-495, 2009. Go to original source...