Biologia plantarum 64: 159-166, 2020 | DOI: 10.32615/bp.2019.104

Light and temperature receptors and their convergence in plants

J. SONG, W. WU, B. HU*
College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan 410073, P.R. China

Light and temperature are two essential environmental cues for plants, helping to optimize plant body architecture and physiology. To sense a broad spectrum of sun radiation spanning from UV-B to far-red wavelength, plants are equipped with a sophisticated array of photoreceptors, including phytochromes, cryptochromes, phototropins, Zeitlupes, and UV-B photoreceptor UVR8. On the contrary, since the thermodynamic effects extensively affect the molecular and supramolecular structures, it is difficult to identify the entry point or initial receptor of temperature. Even so, several putative temperature sensors have been proposed, such as calcium ion channels, H2A.Z, and the thermodynamic change of plasma membrane fluidity. Considering that many processes in plant respond to irradiance and temperature, scientists devote to finding out the converge point of these environmental cues. As a typical example, circadian rhythm is such an integration point, which receives the signal input of both irradiance and temperature. The updating evidence shows, as an important photoreceptor, phytochrome B acts as temperature sensors via a thermodynamic active state revision. These findings suggest that the studies on light and temperature receptors in plants should not be separated. Their extensive convergence during signalling provides a new direction for understanding the stimuli perception mechanisms.

Keywords: calcium channels, circadian rhythm, cryptochromes, phototropins, phytochromes, Zeitlupes.

Received: May 7, 2019; Revised: July 22, 2019; Accepted: August 5, 2019; Published online: February 28, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
SONG, J., WU, W., & HU, B. (2020). Light and temperature receptors and their convergence in plants. Biologia plantarum64, 159-166. doi: 10.32615/bp.2019.104.
Download citation

References

  1. Albihlal, W.S., Obomighie, I., Blein, T., Persad, R., Chernukhin, I., Crespi, M., Bechtold, U., Mullineaux, P.M.: Arabidopsis heat shock transcription factor A1b regulates multiple developmental genes under benign and stress conditions. - J. exp. Bot. 69: 2847-2862, 2018. Go to original source...
  2. Ballaré, C.L., Pierik, R.: The shade-avoidance syndrome: multiple signals and ecological consequences. - Plant Cell Environ. 40: 2530-2543, 2017. Go to original source...
  3. Bita, C.E., Gerats, T.: Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. - Front. Plant Sci 4: 273, 2013. Go to original source...
  4. Boden, S.A., Kavanová, M., Finnegan, E.J., Wigge, P.A.: Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. - Genome Biol. 14: R65, 2013. Go to original source...
  5. Capovilla, G., Schmid, M., Posé, D.: Control of flowering by ambient temperature. - J. exp. Bot. 66: 59-69, 2014. Go to original source...
  6. Casal, J.J., Questa, J.I.: Light and temperature cues: multitasking receptors and transcriptional integrators. - New Phytol. 217: 1029-1034, 2018. Go to original source...
  7. Chamovitz, D.A., Deng, X.W., Lam, E.: Light signaling in plants. - Crit. Rev. Plant Sci. 15: 455-478, 2008.
  8. Chen, H.D., Wang, J., Zhao, M.Z., Zhao, F.: Characterization and expression analysis of circadian clock genes in the diploid woodland strawberry Fragaria vesca. - Biol. Plant. 62: 451-461, 2018. Go to original source...
  9. Chen, M., Chory, J.: Phytochrome signaling mechanisms and the control of plant development. - Trends cell. Biol. 21: 664-671, 2011. Go to original source...
  10. Christie, J.M., Arvai, A.S., Baxter, K.J., Heilmann, M., Pratt, A.J., O'Hara, A., Kelly, S.M., Hothorn, M., Smith, B.O., Hitomi, K., Jenkins, G.I., Getzoff, E.D.: Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. - Science 335: 1492-1496, 2012. Go to original source...
  11. De Lucas, M., Daviere, J.M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blazquez, M.A., Titarenko, E., Prat, S.: A molecular framework for light and gibberellin control of cell elongation. - Nature 451: 480-484, 2008. Go to original source...
  12. Delker, C., Van Zanten, M., Quint, M. : Thermosensing enlightened. - Trends Plant Sci. 22: 185-187, 2017. Go to original source...
