Biologia plantarum 56:221-226, 2012 | DOI: 10.1007/s10535-012-0080-8

Lipid composition of Silybum marianum cell cultures treated with methyl jasmonate

M. Cacho1, R. Peláez2, P. Corchete1,*
1 Department of Plant Physiology, Faculty of Biology, University of Salamanca, Salamanca, Spain
2 Department of Pharmacological Chemistry, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain

Elicitation of cell cultures of Silybum marianum with methyl jasmonate (MeJA) increases the production and release of the secondary metabolite silymarin into the culture medium and this process seems to be dependent on phospholipase D activity and its product phosphatidic acid (PA). However, MeJA did not alter total membrane lipid content or overall fatty acid composition. A progressive increase in some galactolipids was observed with elicitation time. Phospholipids were mainly represented by phosphatidylcholine (PC) followed by phosphatidylethanolamine (PE) and phosphatidylinositol (PI). MeJA caused losses of PC species that contain two unsaturated acyl species, 36:5 and 36:6 and an increase in 36:2 species. A drop in the ratio of compounds with 18:3 in PI and PE was also observed. The presence of the lysophospholipids (LP) LPC (16:0, 18:3, 18:2, 18:1) and LPE (16:0, 18:3, 18:2, 18:1) and the high contents of PA, represented by the molecular species 34:3, 34:2 and 36:5 and 36:4, indicates high basal level of phospholipase activity in cultures and a high phospholipid turnover. MeJA treatment did not quantitatively alter these lipid classes.

Keywords: galactolipids; lipid signalling; lysophospholipids; phospholipids; secondary metabolites; silymarin
Subjects: galactolipids; lipid signalling; lysophospholipids; phospholipids; secondary metabolites; silymarin; lipids; jasmonates; in vitro culture; fatty acids; phosphatidic acid

Received: March 22, 2011; Accepted: June 13, 2011; Published: June 1, 2012Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Cacho, M., Peláez, R., & Corchete, P. (2012). Lipid composition of Silybum marianum cell cultures treated with methyl jasmonate. Biologia plantarum56(2), 221-226. doi: 10.1007/s10535-012-0080-8.
Download citation

