Biologia plantarum 64: 845-855, 2020 | DOI: 10.32615/bp.2020.125

Genome-wide identification and expression analysis of the potato ZIP gene family under Zn-deficiency

X. B. LI1,2, H.C. SUO2, J.T. LIU2, L. WANG2, C.C. LI2, W. LIU1,*
1 College of Life Sciences, South China Agricultural University, Guangzhou 510642, P.R. China
2 Crops Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Province Key Laboratory of Crop Genetic Improvement, Guangzhou, Guangdong 510640, P.R. China

Zinc deficiency is a worldwide problem for crops including potato (Solanum tuberosum L.), the fourth most important crop worldwide. The zinc/iron-regulated transporter-like protein (ZIP) transporter family is thought to play key roles in Zn uptake and transport. However, little is known about the potato ZIP family. In this study, 12 genes encoding members of the ZIP family were identified in the potato genome. The 12 StZIP genes were predicted to encode proteins of 220 - 407 amino acids harboring 5 - 9 putative transmembrane domains (TMDs), and 11 of these proteins had a variable region rich in histidine residues between TMDIII and TMDIV. A phylogenetic analysis divided the StZIPs into four groups on the basis of gene structure and conserved motifs. Furthermore, the StZIP expression profiles were determined under Zn-deficiency in both high and low Zn-content genotypes. Four differentially expressed genes, StZIP6, -9, -11, and -12, were identified in tubers of the two genotypes under Zn-deficiency, and StZIP11 and StZIP12 may have a more prominent function in Zn uptake and accumulation in potato tubers owing to their higher expressions. Thus, the results provide useful information for further studying the functions of StZIP genes.

Keywords: Solanum tuberosum, transmembrane domains, Zn uptake and transport.

Received: May 13, 2020; Revised: August 6, 2020; Accepted: September 3, 2020; Published online: December 18, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LI, X.B., SUO, H.C., LIU, J.T., WANG, L., LI, C.C., & LIU, W. (2020). Genome-wide identification and expression analysis of the potato ZIP gene family under Zn-deficiency. Biologia plantarum64, 845-855. doi: 10.32615/bp.2020.125.
Download citation

