Biologia plantarum 62:401-408, 2018 | DOI: 10.1007/s10535-018-0798-z

Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply

E. Agüera1,*, P. De la Haba1
1 Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain

This review reports the physiological and metabolic changes in plants during development under elevated atmospheric carbon dioxide concentration and/or limited-nitrogen supply in order to establish their effects on leaf senescence induction. Elevated CO2 concentration and nitrogen supply modify gene expression, protein content and composition, various aspects of photosynthesis, sugar metabolism, nitrogen metabolism, and redox state in plants. Elevated CO2 usually causes sugar accumulation and decreased nitrogen content in plant leaves, leading to imbalanced C/N ratio in mature leaves, which is one of the main factors behind premature senescence in leaves. Elevated CO2 and low nitrogen decrease activities of some antioxidant enzymes and thus increase H2O2 production. These changes lead to oxidative stress that results in the degradation of photosynthetic pigments and eventually induce senescence. However, this accelerated leaf senescence under conditions of elevated CO2 and limited nitrogen can mobilize nutrients to growing organs and thus ensure their functionality.

Keywords: antioxidants; C, N ratio; gene expression; oxidative stress; photosynthesis; sugars
Subjects: leaf senescence; elevated carbon dioxide concentration; nitrogen supply; chlorophyll; net photosynthetic rate; antioxidants

Received: July 26, 2017; Revised: December 13, 2017; Accepted: February 5, 2018; Published: September 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Agüera, E., & De la Haba, P. (2018). Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply. Biologia plantarum62(3), 401-408. doi: 10.1007/s10535-018-0798-z.
Download citation

