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Ring-theoretic (in)finiteness

Definition

Let A be an algebra. Then we say that

p ∈ A is an idempotent if p2 = p;

two idempotents p, q ∈ A are equivalent, and denote it as
p ∼ q, if ∃a, b ∈ A such that p = ab and q = ba;

two idempotents p, q ∈ A are orthogonal, and denote it as
p ⊥ q, if pq = 0 = qp.

Easy to see: ∼ is an equivalence relation on the set of idempotents
of A.
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Definition

Let A be a unital algebra with multiplicative identity 1.

We say that
A is

1 Dedekind-finite or DF, if (∀p ∈ A) idempotent:
(p ∼ 1) =⇒ (p = 1);

2 Dedekind-infinite or DI, if it is not DF (⇐⇒ (∃p ∈ A)
idempotent: (p ∼ 1) ∧ (p 6= 1));

3 properly infinite or PI, if (∃p, q ∈ A) idempotents:
(p ∼ 1 ∼ q) ∧ (p ⊥ q).

Some elementary observations:

A is DF ⇐⇒ (∀a, b ∈ A)((ab = 1) =⇒ (ba = 1));

A is DI ⇐⇒ (∃a, b ∈ A)((ab = 1) ∧ (ba 6= 1));

a commutative unital algebra is DF;

A,B are unital algebras, A is PI and ϕ : A → B is a unital
algebra hom =⇒ B is PI.
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Lemma

For a unital algebra A:

A is PI =⇒ A is DI.

A related notion, only for unital Banach algebras:

Definition

A unital Banach algebra has stable rank one, if the group of
invertible elements inv(A) is norm dense in A.

The following is a simple exercise using Carl Neumann series:

Lemma (Rieffel, PLMS, ’83 ?)

For a unital Banach algebra A:

A has stable rank one =⇒ A is DF.
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



Lemma

For a unital algebra A:

A is PI =⇒ A is DI.

A related notion, only for unital Banach algebras:

Definition

A unital Banach algebra has stable rank one, if the group of
invertible elements inv(A) is norm dense in A.

The following is a simple exercise using Carl Neumann series:

Lemma (Rieffel, PLMS, ’83 ?)

For a unital Banach algebra A:

A has stable rank one =⇒ A is DF.
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Some overdue examples now. From now on, all Banach algebras are
assumed to be above the complex field.

Example

All the following Banach algebras have stable rank one:

C (K ), where K is cpt Hdff with covering dimension 0 or 1 (e.g.
K = [0, 1]) [Rieffel];

C ∗r (F2) [Dykema–Haagerup–Rørdam];

C ∗r (Γ), where Γ (endowed with the discrete top) is hyperbolic,
torsion-free and non-elementary [Dykema–de la Harpe];

`1(Z) endowed with the convolution product
[Dawson–Feinstein];

Mn(C) (for each n ∈ N);

the CAR-algebra M2∞(C) := lim−→M2n(C) [Rieffel];

B(X ), where X is a hereditarily indecomposable Banach space
[folklore, H.].
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Example

The following Banach algebras are DF but do not have stable rank
one:

C (K ), where K is cpt Hdff with covering dimension ≥ 2 (e.g.
K = D) [Rieffel];

`1(S), where S is a commutative, cancellative monoid which is
not a group (e.g. S = N0) [Draga–Kania];

B(XT ), where XT is the indecomposable but not hereditarily
indecomposable Banach space constructed by Tarbard [H.].

Example

The following Banach algebras are DI but not properly infinite:

`1(BC ), where BC is the bicyclic monoid [folk];

L1(Co C∗) [Y. Choi];

B(X ), where X is the pth James space Jp or C [0, ω1],

or
Figiel’s space F [Laustsen].
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Example

The following Banach algebras are properly infinite:

B(X ), where X is a Banach space such that it contains a
complemented subspace isomorphic to X ⊕ X (e.g. X = `p,
where 1 ≤ p ≤ ∞) [Laustsen];

“`1(Cu2 \ {♦})”, where Cu2 is the second Cuntz semigroup
with a zero element ♦ [folk].
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C ∗-theoretic (in)finiteness

Definition (The C ∗-versions)

Let A be a C ∗-algebra. Then we say that:

1 p ∈ A is a projection if p2 = p and p∗ = p;

2 two projections p, q ∈ A are Murray–von Neumann equivalent,
and denote it as p ≈ q, if ∃v ∈ A such that p = v∗v and
q = vv∗;

3 two projections p, q ∈ A are orthogonal, and denote it as
p ⊥ q, if pq = 0.

