Biologia Plantarum 63: 388-397, 2019 | DOI: 10.32615/bp.2019.050

N-terminal domains of AhAREB1 protein are necessary for transcriptional characteristics and negative regulation of the AhNCED1 gene

L. Hong1,*, C.Y. He2, H. Shen3, S. Liu2, X. Liu4, X.L. Li2, L. Li2,*
1 College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P.R. China
2 College of Life Sciences, Guangdong Key Laboratory of Biotechnology for Plant Development, South China Normal University, Guangzhou 510631, P.R. China
3 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China
4 Molecular Analysis and Genetic Improvement Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R. China

A transcription factor gene Arachis hypogaea abscisic acid (ABA) responsive element binding protein 1 (AhAREB1) has been isolated from peanut previously. Here, the function of different domains from AhAREB1 was investigated using construct series containing AhAREB1 full-length and truncated fragments to transform peanut hairy roots and pAhNCED1 (promoter of Arachis hypogaea 9-cis-epoxycarotenoid dioxygenase 1) GUS/Col Arabidopsis thaliana, respectively. The results of real-time quantitative PCR, transient expression, and chromosome immunoprecipitation (ChIP) assay all showed that AhAREB1 negatively regulated the expression of the AhNCED1 gene. β-Glucuronidase (GUS) staining shows that AhAREB1 and the AhAREB1 gene truncated fragment A1 may be bound to ABA responsive element  motifs in the promoter region of AhNCED1 and involved in the negative regulation of the upstream AhNCED1 gene promoter, reflected by the inhibited expression of the AhNCED1 promoter reporter gene and significantly reduced GUS activity in transgenic A. thaliana plants. Furthermore, only the full variant of AhAREB1 and a fragment without a C1 domain had repression activity on the AhNCED1 promoter. On the contrary, the AhAREB1 gene truncated fragments A2 and A3 variant without a C2 domain had no such repression activity. Moreover, the negative regulation of AhNCED1 was detected only when the C2 domain was present suggesting that the C2 domain was required for AhAREB1 activity. Subcellular localization analysis shows that the deletion of conserved domains C1, C2, C3 had no effects on the nuclear localization of AhAREB1. In addition, ChIP analysis indicates that the deletion of domains C1 and C3 significantly affected the binding of the AhAREB1 transcription factor to the AhNCED1 promoter. Taken together, the results indicate that the different N-terminal domains of the AhAREB1 protein, which played different roles in the negative regulations of AhNCED1, were necessary for AhNCED1 transcription.

Keywords: ABA responsive element, 9-cis-epoxycarotenoid dioxygenase, chromosome immunoprecipitation, negative regulation, peanut

Received: July 25, 2018; Revised: November 2, 2018; Accepted: December 4, 2018; Prepublished online: February 11, 2019; Published online: January 19, 2019Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Hong, L., He, C.Y., Shen, H., Liu, S., Liu, X., Li, X.L., & Li, L. (2019). N-terminal domains of AhAREB1 protein are necessary for transcriptional characteristics and negative regulation of the AhNCED1 gene. Biologia plantarum63, 388-397. doi: 10.32615/bp.2019.050.
Download citation