References

  1. Agüera, E., Cabello, P., De la Haba, P.: Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. - Physiol. Plant. 138: 256-267, 2010. Go to original source...
  2. Albacete, A.A., Martínez-Andújar, C., Pérez-Alfocea, F.: Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. - Biotechnol. Adv. 32: 12-30, 2014. Go to original source...
  3. Aoyama, S., Reyes T.H, Guglielminettil, L., Lu, Y., Morita, Y., Sato, T., Yamaguchi, T.: Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. - Plant Cell Physiol. 55: 293-305, 2014. Go to original source...
  4. Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. - Annu. Rev. Plant Biol. 55: 373-399, 2004. Go to original source...
  5. Aranjuelo, I., Cabrera-Bosquet, L., Morcuende, R., Avice, J.C., Nogués, S., Araus, J.L., Martínez-Carrasco, R., Pérez, P.: Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? -J. exp. Bot. 62: 3957-3969, 2011. Go to original source...
  6. Aranjuelo, I., Sanz-Sáez, A., Jauregui, I., Irigoyen, J.J., Araus, J.L., Sánchez-Díaz, M., Erice, G.: Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. - J. exp. Bot. 64: 1879-1892, 2013.
  7. Backhausen, J.E., Emmerlich, A., Holtgrefe, S., Horton, P., Nast, G., Rogers, J.J., Müller-Röber, B., Scheibe, R.: Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts. - Planta 207: 105-114, 1998. Go to original source...
  8. Bloom, A.J.: Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. - Photosynth. Res. 123: 117-128, 2015. Go to original source...
  9. Bloom A.J., Burger, M., Rubio Asensio, J.S., Cousins, A.B.: Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. - Science 328: 899-903, 2010. Go to original source...
  10. Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K., Leaver, C.J.: Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. - Plant J. 42: 567-585, 2005. Go to original source...
  11. Buchner, P., Tausz, M., Ford, R., Leo, A., Fitzgerald, G.J., Hawkesford, M.J., Tausz-Posch, S.: Expression patterns of C- and N-metabolism related genes in wheat are changed during senescence under elevated CO2 in dry-land agriculture. - Plant Sci. 236: 239-249, 2015. Go to original source...
  12. Cabello, P., Agüera, E., De La Haba, P.: Metabolic changes during natural ageing in sunflower (Helianthus annuus) leaves: expression and activity of glutamine synthetase isoforms are regulated differently during senescence. - Physiol. Plant. 128: 175-185, 2006. Go to original source...
  13. Canales, F.J., De la Haba, P., Barrientos E., Agüera, E.: Effect of CO2 enrichment and increased nitrogen supply on the induction of sunflower (Helianthus annuus L.) primary leaf senescence. - Can. J. Plant Sci. 96: 1002-1013, 2016. Go to original source...
  14. Cantamutto, M., Poverene, M.: Genetically modified sunflower release: opportunities and risks. - Field Crops Res. 101: 133-144, 2007. Go to original source...
  15. Carlisle, E., Myers, S., Raboy, V. Bloom, A.: The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. - Front. Plant Sci. 3: 195, 2012. Go to original source...
  16. Carrión, C.A., Costa, M.L., Martínez, D.E., Mohr, C., Humbeck, K., Guiamet, J.J.: In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves. - J. exp. Bot. 64: 4967-4980, 2013. Go to original source...
  17. Chen, D., Wang, S., Xiong, B., Cao, B., Deng X.: Carbon/ nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. - PloS ONE 10: 8, 2015. Go to original source...
  18. Christiansen, M.V., Matthewman, C., Podzimska-Sroka, D., O'Shea, C., Lindemose, S., Møllegaard, N.E., Holme, I.B., Hebelstrup, K., Skriver, K., Gregersen, P.L.: Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. - J. exp. Bot. 67: 5259-5273, 2016. Go to original source...
  19. De la Mata, L., Cabello, P., De la Haba, P., Agüera, E.: Growth under elevated atmospheric CO2 concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants. - J. Plant Physiol. 109: 1392-1400, 2012. Go to original source...
  20. De la Mata, L., De la Haba, P., Alamillo, J. M., Pineda, M., Agüera, E.: Elevated CO2 concentrations alter nitrogen metabolism and accelerate senescence in sunflower (Helianthus annuus L.) plants. - Plant Soil Environ. 7: 303-308, 2013. Go to original source...
  21. Del Rio, L.: ROS and RNS in plant physiology: an overview. - J. exp. Bot. 66: 2827-2837, 2015. Go to original source...
  22. Diaz, C., Purdy, S., Christ, A., Morot-Gaudry, J.F., Wingler, A., Masclaux-Daubresse, C.: Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. - Plant Physiol. 138: 898-908, 2005. Go to original source...
  23. Easlon, H.M., Carlisle, E., Mckay J.K., Bloom, A.J.: Does Low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis. - Plant Physiol. 167: 793-799, 2015. Go to original source...
  24. Ferris, R., Sabatti, M., Miglietta, F., Mills, R., Taylor, G.: Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. - Plant Cell Environ. 24: 305-315, 2001. Go to original source...
  25. Geissler, N., Hussin, S., Koyro, H.W.: Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. - J. exp. Bot. 60: 137-151, 2009. Go to original source...
  26. Gillespie, K.M., Rogers, A., Ainsworth, E.A.: Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). - J. exp. Bot. 62: 2667-2678, 2011. Go to original source...
  27. Girondé, A., Etienne, P., Trouverie, J., Bouchereau, A., Le Cahérec, F., Leport, L., Orsel, M., Niogret, M.F., Nesi, N., Carole, D., Soulay, F., Masclaux-Daubresse, C., Avice, J.C.: The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. - BMC Plant Biol. 15: 59, 2015. Go to original source...