Easy to see:

a) ≈ is an equivalence relation on the set of projections of A;

b) if v is as in 2), then it is a partial isometry of A;

c) if p, q are as in 3), then qp = 0 follows.
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Definition (The C ∗-versions of (in)finiteness)

Let A be a unital C ∗-algebra with multiplicative identity 1.

We say
that A is

1 Dedekind-finite or DF, if (∀p ∈ A) projection:
(p≈1) =⇒ (p = 1);

2 Dedekind-infinite or DI, if it is not DF (⇐⇒ (∃p ∈ A)
projection: (p≈1) ∧ (p 6= 1));

3 properly infinite or PI, if (∃p, q ∈ A) projections:
(p≈1≈q) ∧ (p ⊥ q).
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... But for unital C ∗-algebras both versions make sense, which one
to use???

It absolutely does not matter.

Proposition (folk, scattered through H.G. Dales’ book “Banach
Algebras and Automatic Continuity”)

Let A be a unital C ∗-algebra. Then

1 A is DF as an algebra ⇔ A is DF as a C ∗-algebra;

2 A is PI as an algebra ⇔ A is PI as a C ∗-algebra.

Proof.

(Sketch.) The main ideas used:

If p ∈ A is an idempotent, there is a q ∈ A projection with
p ∼ q and (pq = q, qp = p or pq = p, qp = q).

Let p, q ∈ A be projections. Then p ∼ q ⇐⇒ p ≈ q.

Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



... But for unital C ∗-algebras both versions make sense, which one
to use??? It absolutely does not matter.

Proposition (folk, scattered through H.G. Dales’ book “Banach
Algebras and Automatic Continuity”)

Let A be a unital C ∗-algebra. Then

1 A is DF as an algebra ⇔ A is DF as a C ∗-algebra;

2 A is PI as an algebra ⇔ A is PI as a C ∗-algebra.

Proof.

(Sketch.) The main ideas used:

If p ∈ A is an idempotent, there is a q ∈ A projection with
p ∼ q and (pq = q, qp = p or pq = p, qp = q).

Let p, q ∈ A be projections. Then p ∼ q ⇐⇒ p ≈ q.
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



... But for unital C ∗-algebras both versions make sense, which one
to use??? It absolutely does not matter.

Proposition (folk, scattered through H.G. Dales’ book “Banach
Algebras and Automatic Continuity”)

Let A be a unital C ∗-algebra. Then

1 A is DF as an algebra ⇔ A is DF as a C ∗-algebra;

2 A is PI as an algebra ⇔ A is PI as a C ∗-algebra.

Proof.

(Sketch.) The main ideas used:

If p ∈ A is an idempotent, there is a q ∈ A projection with
p ∼ q and (pq = q, qp = p or pq = p, qp = q).

Let p, q ∈ A be projections. Then p ∼ q ⇐⇒ p ≈ q.
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“Massive” Banach algebra constructions

Let (An)n∈N be a sequence of unital Banach algebras. Define

`∞(An) :=

{
A := (an)n∈N ∈

∏
n∈N
An : sup

n∈N
‖an‖ <∞

}
;

c0(An) :=

{
A := (an)n∈N ∈

∏
n∈N
An : lim

n→∞
‖an‖ = 0

}
;

cU (An) :=

{
A := (an)n∈N ∈

∏
n∈N
An : lim

n→U
‖an‖ = 0

}
;

where U is a free ultrafilter on N.