Supplementary files

Download fileLi6487_Suppl.pdf

File size: 505.76 kB

References

  1. Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., Lux, A.: Zinc in plants. - New. Phytol. 173: 677-702, 2007. Go to original source...
  2. Clijsters, H., Van, A.F.: Inhibition of photosynthesis by heavy metals.- Photosynth. Res. 7: 31-40, 1985. Go to original source...
  3. Cakmak, I.: Enrichment of cereal grains with zinc: agronomic or genetic biofortification? - Plant Soil. 302: 1-17, 2008. Go to original source...
  4. Chandel, G., Banerjee, S., Vasconcelos, M.: Characterization of the root transcriptome for iron and zinc homeostasis-related genes in indica rice (Oryza sativa L.). - J. Plant Biochem. Biotechnol. 19: 145-152, 2010. Go to original source...
  5. Deng, W., Wang, Y., Liu, Z., Cheng, H., Xue, Y.: HemI: a toolkit for illustrating heatmaps. - PLoS ONE 9: e111988, 2014. Go to original source...
  6. Eide, D., Broderius, M., Fett, J., Guerinot, M.L.: A novel iron-regulated metal transporter from plants identified by functional expression in yeast. - Proc. nat. Acad. Sci. USA 93: 5624-5628, 1996. Go to original source...
  7. Eng, B.H., Guerinot, H.L., Eide, D., Saier, M.H.I.: Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. - J. Membr. Biol. 166: 1-7, 1998. Go to original source...
  8. Figueiredo, D.D., Barros, P.M., Cordeiro, A.M., Serra, T.S., Lourenco, T., Chande, R.S., Oliveira, M.M., Saibo, N.J.: Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B. - J. exp. Bot. 63: 3643-3656, 2012. Go to original source...
  9. Fong, K.H., Ulrich, A.: Growing potato plants by the water culture technique. - Amer. J. Potato Res. 46: 269-272, 1969. Go to original source...
  10. Fu, X.Z., Zhou, X., Xing, F.: Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). - Front. Plant Sci. 8: 588, 2017. Go to original source...
  11. Gainza-Cortés, F., Pérez-Dïaz, R., Pérez-Castro, R.: Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera. - BMC Plant Biol. 12: 111, 2012. Go to original source...
  12. Gaitánsolís, E., Taylor, N.J., Siritunga, D., Stevens, W., Schachtman, D.P.: Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. - Front. Plant Sci. 6: 492, 2015. Go to original source...
  13. Grotz, N., Fox, T., Connolly, E.: Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. - Proc. nat. Acad. Sci. USA 95: 7220-7224, 1998. Go to original source...
  14. Gu, Z., Cavalcanti, A., Chen, F.C., Bouman, P., Li, W.H.: Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. - Mol. Biol. Evol. 19: 256-262, 2002. Go to original source...
  15. Guerinot, M.L.: The ZIP family of metal transporters. - Biochim. biophys. Acta 1465: 190-198, 2000. Go to original source...
  16. Hambidge, M.: Human zinc deficiency. - J. Nutr. 130: 1344S-1349S, 2000. Go to original source...
  17. Haslett, B.S., Reid, R.J., Rengel, Z.: Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. - Ann. Bot. 87: 379-386, 2001. Go to original source...
  18. Hu, Y.T., Ming, F., Chen, W.W., Yan, J.Y., Xu, Z.Y., Li, G.X., Xu, C.Y., Yang, J.L., Zheng, S.J.: TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. - PloS ONE 7: e38535, 2012. Go to original source...
  19. Ishimaru, Y., Masuda, H., Suzuki, M., Bashr, K., Takahashi, M., Makanishi, H., Mori, S., Nishizawa, N.K.: Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. - J. exp. Bot. 58: 2909-2915, 2007. Go to original source...
  20. Ishimaru, Y., Suzuki, M., Kobayashi, T.: OsZIP4, a novel zinc-regulated zinc transporter in rice. - J. exp. Bot. 56: 3207-3214, 2005. Go to original source...
  21. Kabata-Pendias, A., Pendias, H.: Trace Elements in Soils and Plants. - CRC Press, Boca Raton - London - New York 2001. Go to original source...
  22. Kavitha, P.G., Sam, K., Mathew, M.K.: Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). - Plant Physiol. Biochem. 97: 165-174, 2015.
  23. Krämer, U., Talke, I.N., Hanikenne, M.: Transition metal transport. - FEFS Lett. 581: 2263-2272, 2007. Go to original source...
  24. Lee, S., Jeong, H.J., Sun, A.K.: OsZIP5 is a plasma membrane zinc transporter in rice. - Plant mol. Biol. 73: 507-517, 2010a. Go to original source...
  25. Lee, S., Kim, S.A., Lee, J.: Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. - Mol. Cells 29: 551-558, 2010b. Go to original source...
  26. Li, S., Zhou, X., Huang, Y.: Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. - BMC Plant Biol. 13: 114, 2013. Go to original source...
  27. Lin, Y.F., Liang, H.M., Yang, S.Y.: Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. - New Phytol. 182: 392-404, 2009. Go to original source...
  28. Lochlainn, S., Bowen, H.C., Fray, R.G., Hammond, J.P., King, G.J., White, P.J., Graham, N.S., Broadley, M.R.: Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. - PLoS ONE 6: e17814, 2011. Go to original source...
  29. Lombnaes, P., Singh, B.R.: Varietal tolerance to zinc deficiency in wheat and barley grown in chelator buffered nutrient solution and its effect on uptake of Cu, Fe, and Mn. - J. Plant Nutr. Soil Sci. 166: 76-83, 2003. Go to original source...