References

  1. Capataz-Tafur, J., Hernández-Sánchez, A., Rodriguez-Monroy, M., Trejo-Tapia, G., Sepúlveda Jiménez, G.: Sucrose induces arabinogalactan protein secretion by Beta vulgaris L. cell suspension cultures. - Acta Physiol. Plant. 32: 757-764, 2010. Go to original source...
  2. Corrado, G., Agrelli, D., Roccco, M., Basile, B., Marra, M., Rao, R.: Systemin-inducible defence against pests is costly in tomato. - Biol. Plant. 55: 305-311, 2011. Go to original source...
  3. Flora, K., Hahn, M., Benner, K.: Milk thistle (Silybum marianum) for the therapy of liver disease. - Amer. J. Gastroenterology 93: 139-143, 1998. Go to original source...
  4. Gutiérrez-Carbajal, M.G., Monforte-González, M., Miranda-Ham, M de L., Godoy-Hernández, G., Vázquez-Flota, F.: Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate. - Biol. Plant. 54: 430-434, 2010. Go to original source...
  5. Kim, H.J., Chen, F., Wang, X., Rajpakse, N.C.: Effect of methyl jasmonate on secondary metabolites of sweet basil (Occimum basilicum L.). - J. Agr. Food Chem. 54: 2327-2332, 2006. Go to original source...
  6. Kwon, C., Bednarek, P., Schulze-Lefert, P.: Secretory pathways in plant immune responses. - Plant Physiol. 147: 1575-1583, 2008. Go to original source...
  7. Larkindale, J., Huang, B.: Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat acclimated creeping bentgrass (Agrostis stolonifera). - Environ. exp. Bot. 51: 57-67, 2004. Go to original source...
  8. Luo, Y., Li, F., Wang, G.P., Yang, X.H., Wang, W.: Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. - Biol. Plant. 55: 495-501, 2010. Go to original source...
  9. Madrid, E., Corchete, P.: Silymarin secretion and its elicitation by methyl jasmonate in cell cultures of Silybum marianum is mediated by phospholipase D-phosphatidic acid. - J. exp. Bot. 61: 747-754, 2010. Go to original source...
  10. Meijer, H.J.G., Munnik, T.: Phospholipid-based signaling in plants. - Annu. Rev. Plant Biol. 54: 265-306, 2003. Go to original source...
  11. Munnik, T.: Phosphatidic acid: an emerging plant lipid second messenger. - Trends Plant Sci. 6: 227-233, 2001. Go to original source...
  12. Profotova, B., Burketova, L., Novotna, Z., Martinec, J., Valentova, O.: Involvement of phospholipases C and D in early responses to SAR and ISR inducers in Brassica napus plants. - Plant Physiol. Biochem. 44: 143-151, 2005.
  13. Rhadika, V., Kost, C., Boland, W., Heil, M.: The role of jasmonates in floral nectar secretion. - PlosONE 5: e9265, 2010. Go to original source...
  14. Repka, V., Fischerová, I., Šilhárová, K.: Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell suspension cultures. - Biol. Plant. 48: 273-283, 2004. Go to original source...
  15. Ruiz-May, E., Galaz-Avalos, R.M., Loyola-Vargas, V.M.: Differential secretion and accumulation of terpene indole alkaloids in hairy roots of Catharanthus roseus treated with methyl jasmonate. - Mol. Biotechnol. 41: 278-285, 2009. Go to original source...
  16. Salzman, R.A., Brady, J.A., Finlayson, S.A., Buchanan, C.D., Summer, E.J., Sun, F., Klein, P.E., Klein, R.R., Pratt, L.H., Cordonnier-Pratt, M.M., John, E., Mullet, J.E.: Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. - Plant Physiol. 138: 352-368, 2005. Go to original source...
  17. Sánchez-Sampedro, M.A., Fernández-Tarrago, J., Corchete, P.: Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. - J. Biotechnol. 119: 60-69, 2005a. Go to original source...
  18. Sánchez-Sampedro, M.A., Fernández-Tarrago, J., Corchete, P.: Enhanced silymarin accumulation is related to calcium deprivation in cell suspension cultures of Silybum marianum (L.) Gaertn. - J. Plant Physiol. 162: 1177-1182, 2005b. Go to original source...
  19. Testerink, C., Munnik, T.: Phosphatidic acid: a multifunctional stress signaling lipid in plants. - Trends Plant Sci. 10: 368-375, 2005. Go to original source...
  20. Wang, X.M., Devaiah, S.P., Zhang, W.H., Welti, R.: Signalling functions of phosphatidic acid. - Progr. Lipid Res. 45: 250-278, 2006. Go to original source...
  21. Welti, R., Li, W., Li, M., Sang, Y., Biesiadaj, H., Zhou, H.E., Rajashekar, C.B., Williams, T.D., Wang, X.: Profiling membrane lipids in plant stress responses. - J. biol. Chem. 30: 31994-32002, 2002. Go to original source...
  22. Yamaguchi, T., Minami, E., Shibuya, N.: Activation of phospholipases by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells mediates reactive oxygen generation. - Physiol. Plant. 118: 361-370, 2003. Go to original source...
  23. Yang, S., Lu, S.H., Yuan, Y.J.: Lipidomic analysis reveals differential defense responses of Taxus cuspidata cells to two elicitors, methyl jasmonate and cerium (Ce4+). - Biochim. biophys. Acta 1781: 123-134, 2008. Go to original source...
  24. Yang, S., Qiao, S.H., Lu, S.H., Yuan, Y.J.: Comparative lipidomics analysis of cellular development and apoptosis in two Taxus cell lines. - Biochim. biophys. Acta 1771: 600-612, 2007. Go to original source...
  25. Yazaki, K., Sugiyama, A., Morita, M., Shitan, N.: Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. - Phytochem. Rev. 7: 513-524, 2008. Go to original source...
  26. Zeniou-Meyer, M., Zabari, N., Ashery, U., Chasserot-Golaz, S., Haeberlé, A-M., Bailly, Y., Nakanishi, H., Neiman, A.-M., Du, G., Frohman, M.A., Bader, M.F., Vitale. N.: PLD1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granule at a late stage. - J. biol. Chem. 282: 21746-21757, 2007. Go to original source...