`∞(An) is a unital Banach algebra endowed with pointwise
operations and the sup norm

‖A‖ = sup
n∈N
‖an‖ (A = (an) ∈ `∞(An)) .
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



“Massive” Banach algebra constructions

Let (An)n∈N be a sequence of unital Banach algebras. Define

`∞(An) :=

{
A := (an)n∈N ∈

∏
n∈N
An : sup

n∈N
‖an‖ <∞

}
;

c0(An) :=

{
A := (an)n∈N ∈

∏
n∈N
An : lim

n→∞
‖an‖ = 0

}
;

cU (An) :=

{
A := (an)n∈N ∈

∏
n∈N
An : lim

n→U
‖an‖ = 0

}
;

where U is a free ultrafilter on N.

`∞(An) is a unital Banach algebra endowed with pointwise
operations and the sup norm

‖A‖ = sup
n∈N
‖an‖ (A = (an) ∈ `∞(An)) .
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In fact, c0(An) E `∞(An) and cU (An) E `∞(An) with
c0(An) ( cU (An).

Definition

The asymptotic sequence algebra and the ultraproduct of a
sequence of unital Banach algebras (An)n∈N are defined as

Asy(An) := `∞(An)/c0(An), and (1)

(An)U := `∞(An)/cU (An), (2)

respectively.

Both Asy(An) and (An)U are unital Banach algebras. Let
π : `∞(An)→ Asy(An) and πU : `∞(An)→ (An)U denote the
quotient maps.

The norms on Asy(An) and (An)U are given by

‖π(A)‖ = lim sup
n→∞

‖an‖, and

‖πU (A)‖ = lim
n→U
‖an‖ (A = (an) ∈ `∞(An)).
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A word on reduced products

We will focus on the asymptotic sequence algebra Asy(An) in this
talk.

Both the posive results and the counter-examples can be
adjusted to the ultraproducts (An)U , without any difficulties.

In fact, all our results hold for reduced products: If (Aγ)γ∈Γ is a
system of unital Banach algebras and F is a filter on the indexing
set Γ, we define the reduced product of (Aγ)γ∈Γ as

(Aγ)F := `∞(An)/cF (An).

Both Asy(An) and (An)U are special cases of (An)F .
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Bringing things together- The results

Aim: To classify when Asy(An) is infinite in terms of the An’s.

Recall that a unital algebra A is DF if for any idempotent p ∈ A:
p ∼ 1⇐⇒ p = 1.

Theorem (Daws–H.)

Assume (An)n∈N is a sequence of DF Banach algebras. Then
Asy(An) is DF.

The converse is not true!

Theorem (Daws–H.)

There is a sequence of DI (⇔ not DF) Banach algebras (An)n∈N
such that Asy(An) is DF.

More on the proofs to follow soon. (Wishful thinking.)
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However, something can be rectified in certain specific cases, when
we have “nice norm control”.

The following is simple corollary of a
more general (but less visual) result:

Corollary (Daws–H.)

Let (An)n∈N be a sequence of unital Banach algebras such that
Asy(An) is DF. Moreover, suppose that one of the following two
conditions hold:

1 An = Am for every n,m ∈ N;

2 An is a C ∗-algebra for each n ∈ N.

Then there is N ∈ N such that An is DF for n ≥ N.

The C ∗-case is very well known.
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The situation regarding proper infiniteness is “reversed”.

Recall that a unital algebra A is PI if there exist idempotents
p, q ∈ A such that p ∼ 1 ∼ q and p ⊥ q.

Theorem (Daws–H.)

Let (An)n∈N be a sequence of unital Banach algebras such that
Asy(An) is properly infinite. Then there is an N ∈ N such that An

is properly infinite for every n ≥ N.

The converse is, again, false.

Theorem (Daws–H.)

There is a sequence of PI Banach algebras (An)n∈N such that
Asy(An) is not properly infinite.

Both of these results are somewhat harder to prove than their
respective DF-counterparts.
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Having “nice norm control” can save the day again.

The following
is simple corollary of a more general result:

Corollary (Daws–H.)

Let (An)n∈N be a sequence of PI Banach algebras. Moreover,
suppose that one of the following two conditions hold:

1 An = Am for every n,m ∈ N;

2 An is a C ∗-algebra for each n ∈ N.

Then Asy(An) is PI.

