Biologia plantarum 49:247-255, 2005 | DOI: 10.1007/s10535-005-7255-5

Ecophysiological characterization of carnivorous plant roots: Oxygen fluxes, respiration, and water exudation

L. Adamec1
1 Section of Plant Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic

Various ecophysiological investigations on carnivorous plants in wet soils are presented. Radial oxygen loss from roots of Droseraceae to an anoxic medium was relatively low 0.02 - 0.07 μmol(O2) m- 2 s-1 in the apical zone, while values of about one order of magnitude greater were found in both Sarracenia rubra roots and Genlisea violacea traps. Aerobic respiration rates were in the range of 1.6 - 5.6 μmol kg-1 (f.m.) s-1 for apical root segments of seven carnivorous plant species and 0.4 - 1.1 μmol kg-1 (f.m.) s-1 for Genlisea traps. The rate of anaerobic fermentation in roots of two Drosera species was only 5 - 14 % of the aerobic respiration. Neither 0.2 mM NaN3 nor 0.5 mM KCN influenced respiration rate of roots and traps. In all species, the proportion of cyanide-resistant respiration was high and amounted to 65 - 89 % of the total value. Mean rates of water exudation from excised roots of 12 species ranged between 0.4 - 336 mm 3 kg-1 (f.m.) s-1 with the highest values being found in the Droseraceae. Exudation from roots was insensitive to respiration inhibitors. No significant difference was found between exudation rates from roots growing in situ in anoxic soil and those kept in an aerated aquatic medium. Carnivorous plant roots appear to be physiologically very active and well adapted to endure permanent soil anoxia.

Keywords: aerobic respiration; anaerobic CO2 release; CN--resistant respiration; Dionea; Drosera; Genlisea; Sarracenia; soil anoxia
Subjects: anaerobic CO2 release, carnivorous plants; carnivorous plants, roots; Cephalotus follicularis; Dionea muscipula; Drosera, 7 species; exudation, carnivorous plants; gas exchange, carnivorous plants; Genlisea hispidula, G. violacea; oxygen fluxes, respiration, carnivorous plants; Pinguicula agnata; respiration in carnivorous plants; Sarracenia purpurea

Received: May 5, 2004; Accepted: January 25, 2005; Published: June 1, 2005Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Adamec, L. (2005). Ecophysiological characterization of carnivorous plant roots: Oxygen fluxes, respiration, and water exudation. Biologia plantarum49(2), 247-255. doi: 10.1007/s10535-005-7255-5.
Download citation

