Biologia plantarum 59:283-290, 2015 | DOI: 10.1007/s10535-015-0496-z

QTL mapping for salt tolerance in barley at seedling growth stage

H. Ahmadi-Ochtapeh1, H. Soltanloo1,*, S. S. Ramezanpour1, M. R. Naghavi2, H. R. Nikkhah3, S. Yoosefi Rad1
1 Department of Plant Breeding and Biotechnology, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Department of Agronomy and Plant Breeding, Agricultural College, University of Tehran, Karaj, Iran
3 Seed and Plant Improvement Institute, Karaj, Iran

Barley (Hordeum vulgare L.), an important food and fodder crop, is potentially tolerant to salinity. To identify quantitative trait loci (QTLs) controlling salt tolerance, the population of 162 recombinant inbred lines (RILs) derived from F8 generation of Arigashar (an extremely salt tolerant Iranian six-rowed barley landrace) crossed with Igri (a salt semi-sensitive two-rowed cultivar) were evaluated. The growth of shoots, roots, and coleoptiles, and root numbers are four important growth characteristics severely affected by salt stress at seedling growth stages. A linkage map was constructed using 106 AFLP and SSR markers spanning six barley chromosomes including 2(2H), 3(3H), 4(4H), 7(5H), 6(6H), and 1(7H). Out of totally 26 detected QTLs, 17 QTLs were found effective for salt tolerance at 250 and 350 mM NaCl which localized on chromosomes 2H, 3H, 4H, 6H, 7H, and linkage group L1, whereas considering equivalent overlapped QTLs with a pleiotropic effect led to detection of totally 9 distinctive QTLs (QClgH2.1b, QSdgH2.1b, QSlgH2.1c, QNrgH2.1b, QTwgH2.2c, QSdg3Hb, QSlg4Hb1, QClg4Hb, and QSlg6Hc2) effective for salinity tolerance. 2(2H), 4(4H), and 6(6H) were major chromosomes harboring QTLs which effectively controlled salt tolerance in the Igri×Arigashar population. An interesting QTL, QTwg4Hc, was localized on chromosome 4H in the XE41-M61 marker distance that controls several traits including shoot and coleoptile lengths and shoot fresh mass under salt stress. A dense marker cluster around a resistance gene could offer a starting point for positional cloning.

Keywords: AFLP; Hordeum vulgare; RILs; SSR
Subjects: QTL mapping; salt tolerance; AFLP; RILs; SSR; growth; barley
Species: Hordeum vulgare

Received: July 16, 2014; Revised: November 10, 2014; Accepted: November 11, 2014; Published: June 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Ahmadi-Ochtapeh, H., Soltanloo, H., Ramezanpour, S.S., Naghavi, M.R., Nikkhah, H.R., & Rad, S. (2015). QTL mapping for salt tolerance in barley at seedling growth stage. Biologia plantarum59(2), 283-290. doi: 10.1007/s10535-015-0496-z.
Download citation