The C ∗-case is very well known.
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



We might also ask what happens when considering stable rank one.

A unital Ban. alg. A has stable rank one if inv(A) is dense in A.

Proposition (Daws–H.)

Let A be a unital Banach algebra such that Asy(A) has stable rank
one. Then A has stable rank one.

The converse is... (*drumroll*) False!

Theorem (Daws–H.)

Let A := `1(Z). Then A has stable rank one, but Asy(A) does not
have stable rank one.

Fun facts

The positive result (Proposition) only uses elementary methods;

but the counter-example (Theorem) relies on sledgehammers.

If A is a C ∗-algebra, then A has stable rank one ⇔ Asy(A)
has stable rank one. [follows from work of e.g. Farah–Rørdam]
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Fun facts

The positive result (Proposition) only uses elementary methods;

but the counter-example (Theorem) relies on sledgehammers.

If A is a C ∗-algebra, then A has stable rank one ⇔ Asy(A)
has stable rank one. [follows from work of e.g. Farah–Rørdam]
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



We might also ask what happens when considering stable rank one.

A unital Ban. alg. A has stable rank one if inv(A) is dense in A.

Proposition (Daws–H.)

Let A be a unital Banach algebra such that Asy(A) has stable rank
one. Then A has stable rank one.

The converse is... (*drumroll*) False!

Theorem (Daws–H.)

Let A := `1(Z). Then A has stable rank one, but Asy(A) does not
have stable rank one.

Fun facts

The positive result (Proposition) only uses elementary methods;

but the counter-example (Theorem) relies on sledgehammers.

If A is a C ∗-algebra, then A has stable rank one ⇔ Asy(A)
has stable rank one. [follows from work of e.g. Farah–Rørdam]
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Ideas & tools behind some of the simpler proofs

We went to prove:

Theorem

Assume (An)n∈N is a sequence of DF Banach algebras. Then
Asy(An) is DF.

Some of the ingredients: Let A be a unital Banach algebra.

Very simple but very important fact

If p ∈ A is an idempotent with ‖p‖ < 1, then p = 0.

The Approximate Idempotent Lemma:

Proposition (folk)

Let a ∈ A be such that ν := ‖a2 − a‖ < 1/4. Then there is an
idempotent p ∈ A such that ‖p − a‖ ≤ f‖a‖(ν) holds. Moreover, if
y ∈ A is such that ay = ya then yp = py.
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



In the Proposition above, fM : [0, 1/4)→ R is some monotone
increasing, non-negative continuous function for each M > 0. Also,
fM ≤ fN when N > M > 0.

Proof of Theorem.

(Step 1.) Idempotents in Asy(An) can be lifted to idempotents in
`∞(An). Let p ∈ Asy(An) be an idempotent. Choose
X = (xn) ∈ `∞(An) with π(X ) = p, so

π(X 2) = π(X )2 = p2 = p = π(X )⇐⇒ X − X 2 ∈ c0(An).

Let us introduce νn := ‖xn − x2
n‖ for every n ∈ N, then

limn→∞ νn = 0. In particular, there is N ∈ N such that for every
n ≥ N we have νn < 1/8. In view of the Approximate Idempotent
Lemma, for every n ≥ N there is an idempotent p′n ∈ An with

‖xn − p′n‖ ≤ f‖xn‖(νn) ≤ f‖X‖(νn) ≤ f‖X‖(1/8).

By continuity of f‖X‖, it follows that limn≥N f‖X‖(νn) = 0;
consequently limn≥N ‖xn − p′n‖ = 0.
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



In the Proposition above, fM : [0, 1/4)→ R is some monotone
increasing, non-negative continuous function for each M > 0. Also,
fM ≤ fN when N > M > 0.

Proof of Theorem.

(Step 1.) Idempotents in Asy(An) can be lifted to idempotents in
`∞(An). Let p ∈ Asy(An) be an idempotent. Choose
X = (xn) ∈ `∞(An) with π(X ) = p, so

π(X 2) = π(X )2 = p2 = p = π(X )⇐⇒ X − X 2 ∈ c0(An).