  28. Gruissem, W., Lee, C., Oliver, M., Pogson, B.: The global plant council: increasing the impact of plant research to meet global challenges. - J. Plant Biol. 55: 343-345, 2012. Go to original source...
  29. Guo, Y., Cai, Z., Gan, S.: Transcriptome of Arabidopsis leaf senescence. - Plant Cell Environ. 27: 521-549, 2004. Go to original source...
  30. Gutiérrez, D., Morcuende, R., Del Pozo, A., Martínez-Carrasco, R., Pérez, P.: Involvement of nitrogen and cytokinins in photosynthetic acclimation to elevated CO2 of spring wheat. - J. Plant Physiol. 170: 1337-1343, 2013. Go to original source...
  31. Havé, M., Leitao, L., Bagard, M., Castell, J.F., Repellin, A.: Plant protein carbonylation during natural leaf senescence in winter wheat as probed by fluorescein-5-thiosemicarbazide. - Plant Biol. 17: 973-979, 2015. Go to original source...
  32. Havé, M., Marmagne, A., Chardon, F., Masclaux-Daubresse, C.: Nitrogen remobilization during leaf senescence: lessons from Arabidopsis crops. - J. exp. Bot. 68: 2513-2529, 2017.
  33. Haworth, M., Killi, D., Materassi, A., Raschi A., Centritto, M.: Impaired stomatal control is associated with reduced photosynthetic physiology in crop species grown at elevated [CO2]. - Front. Plant Sci. 7: 1568, 2016. Go to original source...
  34. Hendry, G.A.F., Houghton, J.D. Brown, S.B.: The degradation of chlorophyll-a biological enigma. - New Phytol. 107: 255-302, 1987. Go to original source...
  35. Himelblau, E., Amasino, R.M.: Nutrients mobilized from leaves of Arabidopsis thaliana during senescence. - J. Plant Physiol. 158: 1317-1323, 2001. Go to original source...
  36. Igamberdiev, A.U., Bykova, N.V., Lea, P.J., Gardeström, P.: The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. - Physiol. Plant. 111: 427-438, 2001. Go to original source...
  37. Kontunen-Soppela, S., Parviainen, J., Ruhanen, H., Brosche, M., Keinänen, M., Thakur, R.C., Kolehmainen, M., Kangasjärvi, J., Oksanen, E., Karnosky, D.F.: Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. - Environ. Pollut. 158: 959-968, 2010. Go to original source...
  38. Kurepa, J., Smalle, J.A.: Structure function and regulation of plant proteasomes. - Biochimie 90: 324-335, 2008. Go to original source...
  39. Lee, R., Chen, S.G.: Programmed cell death during rice leaf senescence is nonapoptotic. - New Phytol. 155: 25-32, 2002. Go to original source...
  40. Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., Ou, S., Wu, H., Sun, X., Chu, J., Chu, C.: OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. - Proc. nat. Acad. Sci. USA 111: 10013-10018, 2014. Go to original source...
  41. Lim, P.O., Kim, H.J., Gil Nam, H.: Leaf senescence. - Annu. Rev. Plant Biol. 58: 115-136, 2007. Go to original source...
  42. Liu, Y., Wang, L., Liu, H., Zhao, R., Liu, B., Fu, Q., Zhang, Y.: The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum NC89). - Biol. Res. 49: 30-45, 2016. Go to original source...
  43. Lotfiomran, N., Köhl, M., Fromm. J.: Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of european beech (Fagus sylvatica L.). - Plants 5: 38, 2016. Go to original source...
  44. Mariscal, V., Moulin, P., Orsel, M., Miller, A.J., Fernández, E., Galván, A.: Differential regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. - Protist. 157: 421-433, 2006. Go to original source...
  45. Martínez, D.E., Costa, M.L., Guiamet, J.J.: Senescenceassociated degradation of chloroplast proteins inside and outside the organelle. - Plant Biol. 10: 15-22, 2008. Go to original source...
  46. Marschner, H.: Mineral Nutrition of Higher Plants. 3rd Edition. - Academic Press, London 2012.
  47. Masclaux C, Valadier M.H, Brugière N, Morot-Gaudry J.F, Hirel B.: Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. - Planta 211: 510-518, 2000. Go to original source...
  48. McNally, S., Hirel, B.: Glutamine synthetase isoforms in higher plants. - Physiol. vég. 21: 761-774, 1983.
  49. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. - Trends Plant Sci. 7: 405-410, 2002. Go to original source...
  50. Noguchi, K., Watanabe, C.K., Terashima, I.: Effects of elevated atmospheric CO2 on primary metabolite levels in Arabidopsis thaliana Col-0 leaves: an examination of metabolome data. - Plant Cell Physiol. 56: 2069-2078, 2015. Go to original source...
  51. Ougham, H., Hörtensteiner, S., Armstead, I., Donnison, I., King, I., Thomas, H., Mur. L.: The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence. - Plant Biol. 10: 4-14, 2008. Go to original source...
  52. Palenchar, PM., Kouranov, A., Lejay, L.V., Coruzzi, G.M.: Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. - Genom. Biol. 5: R91, 2004. Go to original source...
  53. Pérez, P., Morcuende, R., Martín del Molino, I.M., Martínez- Carrasco, R.: Diurnal changes of Rubisco in response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradient tunnels. - Environ. exp. Bot. 53: 13-27, 2005. Go to original source...
  54. Procházková, D., Wilhelmová, N.: Leaf senescence and activities of the antioxidant enzymes. - Biol. Plant. 51: 401-406, 2007. Go to original source...
  55. Quesada, A, Gómez-García, I, Fernández, E.: Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. - Trends Plant Sci. 5: 463-464, 2000. Go to original source...
