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THE SIMPLEST COHOMOLOGICAL INVARIANTS FOR VERTEX

ALGEBRAS

A. ZUEVSKY

Abstract. For the double complex structure of grading-restricted vertex algebra

cohomology defined in [5], we introduce a multiplication of elements of double
complex spaces. We show that the orthogonality and bi-grading conditions ap-

plied on double complex spaces, provide in relation among mappings and actions

of co-boundary operators. Thus, we endow the double complex spaces with struc-
ture of bi-graded differential algebra. We then introduce the simples cohomology

classes for a grading-restricted vertex algebra, and show their independence on the

choice of mappings from double complex spaces. We prove that its cohomology
class does not depend on mappings representing of the double complex spaces.

Finally, we show that the orthogonality relations together with the bi-grading

condition bring about generators and commutation relations for a continual Lie
algebra.

AMS Classification: 53C12, 57R20, 17B69

1. Introduction: W -valued rational functions

In [5] the cohomology theory for a grading-restricted vertex algebra [8] (see Ap-
pendix 5) was introduced. The definition of double complex spaces and co-boundary
operators, uses an interpretation of vertex algebras in terms of rational functions con-
structed from matrix elements [7] for a grading-restricted vertex algebra. The notion
of composability (see Section 1.2) of double complex space elements with a number of
vertex operators, is essentially involved in the formulation. Then the cohomology of
such complexes defines in the standard way a cohomology of a grading-restricted ver-
tex algebras. It is an important problem to study possible cohomological classes for
vertex algebras. In this paper we do the first steps to discover simplest cohomological
invariants associated to the setup described above. For that purpose we first endow the
double complex spaces with natural product, derive a counterpart of Leibniz formula
for the action of co-boundary operators. Then we introduce the notion of a cohomo-
logical class for a vertex algebra. The orthogonality condition of double complex space
is then defined. We show that the orthogonality being applied to the double complex
spaces leads to relations among mappings and actions of co-boundary operators. The
simplest non-vanishing cohomology classes for a grading-restricted vertex algebra is
then derived. We show that such classes are independent of the choice of elements of
the double complex spaces. Finally, we discuss occurring relations of a vertex algebra
double complex relations with a continual Lie algebra [9]. For further applications of
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2 A. ZUEVSKY

material introduced in this paper, we would mention the natural question of search-
ing for more general cohomological invariants for a grading-restricted vertex algebra.
Concerning possible applications, one can use the cohomological classes we derive to
compute higher cohomologies of grading-restricted vertex algebras.

Let V be a grading-restricted vertex algebra, and W a a grading-restricted gener-
alized V -module (see Appendix 5). One defines the configuration space [5]:

FnC = {(z1, . . . , zn) ∈ Cn | zi 6= zj , i 6= j},

for n ∈ Z+.

Definition 1. A W -valued rational function F in (z1, . . . , zn) with the only possible
poles at zi = zj , i 6= j, is a map

F : FnC → W,

(z1, . . . , zn) 7→ F(z1, . . . , zn),

such that for any w′ ∈W ′,
〈w′,F(z1, . . . , zn)〉, (1.1)

is a rational function in (z1, . . . , zn) with the only possible poles at zi = zj , i 6= j. Such

map is called in what fallows W -valued rational function in (z1, . . . , zn) with possible
other poles. Denote the space of all W -valued rational functions in (z1, . . . , zn) by
W z1,...,zn .