Let us introduce νn := ‖xn − x2
n‖ for every n ∈ N, then

limn→∞ νn = 0. In particular, there is N ∈ N such that for every
n ≥ N we have νn < 1/8. In view of the Approximate Idempotent
Lemma, for every n ≥ N there is an idempotent p′n ∈ An with

‖xn − p′n‖ ≤ f‖xn‖(νn)

≤ f‖X‖(νn) ≤ f‖X‖(1/8).

By continuity of f‖X‖, it follows that limn≥N f‖X‖(νn) = 0;
consequently limn≥N ‖xn − p′n‖ = 0.
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



Proof of Theorem (con’t).

For every n ∈ N we define

pn :=

{
p′n if n ≥ N
0 otherwise.

Since

‖p′n‖ ≤ ‖p′n − xn‖+ ‖xn‖ ≤ f‖X‖(1/8) + ‖X‖ (n ≥ N),

it follows that P := (pn) is an idempotent in `∞(An). We observe
that p = π(P) by limn≥N ‖xn − p′n‖ = 0.
(Step 2.) Now suppose further that p ∼ 1. So there exist
a, b ∈ Asy(An) such that 1 = ab and p = ba. There are A = (an),
B = (bn) ∈ `∞(An) such that a = π(A) and b = π(B),
consequently

lim
n→∞

‖1n − anbn‖ = 0 and lim
n→∞

‖pn − bnan‖ = 0.
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that p = π(P) by limn≥N ‖xn − p′n‖ = 0.

(Step 2.) Now suppose further that p ∼ 1. So there exist
a, b ∈ Asy(An) such that 1 = ab and p = ba. There are A = (an),
B = (bn) ∈ `∞(An) such that a = π(A) and b = π(B),
consequently

lim
n→∞

‖1n − anbn‖ = 0 and lim
n→∞

‖pn − bnan‖ = 0.
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Proof of Theorem (con’t).

Now let δ ∈ (0, 1) be such that

‖A‖‖B‖δ/(1− δ) + 2δ < 1.

Let M ≥ N be such that for all n ≥ M the inequality
‖1n − anbn‖ < δ holds, then un := anbn ∈ inv(An) with
‖1n − u−1

n ‖ < δ/(1− δ). Define

qn := bnu
−1
n an (n ≥ M),

then qn ∈ An is an idempotent with qn ∼ 1n. Since An is DF, it
follows for all n ≥ M that qn = 1n. We need to show that p = 1
holds, which is equivalent to showing limn→∞ ‖1n − pn‖ = 0. Since
1n − pn ∈ An is an idempotent for all n ∈ N, it is enough to show
that eventually ‖1n − pn‖ < 1.
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Proof of Theorem (con’t).

Let K ≥ M be such that for every n ≥ K

‖xn − bnan‖ < δ, ‖xn − p′n‖ < δ.

Then for every n ≥ K we have pn = p′n and 1n = qn, thus

‖1n − pn‖ = ‖qn − p′n‖
= ‖bnu−1

n an − p′n‖
≤ ‖bnu−1

n an − bnan‖+ ‖bnan − xn‖+ ‖xn − p′n‖
≤ ‖bn‖‖u−1

n − 1n‖‖an‖+ ‖bnan − xn‖+ ‖xn − p′n‖
≤ ‖A‖‖B‖δ/(1− δ) + 2δ

< 1.

This concludes the proof.
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...But why is the converse not true? What goes wrong?

Idempotents in Banach algebras can have arbitrarily big norm!

Example

Consider A := `1(N) with the pointwise product. Define

pn := (1, 1, 1, . . . , 1︸ ︷︷ ︸
n terms

, 0, 0, . . .) (n ∈ N).

Clearly pn ∈ A is an idempotent for each n ∈ N, but ‖pn‖ = n and
hence (pn) /∈ `∞(A).
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About the counter-example

Theorem (Daws–H.)

There is a sequence of DI (⇔ not DF) Banach algebras (An)n∈N
such that Asy(An) is DF.