  13. Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., Schafer, E., Fu, X., Fan, L.M., Deng, X.W.: Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. - Nature 451: 475-479, 2008. Go to original source...
  14. Fernández, V., Takahashi, Y., Le Gourrierec, J., Coupland, G.: Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. - Plant J. 86: 426-440, 2016.
  15. Franklin, K.A.: Light and temperature signal crosstalk in plant development. - Curr. Opin. Plant Biol. 12: 63-68, 2009. Go to original source...
  16. Franklin, K.A., Lee, S.H., Patel, D., Kumar, S.V., Spartz, A.K., Gu, C., Ye, S., Yu, P., Breen, G., Cohen, J.D., Wigge, P.A., Gray, W.M.: Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. - Proc. nat. Acad. Sci. USA 108: 20231-20235, 2011. Go to original source...
  17. Franklin, K.A., Toledo-Ortiz, G., Pyott, D.E., Halliday, K.J.: Interaction of light and temperature signalling. - J. exp. Bot. 65: 2859-2871, 2014. Go to original source...
  18. Galvao, V.C., Fankhauser, C.: Sensing the light environment in plants: photoreceptors and early signaling steps. - Curr. Opin. Neurobiol. 34: 46-53, 2015. Go to original source...
  19. Gorai, M., Gasmi, H., Neffati, M.: Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae). - Saudi J. biol. Sci. 18: 255-260, 2011. Go to original source...
  20. Goyal, A., Szarzynska, B., Fankhauser, C.: Phototropism: at the crossroads of light-signaling pathways. - Trends Plant Sci. 18: 393-401, 2013. Go to original source...
  21. Greenham, K., McClung, C.R.: Integrating circadian dynamics with physiological processes in plants. - Nat. Rev. Genet. 16: 598, 2015. Go to original source...
  22. Grundy, J., Stoker, C., Carré, I.A.: Circadian regulation of abiotic stress tolerance in plants. - Front. Plant Sci. 6: 648, 2015. Go to original source...
  23. Guan, B., Zhou, D., Zhang, H., Tian, Y., Japhet, W., Wang, P.: Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. - J arid Environ. 73: 135-138, 2009. Go to original source...
  24. Gyula, P., Schäfer, E., Nagy, F.: Light perception and signalling in higher plants. - Curr. Opin. Plant Biol. 6: 446-452, 2003. Go to original source...
  25. Hahn, A., Kilian, J., Mohrholz, A., Ladwig, F., Peschke, F., Dautel, R., Harter, K., Berendzen, K.W., Wanke, D.: Plant core environmental stress response genes are systemically coordinated during abiotic stresses. - Int. J. mol. Sci 14: 7617-7641, 2013. Go to original source...
  26. Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.-S., Han, B., Zhu, T., Wang, X., Kreps, J.A., Kay, S.A.: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. - Science 290: 2110-2113, 2000. Go to original source...
  27. Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., Fujita, M.: Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. - Int. J. mol. Sci. 14: 9643-9684, 2013. Go to original source...
  28. Hemmes, H., Henriques, R., Jang, I.-C., Kim, S., Chua, N.-H.: Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms. - Plant Cell Physiol. 53: 2016-2029, 2012.
  29. Higuchi, Y., Sumitomo, K., Oda, A., Shimizu, H., Hisamatsu, T.: Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. - J. Plant Physiol. 169: 1789-1796, 2012. Go to original source...
  30. Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O., Fankhauser, C.: Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. - EMBO J. 28: 3893-3902, 2009. Go to original source...
  31. Hsu, P.Y., Harmer, S.L.: Wheels within wheels: the plant circadian system. - Trends Plant Sci. 19: 240-249, 2014. Go to original source...
  32. Hu, X.W., Huang, X.H., Wang, Y.R.: Hormonal and temperature regulation of seed dormancy and germination in Leymus chinensis. - Plant Growth Regul. 67: 199-207, 2012. Go to original source...
  33. Inoue, K., Araki, T., Endo, M.: Integration of input signals into the gene network in the plant circadian clock. - Plant Cell Physiol. 58: 977-982, 2017. Go to original source...
  34. James, A.B., Syed, N.H., Bordage, S., Marshall, J., Nimmo, G.A., Jenkins, G.I., Herzyk, P., Brown, J.W., Nimmo, H.G.: Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. - Plant Cell 24: 961-981, 2012. Go to original source...