Supplementary files

Download filebpl-201502-0010_S1.pdf

File size: 75.71 kB

References

  1. Becker, J., Vos, P., Kuiper, M., Salamini, F., Heun, M.: Combined mapping of AFLP and RFLP markers in barley. - Mol. gen. Genet. 249: 65-73, 1995. Go to original source...
  2. Berloo, R.V., Stam, P.: Marker-assisted selection in autogamous RIL populations: a simulation study. - Theor. appl. Genet. 96: 147-154, 1998. Go to original source...
  3. Burr, B., Burr, F.A., Thompson, K.H., Albertson, M.C., Stuber, C.W.: Gene mapping with recombinant inbred in maize. - Genetics 118: 519-526, 1988.
  4. Costa, J.M., Corey, A., Hayes, P.M., Jobet, C., Kleinhofs, A., Kopisch-Obusch, A., Kramer, S.F., Kudrna, D., Li, M., Riera-lazarazu, O., Sato, K., Szucs, P., Toojinda, T., Vales, M.I., Wolfe, R.I.: Molecular mapping of the Oregon Wolfe barleys: a phenotypically polymorphic double-haploid population. - Theor. appl. Genet. 103: 415-424, 2001. Go to original source...
  5. Dadshani, S.A.W., Weidner, A., Buck-Sorlin, G.H., Börner, A., Asch, F.: QTL Analysis for Salt Tolerance in Barley. - Deutscher Tropenteg, Berlin 2004.
  6. Flavell, R.: The molecular characterization and organization of plant chromosomal DNA sequences. - Annu. Rev. Plant Physiol. 31: 569-596, 1980. Go to original source...
  7. Flowers, T.J., Koyama, M,L., Flowers, S.A., Sudhakar, C., Singh, K.P., Yeo, A.R.: QTL: their place in engineering tolerance of rice to salinity. - J. exp. Bot. 51: 99-106, 2000. Go to original source...
  8. Goudarzi, M., Pakniyat, H.: Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. - J. Agr. Soc. Sci. 4: 35-38, 2008.
  9. Groh, S., González-de-León, D., Khairallah, M.M., Jiang, C., Bergvinson, D., Bohn, M., Hoisington, D.A., Melchinger, A.E.: QTL mapping in tropical maize: III. Genomic regions for resistance to diatraea spp. and associated traits in two RIL populations. - Crop Sci. 38: 1062-1072, 1998. Go to original source...
  10. Hayes, P.M., Cereno, J., Witsenhoer, H., Kuiper, M., Zabeau, M., Sato, K., Kleinhofs, A., Kudrna, D., Kilian, A., Saghai-Maroof, M.A., Hoffman, D.L.: NABGMP characterizing and exploiting genetic diversity and quantitative traits in barley (Hordeum vulgare) using AFLP markers. - J. agr. Genomics 3: 1-18, 1997.
  11. Kosambi, D.D.: The estimation of map distances from recombination values. - Ann. Eugenics 12: 172-175, 1944.
  12. Liu, K., Somerville, S.: Cloning and characterization of a highly repeated DNA sequence in Hordeum vulgare L. - Genome 39: 1159-1168, 1996. Go to original source...
  13. Mano, Y., Takeda, K.: Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). - Euphytica 94: 263-272, 1997. Go to original source...
  14. Mucella, T., Dipak, K.S., Walter, J.K., Fred, J.M.: Ascochyta blight resistance inheritance in three chickpea recombinant inbred line populations. - Crop Sci. 40: 1251-1256, 2000.
  15. Munns, R.: Genes and salt tolerance: bringing them together. - New Phytol. 167: 645-663, 2005. Go to original source...
  16. Munns, R., James, A.J., Laüchli, A.: Approaches to increasing the salt tolerance of wheat and other cereals. - J. exp. Bot. 57: 1025-1043, 2006. Go to original source...
  17. Pedersen, C., Linde-Laursen, I.: The relationship between physical and genetic distances at the Hor1 and Hor2 loci of barley estimated by two-colour fluorescent in situ hybridization. - Theor. appl. Genet. 91: 941-946, 1995. Go to original source...
  18. Peighambari, S.A., Yazdi-Samadi, B., Nabipour, A., Charmet, G., Charmet, A.: QTL analysis for agronomic traits in a barley doubled haploids population grown in Iran. - Plant. Sci. 169: 1008-1013, 2005. Go to original source...
  19. Ridout, C.J., Donini, P.: Use of AFLP in cereal research. - Trends. Plant Sci. 4: 76-79, 1999. Go to original source...
  20. Rimpau, I., Smith, D.B., Flavell, R.B.: Sequence organization in barley and oats chromosomes revealed by interspecies DNA/DNA hybridization. - Heredity 44: 131-149, 1980. Go to original source...
  21. Russell, J.R., Fuller, J.D., Macaulay, M., Hatz, B.G., Jahoor, A., Powell, W., Waugh, R.: Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. - Theor. appl. Genet. 95: 714-722, 1997. Go to original source...
  22. Saghai-Maroof, M.A., Soliman, K.M., Gorgensen, R.A., Allard, R.W.: Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. - Proc. nat. Acad. Sci. USA 81: 8014-8018, 1984. Go to original source...
  23. Siahsar, B.A., Narouei, M.: Mapping QTLs of physiological traits associated with salt tolerance in Steptoe×Morex doubled haploid lines of barley at seedling stage. - J. Food Agr. Environ. 8: 751-759, 2010.
  24. Simpson, S.P.: Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. - Theor. appl. Genet. 77: 815-819, 1989. Go to original source...
  25. Tinker, N.A., Mather, D.E.: Main effects of quantitative trait loci in Harrington/TR306 two-row barley. - Barley Genet. Newslett. 23: 72-78, 1994.
  26. Van Ooijen, J.W., Voorips, R.E. (ed.): JoinMap 3.0, Software for the Calculation of Genetic Linkage Maps. - Plant Research International, Wangeningen 2001.
  27. Voorrips, R.E.: MapChart: software for the graphical presentation of linkage maps and QTLs. - J. Heredity 93: 77-78, 2002. Go to original source...
  28. Vos, P., Hgers, R., Bleeker, M., Reijams, M.: AFLP: a new technique for DNA fingerprinting. - Nucl. Acids Res. 23: 4407-4414, 1995. Go to original source...
  29. Wang, S., Basten, C.J., Zeng, Z.B.: Windows QTL Cartographer 2.5. - Department of Statistics, NCSU, Raleigh 2005.
  30. Zaare, M., Jafary, H.: Quantitative trait loci diversity for salt tolerance at the early growth stage of barley (Hordeum vulgare L.). - Crop Breed. J. 3: 69-77, 2013.
  31. Zhang, J., Nguyen, H.T., Blum, A.: Genetic analysis of osmotic adjustment in crop plants. - J. exp. Bot. 50: 291-302, 1999a. Go to original source...
  32. Zhang, J., Zheng, H.G., Ali, M.L., Tripathy, J.N., Aarti, A., Pathan, M.S., Sarial, A.K., Robin, S., Nguyen, T.T., Babu, R.C., Nguyen, B.D., Sarkarung, S., Blum, A., Nguyen, H.T.: Progress on the molecular mapping of osmotic adjustment and root traits. - In: O'Toole, J.C., Ito, O., Hardy, B. (ed.): Genetic Improvement of Rice for Water-Limited Environments. International Rice Research Institute, Manila 1999b.
  33. Zhuang, J.Y., Fan, Y.Y., Rao, Z.M., Wu, J.L., Xia, Y.W., Zheng, K.L.: Analysis on additive effects and additive-byadditive epistatic effects of QTL for yield traits in a recombinant inbred line population of rice. - Theor. appl. Genet. 105: 1137-1145, 2002. Go to original source...