Let I be a non-empty set, let ν : I → (0,∞) be a function. Define

`1(I , ν) :=

{
f : I → C : ‖f ‖ν :=

∑
s∈I
|f (s)|ν(s) < +∞

}
.

(`1(I , ν), ‖ · ‖ν) is a Banach space;

`1(I , ν) = span{δs : s ∈ I}‖·‖ν , hence

f =
∑
s∈I

f (s)δs (f ∈ `1(I , ν))

where the sum converges in the norm ‖ · ‖ν .
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



About the counter-example

Theorem (Daws–H.)

There is a sequence of DI (⇔ not DF) Banach algebras (An)n∈N
such that Asy(An) is DF.

Let I be a non-empty set, let ν : I → (0,∞) be a function. Define

`1(I , ν) :=

{
f : I → C : ‖f ‖ν :=

∑
s∈I
|f (s)|ν(s) < +∞

}
.

(`1(I , ν), ‖ · ‖ν) is a Banach space;

`1(I , ν) = span{δs : s ∈ I}‖·‖ν , hence

f =
∑
s∈I

f (s)δs (f ∈ `1(I , ν))

where the sum converges in the norm ‖ · ‖ν .
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Let S be a monoid. Let ω : S → [1,∞) be a weight on S ,

that is,

ω(st) ≤ ω(s)ω(t) for all s, t ∈ S ;

ω(e) = 1, where e is the mutiplicative identity of S .

The convolution product on `1(S , ω) is defined by

(f ∗ g)(r) :=
∑
st=r

f (s)g(t) (f , g ∈ `1(S , ω), r ∈ S).

Thus

(`1(S , ω), ∗) is a unital Banach algebra.
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We know that non-trivial idempotents in Banach algebras have
norm at least 1. For (`1(S , ω), ∗) we can do better:

Proposition (Daws–H.)

Let S be a monoid with unit e ∈ S and let ω : S → [1,∞) be a
weight on S. Let p ∈ (`1(S , ω), ∗) be a non-zero idempotent such
that p 6= δe . Then

‖p‖ω ≥
1

2
inf {ω(s) : s ∈ S , s 6= e} .

For our counter-example, we need the bicyclic monoid BC . That is,
the free monoid generated by elements p, q subject to the single
relation that pq = e:

BC = 〈p, q : pq = e〉.
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Bence Horváth (joint work with Matthew Daws, UCLan) Reduced products and (in)finiteness



We know that non-trivial idempotents in Banach algebras have
norm at least 1. For (`1(S , ω), ∗) we can do better:

Proposition (Daws–H.)

Let S be a monoid with unit e ∈ S and let ω : S → [1,∞) be a
weight on S. Let p ∈ (`1(S , ω), ∗) be a non-zero idempotent such
that p 6= δe . Then

‖p‖ω ≥
1

2
inf {ω(s) : s ∈ S , s 6= e} .

For our counter-example, we need the bicyclic monoid BC . That is,
the free monoid generated by elements p, q subject to the single
relation that pq = e:

BC = 〈p, q : pq = e〉.
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The last slide, I promise!

Fix n ∈ N.

Define the weight ωn : BC → [1,∞) on BC the
following way:

ωn(s) :=

{
n if s ∈ BC \ {e}
1 if s = e.

Then with An := (`1(BC , ωn), ∗) for each n ∈ N, we obtain

1 An is DI for each n ∈ N; and

2 Asy(An) is DF. (Follows from Prop. and some actual work.)
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OK, the very last one, really

Thank you for your attention :)

[Insert funny picture here, I am too technologically illiterate.]

Sources

I. Farah, “Combinatorial Set Theory of C ∗-algebras”, available
on Farah’s website, and forthcoming from Springer;

I. Farah, B. Hart, D. Sherman, a series of papers titled “Model
theory of operator algebras”;

I. Farah, B. Hart, M. Lupini, L. Robert, A. Tikuisis, A. Vignati,
W. Winter, “Model Theory of Nuclear C ∗-algebras”, to appear
in Memoirs of the AMS;

M. Daws, B. Horváth, “Ring-theoretic (in)finiteness in reduced
products of Banach algebras”, submitted, available on the
arXiv.
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