  35. Jiao, Y., Lau, O.S., Deng, X.W.: Light-regulated transcriptional networks in higher plants. - Nat. Rev. Genet. 8: 217-230, 2007. Go to original source...
  36. Jung, J.-H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S.: Phytochromes function as thermosensors in Arabidopsis. - Science: aaf6005, 2016.
  37. Kami, C., Lorrain, S., Hornitschek, P., Fankhauser, C.: Light-regulated plant growth and development. - In: Timmermans, M.C.P. (ed.): Current Topics in Developmental Biology. Vol. 91. Pp. 29-66. Elsevier, New York 2010. Go to original source...
  38. Kasahara, M.: Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. - Plant Physiol. 129: 762-773, 2002. Go to original source...
  39. Kennis, J.T.M., Crosson, S., Gauden, M., Van Stokkum, I.H.M., Moffat, K., Van Grondelle, R.: Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. - Biochemistry 42: 3385-3392, 2003. Go to original source...
  40. Kigel, J.: Seed germination in arid and semiarid regions. - In. Kigel, J. (ed.): Seed Development and Germination. Pp. 645-699. Routledge, London - New York 2017. Go to original source...
  41. Kim, J., Geng, R., Gallenstein, R.A., Somers, D.E.: The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. - Development 140: 4060-4069, 2013. Go to original source...
  42. Klose, C., Venezia, F., Hussong, A., Kircher, S., Schäfer, E., Fleck, C.: Systematic analysis of how phytochrome B dimerization determines its specificity. - Natur. Plants 1: 15090, 2015. Go to original source...
  43. Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., Franklin, K.A.: High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. - Curr. Biol. 19: 408-413, 2009. Go to original source...
  44. Kong, S.-G., Okajima, K.: Diverse photoreceptors and light responses in plants. - J. Plant Res. 129: 111-114, 2016. Go to original source...
  45. Kong, S.-G., Suzuki, T., Tamura, K., Mochizuki, N., Hara-Nishimura, I., Nagatani, A.: Blue light-induced association of phototropin 2 with the Golgi apparatus. - Plant J. 45: 994-1005, 2006. Go to original source...
  46. Kosova, K., Vitamvas, P., Urban, M.O., Klima, M., Roy, A., Prasil, I.T.: Biological networks underlying abiotic stress tolerance in temperate crops - a proteomic perspective. - Int. J. mol. Sci. 16: 20913-20942, 2015. Go to original source...
  47. Kumar, S.V., Wigge, P.A.: H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. - Cell 140: 136-147, 2010. Go to original source...
  48. Kurepin, L.V., Walton, L.J., Pharis, R.P., Neil Emery, R.J., Reid, D.M.: Interactions of temperature and light quality on phytohormone-mediated elongation of Helianthus annuus hypocotyls. - Plant Growth Regul. 64: 147-154, 2010.
  49. Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., Ahn, J.H.: Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. - Nucl. Acids Res. 38: 3081-3093, 2010. Go to original source...
  50. Legris, M., Klose, C., Burgie, E.S., Rojas, C.C.R., Neme, M., Hiltbrunner, A., Wigge, P.A., Schäfer, E., Vierstra, R.D., Casal, J.J.: Phytochrome B integrates light and temperature signals in Arabidopsis. - Science 354: 897-900, 2016. Go to original source...
  51. Legris, M., Nieto, C., Sellaro, R., Prat, S., Casal, J.J.: Perception and signalling of light and temperature cues in plants. - Plant J. 90: 683-697, 2017. Go to original source...
  52. Leivar, P., Monte, E.: PIFs: systems integrators in plant development. - Plant Cell 26: 56-78, 2014. Go to original source...
  53. Leivar, P., Quail, P.H.: PIFs: pivotal components in a cellular signaling hub. - Trends Plant Sci. 16: 19-28, 2011. Go to original source...
  54. Lilley, J.L.S., Gee, C.W., Sairanen, I., Ljung, K., Nemhauser, J.L.: An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. - Plant Physiol. 160: 2261-2270, 2012. Go to original source...
  55. Lorenzo, C.D., Sanchez-Lamas, M., Antonietti, M.S., Cerdan, P.D. : Emerging hubs in plant light and temperature signaling. - Photochem. Photobiol. 92: 3-13, 2016. Go to original source...