References

  1. Adamec, L.: Mineral nutrition of carnivorous plants: A review.-Bot. Rev. 63: 273-299, 1997a. Go to original source...
  2. Adamec, L.: Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa.-Aquat. Bot. 59: 297-306, 1997b. Go to original source...
  3. Adamec, L.: Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake.-New Phytol. 155: 89-100, 2002. Go to original source...
  4. Adamec, L.: Zero water flows in Genlisea traps.-Carniv. Plant Newslett. 32: 46-48, 2003.
  5. Adamec, L.: Ecophysiological characterization of dormancy states in turions of the aquatic carnivorous plant Aldrovanda vesiculosa.-Biol. Plant. 47: 395-402, 2003/4. Go to original source...
  6. Anderson, W.P.: Transport through roots.-In: Lüttge, U., Pitman, M.G. (ed.): Transport in Plants II. Part B. Tissues and Organs. Encyclopedia of Plant Physiology, New Series, Vol. 2. Pp. 129-159. Springer-Verlag, Berlin 1976.
  7. Armstrong, W.: Aeration in higher plants.-Adv. Bot. Res. 7: 225-332, 1979. Go to original source...
  8. Armstrong, J., Armstrong, W.: Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere.-Amer. J. Bot. 88: 1359-1370, 2001. Go to original source...
  9. Atkin, O.K., Villar, R., Lambers, H.: Partitioning of electrons between the cytochrome and alternative pathways in intact roots.-Plant Physiol. 108: 1179-1183, 1995. Go to original source...
  10. Clarkson, D.T.: Ion Transport and Cell Structure in Plants.-McGraw-Hill Book Co., London 1974.
  11. Colmer, T.D.: Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).-Ann. Bot. 91: 301-309, 2003. Go to original source...
  12. Dainty, J., Ginzburg, B.Z.: The measurement of hydraulic conductivity (osmotic permeability to water) of internodal Characean cells by means of transcellular osmosis.-Biochim. biophys. Acta 79: 102-111, 1964.
  13. Glinka, Z., Abir, N.: Abscisic acid promotes passive fluxes of vacuolar solutes in excised sunflower roots.-In: Loughman, B.C., Gašparíková, O., Kolek, J. (ed.): Structural and Functional Aspects of Transport in Roots. Pp. 97-99. Kluwer Academic Publishers, Dordrecht 1989. Go to original source...
  14. Hanslin, H.M., Karlsson, P.S.: Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species.-Oecologia 106: 370-375, 1996. Go to original source...
  15. Juniper, B.R., Robins, R.J., Joel, D.M.: Carnivorous Plants.-Academic Press, London 1989.
  16. Justin, S.H.F.W., Armstrong, W.: The anatomical characteristics of roots and plant response to soil flooding.-New Phytol. 106: 465-495, 1987. Go to original source...
  17. Kapulnik, Y., Yalpani, N., Raskin, I.: Salicylic acid induces cyanide-resistant respiration in tobacco cell-suspension cultures.-Plant Physiol. 100: 1921-1926, 1992. Go to original source...
  18. Kohout, P.: [Comparative Root Anatomy of Selected Species of Carnivorous Plants]-Thesis, University of South Bohemia, České Budějovice 2002. [In Czech.]
  19. Lambers, H.: The physiological significance of cyanide-resistant respiration.-Plant Cell Environ. 3: 293-302, 1980. Go to original source...
  20. Larcher, W.: Őkologie der Pflanzen.-Eugen Ulmer Gmbh & Co., Stuttgart 1984.
  21. Loveys, B.R., Atkinson, L.J., Sherlock, D.J., Roberts, R.L., Fitter, A.H., Atkin, O.K.: Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast-and slow-growing plant species.-Global Change Biol. 9: 895-910, 2003. Go to original source...
  22. Marschner, H.: Mineral Nutrition of Higher Plants.-Academic Press, London 1995.
  23. Millar, A.H., Atkin, O.K., Menz, R.I., Henry, B., Farquhar, G., Day, D.A.: Analysis of respiratory chain regulation in roots of soybean seedlings.-Plant Physiol. 117: 1083-1093, 1998. Go to original source...
  24. Quintero, J.M., Molina, R., Fournier, J.M., Benloch, M., Ramos, J.: Glucose-induced activation of rubidium transport and water flux in sunflower root systems.-J. exp. Bot. 52: 99-104, 2001. Go to original source...
  25. Schlüter, U. Crawford, R.M.M.: Long-term anoxia tolerance in leaves of Acorus calamus L. and Iris pseudacorus L.-J. exp. Bot. 52: 2213-2225, 2001. Go to original source...
  26. Smits, A.J.M., Laan, P., Thier, R.H., Van der Velde, G.: Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of the roots of some nymphaeid and isoetid macrophytes in relation to the sediment type of their habitat.-Aquat. Bot. 38: 3-17, 1990. Go to original source...
  27. Van der Werf, A., Kooijman, A., Welschen, R., Lambers, H.: Respiratory costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis.-Physiol. Plant. 72: 483-491, 1988. Go to original source...
  28. Veen, B.W.: Influence of oxygen deficiency on growth and function of plant roots.-In: Loughman, B.C., Gašparíková, O., Kolek, J. (ed.): Structural and Functional Aspects of Transport in Roots. Pp. 223-230. Kluwer Academic Publishers, Dordrecht 1989. Go to original source...
  29. Webb, T., Armstrong, W.: Effects of KCN and salicylhydroxamic acid on the root respiration of pea seedlings.-Plant Physiol. 72: 280-286, 1983. Go to original source...