  30. López-Millán, A.F., Ellis, D.R., Grusak, M.A.: Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. - Plant mol. Biol. 54: 583-596, 2004. Go to original source...
  31. Marschner, H.: Mineral Nutrition of Higher Plants. 2nd Ed. - Academic press, London 1995.
  32. Mäser, P., Thomine, S., Schroeder, J.I.: Phylogenetic relationships within cation transporter families of Arabidopsis. - Plant Physiol. 126: 1646-1667, 2001. Go to original source...
  33. Milner, M.J., Seamon, J., Craft, E.: Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. - J. exp. Bot. 64: 369-381, 2013. Go to original source...
  34. Moreau, S., Thomson, R.M., Kaiser, B.N.: GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. - J. biol. Chem. 277: 4738-4746, 2002. Go to original source...
  35. Pence, N.S., Larsen, P.B., Ebbs, S.D.: The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. - Proc. nat. Acad. Sci. USA 97: 4956-4960, 2000. Go to original source...
  36. Pineau, C., Loubet, S., Lefoulon, C., Chalies, C., Fizames, C., Lacombe, B., Ferrand, M., Loudet, O., Berthomieu, P., Richard, O.: Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. - PLoS Genet. 8: e1003120, 2012. Go to original source...
  37. Ramegowda, Y., Ramegowda, V., Pavithra, J., Geetha, G., Rajashekar-Reddy, H., Udayakumar, M., Shanka, A.G.: Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. - Plant Biol. Rep. 7: 309-319, 2013. Go to original source...
  38. Ramesh, S.A., Choimes, S., Schachtman, D.P.: Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. - Plant mol. Biol. 54: 373-385, 2004. Go to original source...
  39. Ramesh, S.A., Schachtman, D.P.: Differential metal selectivity and gene expression of two zinc transporters from rice. - Plant Physiol. 133: 126-134, 2003. Go to original source...
  40. Rengel, Z., Graham, R.D.: Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution: II. Nutrient uptake. - Plant Soil 176: 317-324, 1995. Go to original source...
  41. Sadeghzadeh, B.A.: Review of zinc nutrition and plant breeding. - J. Soil Sci. Plant Nutr. 13: 905-927, 2013. Go to original source...
  42. Sasaki, A., Yamaji, N., Mitaniueno, N.: A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. - Plant J. cell. mol. Biol. 84: 374-384, 2015.
  43. Shin, Y., Takahashi, R., Nakanishi, H.: Sweet potato expressing the rice Zn transporter OsZIP4 exhibits high Zn content in the tuber. - Plant Biotechnol. 33: 99-104, 2016. Go to original source...
  44. Stephens, B.W., Cook, D.R., Grusak, M.A.: Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula. - Biometals 24: 51-58, 2011. Go to original source...
  45. Tiong, J.L., McDonald, G.K., Genc, Y., Pedas, P., Hayes, J.E., Toubia, J., Langridge, P., Huang, C.Y.: HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. - New Phytol. 201: 131-143, 2014. Go to original source...
  46. Velu, G., Ortiz-Monasterio, I., Cakmak, I.: Biofortification strategies to increase grain zinc and iron concentrations in wheat. - J. Cereal Sci. 59: 365-372, 2014. Go to original source...
  47. Vert, G., Barberon, M., Zelazny, E., Séguéla, M., Briat, J.F., Curie, C.: Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. - Planta 229: 1171-1179, 2009. Go to original source...
  48. Vert, G., Briat, J.F., Curie, C.: Arabidopsis IRT2 gene encodes a root-periphery iron transporter. - Plant J. 26: 181-189, 2001. Go to original source...
  49. Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., Curie, C.: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. - Plant Cell 14: 1223-1233, 2002. Go to original source...
  50. Wang, L., Guo, K., Li, Y., Tu, Y., Hu, H., Wang, B., Cui, X., Peng, L.: Expression profiling and integrative analysis of the cesa/csl superfamily in rice. - BMC Plant Biol. 10: 282, 2010. Go to original source...
  51. White, P.J., Broadley, M.R., Hammond, J.P.: Bio-fortification of potato tubers using foliar zinc-fertiliser. - J. hort. Sci. Biotechnol. 87: 123-129, 2012. Go to original source...
  52. White, P.J., Thompson, J.A., Wright, G.: Biofortifying Scottish potatoes with zinc. - Plant Soil 411: 151-165, 2017. Go to original source...
  53. Wintz, H., Fox, T., Wu, Y.Y.: Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. - J. biol. Chem. 278: 47644-47653, 2003. Go to original source...
  54. Yang, S., Zhang, X., Yue, J.X., Tian, D., Chen, J.Q.: Recent duplications dominate nbs-encoding gene expansion in two woody species. - Mol. Genet. Genomics 280: 187, 2008. Go to original source...
  55. Yang, X., Huang, J., Jiang, Y.: Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). - Mol. Biol. Rep. 36: 281-287, 2009. Go to original source...
  56. Yang, X.E., Chen, W.R., Feng, Y.: Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. - Environ. Geochem. Health 29: 413-428, 2007. Go to original source...
  57. Yusuf, G., McDonald, G.K., Graham, R.D.: Critical deficiency concentration of zinc in barley genotypes differing in zinc efficiency and its relation to growth responses. - J. Plant Nutr. 25: 545-560, 2002.
  58. Zaman, Q.U., Aslam, Z., Yaseen, M.: Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. - Arch. Agron. Soil Sci. 64: 147-161, 2017.