  56. Lou, P., Xie, Q., Xu, X., Edwards, C., Brock, M., Weinig, C., McClung, C.: Genetic architecture of the circadian clock and flowering time in Brassica rapa. - Theor. appl. Genet. 123: 397-409, 2011. Go to original source...
  57. Loveys, B., Scheurwater, I., Pons, T., Fitter, A., Atkin, O.: Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast-and slow-growing plant species. - Plant Cell Environ. 25: 975-988, 2002. Go to original source...
  58. Ma, D., Li, X., Guo, Y., Chu, J., Fang, S., Yan, C., Noel, J. P., Liu, H.: Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. - Proc. nat. Acad. Sci. USA 113: 224-229, 2016. Go to original source...
  59. McClung, C.R.: Plant circadian rhythms. - Plant Cell 18: 792-803, 2006. Go to original source...
  60. Mittler, R., Finka, A., Goloubinoff, P.: How do plants feel the heat? - Trends Biochem. Sci. 37: 118-125, 2012. Go to original source...
  61. Miura, K., Furumoto, T. :Cold signaling and cold response in plants. - Int. J. mol. Sci. 14: 5312-5337, 2013. Go to original source...
  62. Miyazaki, Y., Takase, T., Kiyosue, T.: ZEITLUPE positively regulates hypocotyl elongation at warm temperature under light in Arabidopsis thaliana. - Plant Signal Behav. 10: e998540, 2015. Go to original source...
  63. Motsa, M.M., Slabbert, M.M., Van Averbeke, W., Morey, L.: Effect of light and temperature on seed germination of selected African leafy vegetables. - S. Afr. J. Bot. 99: 29-35, 2015. Go to original source...
  64. Murata, N., Los, D.A.: Membrane fluidity and temperature perception. - Plant Physiol 115: 875-879, 1997. Go to original source...
  65. Nakashima, K., Yamaguchi-Shinozaki, K., Shinozaki, K.: The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. - Front. Plant Sci. 5: 170, 2014. Go to original source...
  66. Niwa, Y., Yamashino, T., Mizuno, T.: The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. - Plant Cell Physiol. 50: 838-854, 2009. Go to original source...
  67. Nohales, M.A., Kay, S.A.: Molecular mechanisms at the core of the plant circadian oscillator. - Nat. struct. mol. Biol. 23: 1061, 2016. Go to original source...
  68. Oakenfull, R. J., Davis, S. J.: Shining a light on the Arabidopsis circadian clock. - Plant Cell Environ. 40: 2571-2585, 2017. Go to original source...
  69. Okajima, K., Aihara, Y., Takayama, Y., Nakajima, M., Kashojiya, S., Hikima, T., Oroguchi, T., Kobayashi, A., Sekiguchi, Y., Yamamoto, M.: Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin. - J. biol. Chem 289: 413-422, 2014. Go to original source...
  70. Penfield, S.: Temperature perception and signal transduction in plants. - New Phytol. 179: 615-628, 2008. Go to original source...
  71. Penfield, S.: Seed dormancy and germination. - Curr. Biol. 27: R874-R878, 2017. Go to original source...
  72. Perochon, A., Aldon, D., Galaud, J.P., Ranty, B.: Calmodulin and calmodulin-like proteins in plant calcium signaling. - Biochimie 93: 2048-2053, 2011. Go to original source...
  73. Price, J.L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss, B., Young, M.W.: Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. - Cell 94: 83-95, 1998. Go to original source...
  74. Proveniers, M.C., Van Zanten, M.: High temperature acclimation through PIF4 signaling. - Trends Plant Sci. 18: 59-64, 2013. Go to original source...
  75. Rasmussen, S., Barah, P., Suarez-Rodriguez, M.C., Bressendorff, S., Friis, P., Costantino, P., Bones, A.M., Nielsen, H.B., Mundy, J.: Transcriptome responses to combinations of stresses in Arabidopsis. - Plant Physiol. 161: 1783-1794, 2013. Go to original source...
  76. Rizzini, L., Favory, J.-J., Cloix, C., Faggionato, D., O'Hara, A., Kaiserli, E., Baumeister, R., Schäfer, E., Nagy, F., Jenkins, G. I., Ulm, R.: Perception of UV-B by the Arabidopsis UVR8. - Science 332: 103-106, 2011. Go to original source...