Supplementary files

Download fileHONG5903Suppl.pdf

File size: 744.95 kB

References

  1. Alos, E., Roca, M., Iglesias, D.J., Minguez-Mosquera, M.I., Damasceno, C.M., Thannhauser, T.W., Rose, J.K., Talon, M., Cercos, M.: An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. - Plant Physiol. 147: 1300-1315, 2008. Go to original source...
  2. Brand, Y., Hovav, R.: Identification of suitable internal control genes for quantitative real-time PCR expression analyses in peanut (Arachis hypogaea). - Peanut Sci. 37: 12-19, 2010. Go to original source...
  3. Burbidge, A., Grieve, T.M., Jackson, A., Thompson, A., McCarty, D.R., Taylor, I.B.: Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. - Plant J. 17: 427-431, 1999. Go to original source...
  4. Chernys, J.T., Zeevaart, J.A.: Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. - Plant Physiol. 124: 343-354, 2000. Go to original source...
  5. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. - Plant J. 16: 735-743, 1998. Go to original source...
  6. Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. - Plant Cell 17: 3470-3488, 2005. Go to original source...
  7. Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. - Proc. nat. Acad. Sci. USA.103: 1988-1993, 2006. Go to original source...
  8. Hong, L., Hu, B., Liu, X., He, C.Y., Yao, Y., Li, X.L., Li, L.: Molecular cloning and expression analysis of a new stress-related AREB gene from Arachis hypogaea. - Biol. Plant. 57: 56-62, 2013. Go to original source...
  9. Hu, B., Hong, L., Liu, X., Xiao, S., Lv, Y., Li, L.: The higher expression and distribution of 9-cis-epoxycarotenoid dioxygenase1 (AhNCED1) from Arachis hyopgaea L. contribute to tolerance to water stress in a drought-tolerant cultivar. - Acta Physiol. Plant. 35: 1667-1674, 2013. Go to original source...
  10. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. - Plant J. 27: 325-333, 2001. Go to original source...
  11. Iuchi, S., Kobayashi, M., Yamaguchi-Shinozaki, K., Shinozaki, K.: A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. - Plant Physiol. 123: 553-562, 2000. Go to original source...
  12. Jefferson, R.A.: Assaying chimeric genes in plants: the GUS gene fusion system. - Plant mol. Biol. Rep. 5: 387-405, 1987. Go to original source...
  13. Jensen, M.K., Lindemose, S., Masi, F.d., Reimer, J.J., Nielsen, M., Perera, V., Workman, C.T., Turck, F., Grant, M.R., Mundy, J.: ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. - FEBS Open Biol. 3: 321-327, 2013.
  14. Liang, J., Yang, L., Chen, X., Li, L., Guo, D., Li, H., Zhang, B.: Cloning and characterization of the promoter of the 9-cis-epoxycarotenoid dioxygenase gene in Arachis hypogaea L. - Biosci. Biotech. Biochem. 73: 2103-2106, 2009. Go to original source...
  15. Liu, S., Li, M.J., Su, L.C., Ge, K., Li, L.M., Li, X.Y., Liu, X., Li, L.: Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress. - Sci. Rep. 6: 37943, 2016a. Go to original source...
  16. Liu, S., Su, L., Liu, S., Zeng, X., Zheng, D., Hong, L., Li, L.: Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes. - Biotechnol. Biotech. Equip. 30: 1-10, 2016b. Go to original source...
  17. Liu, X., Hong, L., Li, X.Y., Yao, Y., Hu, B., Li, L.: Improved drought and salt tolerance in transgenic Arabidopsis over-expressing a NAC transcriptional factor from Arachis hypogaea. - Biosci. Biotech. Bioch. 75: 443-450, 2011. Go to original source...
  18. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. - Methods 25: 402-408, 2001. Go to original source...
  19. Qin, X., Zeevaart, J.A.: The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. - Proc. Nnt. Acad. Sci. USA 96: 15354-15361, 1999. Go to original source...
  20. Tang, N., Zhang, H., Li, X.H., Xiao, J.H., Xiong, L.Z.: Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. - Plant Physiol. 158: 1755-1768, 2012. Go to original source...
  21. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., Yamaguchi-Shinozaki, K.: Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. - Proc. nat. Acad. Sci. USA 97: 11632-11637, 2000. Go to original source...
  22. Wan, X.R., Li, L.: Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9-cis-epoxycarotenoid dioxygenase in Arachis hygogaea L. - Mitochondrial DNA 16: 217-223, 2005.
  23. Wan, X.R., Li, L.: Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. - Biochem. biophys. Res. Commun. 347: 1030-1038, 2006. Go to original source...
  24. Xiong, L., Ishitani, M., Lee, H., Zhu, J.K.: The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. - Plant Cell 13: 2063-2083, 2001. Go to original source...
  25. Yang, Y.Z., Tan, B.C.: A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis. - PloS ONE 9: e87283, 2014. Go to original source...
  26. Yoo, S.D., Cho, Y.H., Sheen, J.: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. - Nat. Protoc. 2: 1565-1572, 2007. Go to original source...
  27. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K.: AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. - Plant J. 61: 672-685, 2010. Go to original source...
  28. Zhang, L., Gao, M., Hu, J., Zhang, X., Wang, K., Ashraf, M.: Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. - Int. J. mol. Sci. 13: 3189-3202, 2012. Go to original source...
  29. Zhu, J.K.: Salt and drought stress signal transduction in plants. - Annu. Rev. Plant Biol. 53: 247-273, 2002. Go to original source...