  56. Qiu, Q.S., Huber, J.L., Booker, F.L., Jain, V., Leakey, A.D.B., Fiscus, E.L., Yau, P.M., Ort, D.R., Huber, S.C.: Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated [CO2]. - Photosynth. Res. 97: 155-166, 2008. Go to original source...
  57. Quirino, B.F., Noh, Y.S., Himelblau, E., Amasino, R.M.: Molecular aspects of leaf senescence. - Trends Plant Sci. 5: 278-282, 2000. Go to original source...
  58. Riikonen, J., Percy, K.E., Kivimäenpää, M., Kubiske, M.E., Nelson, N.D., Vapaavuori, E., Karnosky, D.F. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. - Environ. Pollut. 158: 1029-1035, 2010. Go to original source...
  59. Robinson, W.D., Carson, I., Ying, S., Ellis, K., Plaxton, W.C.: Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. - New Phytol. 196: 1024-1029, 2012. Go to original source...
  60. Rosenwasser, S., Rot, I., Sollner, E., Meyer, A.J., Smith, Y., Leviatan, N., Fluhr, R., Friedman, H.: Organelles contribute differentially to reactive oxygen species-related events during extended darkness. - Plant Physiol. 156: 185-201, 2011. Go to original source...
  61. Schippers, J.H.M., Schmidt, R., Wagstaff, C., Jing, H.C.: Living to die and dying to live: the survival strategy behind leaf senescence. - Plant Physiol. 169: 914-930, 2015. Go to original source...
  62. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. - J. Bot. 1: 26, 2012. Go to original source...
  63. Srivalli, B., Khanna-Chopra, R.: The developing reproductive 'sink' induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat. - Biochem. biophys. Res. Commun. 325: 198-202, 2004. Go to original source...
  64. Srivalli, B., Khanna-Chopra, R.: Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. - Plant Physiol. Biochem. 47: 663-670, 2009. Go to original source...
  65. Stitt, M., Krapp, A.: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. - Plant Cell and Environ. 22: 583-621, 1999. Go to original source...
  66. Taylor, K.E., MacCracken, M.C.: Projected effects of increasing concentrations of carbon dioxide and trace gases on climate.-In: Kimball, B.A, (ed): Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture. Pp. 1-17. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 1990.
  67. Thomas, H.: Senescence, ageing and death of the whole plant. - New Phytol. 197: 696-711, 2013. Go to original source...
  68. Thomas, H., Ougham, H.: The stay-green trait. - J. exp. Bot 65: 3889-3900, 2014. Go to original source...
  69. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J.: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. - Science 314: 1298-1301, 2006. Go to original source...
  70. Uzelac, B., Janošević, D., Simonović, A., Motyka, V., Dobrev, P.I., Budimir, S.: Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. - Protoplasma. 253: 259-275, 2016. Go to original source...
  71. Vanacker, H., Sandalio, L.M., Jiménez, A., Palma, J.M., Corpas, F.J., Meseguer, V., Gomez, M., Sevilla, F., Leterrier, M., Foyer, C.H., Del Rio, L.A.: Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. - J. exp. Bot. 57: 1735-1745, 2006. Go to original source...
  72. Vicente, R., Perez, P., Martínez-Carrasco, R., Feil, R., Lunn, J.E. Watanabe, M., Arrivault, S., Stitt, M., Hoefgen, R., Morcuende, R.: Metabolic and transcriptional analysis of durum wheat responses to elevated CO2 at low and high nitrate supply. - Plant Cell Physiol. 57: 133-2146, 2016. Go to original source...
  73. Wei, S., Wang, X., Shi, D., Li, Y., Zhang, J., Liu, P., Zhao, B., Dong, S.: The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. - Plant Physiol. Biochem. 105: 118-128, 2016. Go to original source...
  74. Wiedemuth, K., Müller, J., Kahlau, A., Amme, S., Mock, H., Grzam, A., Hell, R., Egle, K., Beschow, H., Humbeck, K.: Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. - J. Plant Physiol. 162: 1226-1236, 2005. Go to original source...
  75. Wingler, A., Marès, M., Pourtau, N.: Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. - New Phytol. 161: 781-789, 2004. Go to original source...
  76. Wingler, A., Maxclaux-Daubresse, C., Fischer A.M.: Sugars, senescence, and ageing in plants and heterotrophic organisms. - J. exp. Bot. 60: 1063-1066, 2009. Go to original source...
  77. Wingler, A., Purdy, S., MacLean, J.A., Pourtau N.: The role of sugars in integrating environmental signals during the regulation of leaf senescence. - J. exp. Bot. 57: 391-399, 2006. Go to original source...
  78. Wingler, A., Roitsch, T.: Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress response. - Plant Biol. 10: 50-62, 2008. Go to original source...
  79. Yang, Z., Ohlrogge, J.B.: Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis b-oxidation mutants. - Plant Physiol. 150: 1981-1989, 2009.
  80. Yousuf, P.Y., Ganie, A.H., Khan, I., Qureshi, M.I., Ibrahim, M., Sarwt, M., Iqbal, M., Ahmad, A.: Nitrogen-efficient and nitrogen-inefficient Indian mustard showed differential expression pattern of proteins in response to elevated CO2 and low nitrogen. - Front. Plant Sci. 7: 1-22, 2016. Go to original source...
  81. Zhao, D., Derkx, A.P., Liu, D.C., Buchner, P., Hawkesford, M.J.: Over- expression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. - Plant Biol. 17: 904-913, 2015. Go to original source...
  82. Zulfugarov, I.S., Tovuu, A., Kim, J., Lee, C.: Detection of reactive oxygen species in higher plants. - J. Plant Biol. 54: 351-357, 2011. Go to original source...