  77. Romera-Branchat, M., Andres, F., Coupland, G. :Flowering responses to seasonal cues: what's new? - Curr. Opin. Plant Biol. 21: 120-127, 2014. Go to original source...
  78. Ruelland, E., Zachowski, A.: How plants sense temperature. - Environ. exp. Bot. 69: 225-232, 2010. Go to original source...
  79. Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y.G., Maathuis, F.J., Goloubinoff, P.:The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. - Plant Cell 21: 2829-2843, 2009. Go to original source...
  80. Seaton, D.D., Smith, R.W., Song, Y.H., MacGregor, D.R., Stewart, K., Steel, G., Foreman, J., Penfield, S., Imaizumi, T., Millar, A.J.: Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature. - Mol. syst. Biol. 11: 776, 2015. Go to original source...
  81. Sehgal, A., Rothenfluh-Hilfiker, A., Hunter-Ensor, M., Chen, Y., Myers, M.P., Young, M.W.: Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. - Science 270: 808-810, 1995. Go to original source...
  82. Simlat, M., Ślęzak, P., Moś, M., Warchoł, M., Skrzypek, E., Ptak, A.: The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. - Sci. Hort. 211: 295-304, 2016. Go to original source...
  83. Smith, R.W., Helwig, B., Westphal, A.H., Pel, E., Borst, J.W., Fleck, C. : Interactions between phyB and PIF proteins alter thermal reversion reactions in vitro. - Photochem. Photobiol. 93: 1525-1531, 2017. Go to original source...
  84. Song, J., Liu, Q., Hu, B., Wu, W.: Comparative transcriptome profiling of Arabidopsis Col-0 in responses to heat stress under different light conditions. - Plant Growth Regul. 79: 209-218, 2015.
  85. Song, J., Liu, Q., Hu, B., Wu, W. : Photoreceptor PhyB Involved in Arabidopsis temperature perception and heat-tolerance formation. - Int. J. mol. Sci. 18: 1194, 2017. Go to original source...
  86. Song, Y.H., Ito, S., Imaizumi, T.: Flowering time regulation: photoperiod- and temperature-sensing in leaves. - Trends Plant Sci. 18: 575-583, 2013. Go to original source...
  87. Stavang, J.A., Gallego-Bartolome, J., Gomez, M.D., Yoshida, S., Asami, T., Olsen, J. E., Garcia-Martinez, J.L., Alabadi, D., Blazquez, M.A.: Hormonal regulation of temperature-induced growth in Arabidopsis. - Plant J. 60: 589-601, 2009. Go to original source...
  88. Steinhorst, L., Kudla, J.: Signaling in cells and organisms - calcium holds the line. - Curr. Opin. Plant Biol. 22: 14-21, 2014. Go to original source...
  89. Toledo-Ortiz, G., Johansson, H., Lee, K. P., Bou-Torrent, J., Stewart, K., Steel, G., Rodriguez-Concepcion, M., Halliday, K.J.: The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. - PLoS Genet 10: e1004416, 2014. Go to original source...
  90. Tozzi, E., Beckie, H., Weiss, R., Gonzalez-Andujar, J. L., Storkey, J., Cici, S.Z.H., Van Acker, R.C.: Seed germination response to temperature for a range of international populations of Conyza canadensis. - Weed Res 54: 178-185, 2014. Go to original source...
  91. Webb, A.A.R.: The physiology of circadian rhythms in plants. - New Phytol. 160: 281-303, 2003. Go to original source...
  92. Wigge, P.A. : Ambient temperature signalling in plants. - Curr. Opin. Plant Biol. 16: 661-666, 2013. Go to original source...
  93. Xin, C., Wang, X., Cai, J., Zhou, Q., Liu, F., Dai, T., Cao, W., Jiang, D.: Changes of transcriptome and proteome are associated with the enhanced post-anthesis high temperature tolerance induced by pre-anthesis heat priming in wheat. - Plant Growth Regul. 79: 135-145, 2016. Go to original source...
  94. Xu, F., He, S., Zhang, J., Mao, Z., Wang, W., Li, T., Hua, J., Du, S., Xu, P., Li, L., Lian, H., Yang, H. Q. : Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. - Mol. Plants 11: 523-541, 2018. Go to original source...
  95. Yin, R., Ulm, R.: How plants cope with UV-B: from perception to response. - Curr. Opin. Plant Biol. 37: 42-48, 2017. Go to original source...