Namely, if a meromorphic function f(z1, . . . , zn) on a region in Cn can be analyti-
cally extended to a rational function in (z1, . . . , zn), then the notationR(f(z1, . . . , zn)),
is used to denote such rational function. Note that the set of a grading-restricted ver-
tex algebra elements (v1, . . . , vn) associated with corresponding (z1, . . . , zn) play the
role of non-commutative parameters for a function F in (1.1). Let us introduce the
definition of a Wz1,...,zn -space:

Definition 2. We define the space Wz1,...,zn of W z1,...,zn -valued rational forms Φ
with each vertex algebra element entry vi, 1 ≤ i ≤ n of a quasi-conformal grading-
restricted vertex algebra V tensored with power wt (vi)-differential of corresponding
formal parameter zi, i.e.,

Φ (v1, z1; . . . ; vn, zn)

= F
(
dz

wt (v1)
1 ⊗ v1, z1; . . . ; dzwt (vn)

n ⊗ vn, zn
)
∈ Wz1,...,zn . (1.2)

where F ∈W z1,...,zn .

Definition 3. One defines an action of Sn on the space Hom(V ⊗n,Wz1,...,zn) of linear
maps from V ⊗n to Wz1,...,zn by

σ(Φ)(v1 ⊗ · · · ⊗ vn)(z1, . . . , zn),= Φ(vσ(1) ⊗ · · · ⊗ vσ(n))(zσ(1), . . . , zσ(n)), (1.3)

for σ ∈ Sn and v1, . . . , vn ∈ V , Φ ∈ Wz1,...,zn . We will use the notation σi1,...,in ∈ Sn,
to denote the the permutation given by σi1,...,in(j) = ij , for j = 1, . . . , n.



THE SIMPLEST COHOMOLOGICAL INVARIANTS FOR VERTEX ALGEBRAS 3

Definition 4. For n ∈ Z+, a linear map

F(v1, z1; . . . ; vn, zn) = V ⊗n →Wz1,...,zn ,

is said to have the LV (−1)-derivative property if

(i) ∂ziF(v1, z1; . . . ; vn, zn) = F(v1, z1; . . . ;LV (−1)vi, zi; . . . ; vn, zn), (1.4)

for i = 1, . . . , n, (v1, . . . , vn) ∈ V , w′ ∈W , and

(ii)
n∑
i=1

∂ziF(v1, z1; . . . ; vn, zn) = LW (−1).F(v1, z1; . . . ; vn, zn), (1.5)

with some action ”.” of LW (−1) on F(v1, z1; . . . ; vn, zn).

Definition 5. A linear map

F : V ⊗n →Wz1,...,zn

has the LW (0)-conjugation property if for (v1, . . . , vn) ∈ V , (z1, . . . , zn) ∈ FnC, and
z ∈ C×, such that (zz1, . . . , zzn) ∈ FnC,

zLW (0)F (v1, z1; . . . ; vn, zn) = F
(
zLV (0)v1, zz1; . . . ; zLV (0)vn, zzn

)
. (1.6)

1.1. E-elements. For w ∈W , the W -valued function E
(n)
W (v1 ⊗ · · · ⊗ vn;w) is given

by

E
(n)
W (v1 ⊗ · · · ⊗ vn;w)(z1, . . . , zn) = E(YW (v1, z1) · · ·YW (vn, zn)w),

where an element E(.) ∈W is given by

〈w′, E(.)〉 = R(〈w′, .〉),
and R(.) denotes the rationalization in the sense of [5]. Namely, if a meromorphic
function f(z1, . . . , zn) on a region in Cn can be analytically extended to a rational
function in (z1, . . . , zn), then the notation R(f(z1, . . . , zn)) is used to denote such
rational function. One defines

E
W ;(n)
WV (w; v1 ⊗ · · · ⊗ vn) = E

(n)
W (v1 ⊗ · · · ⊗ vn;w),

where E
W ;(n)
WV (w; v1 ⊗ · · · ⊗ vn) is an element of W z1,...,zn . One defines

Φ ◦
(
E

(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1

)
: V ⊗m+n →W z1,...,zm+n

,

by

(Φ ◦ (E
(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1))(v1 ⊗ · · · ⊗ vm+n−1)

= E(Φ(E
(l1)
V ;1(v1 ⊗ · · · ⊗ vl1)⊗ · · ·E(ln)

V ;1 (vl1+···+ln−1+1 ⊗ · · · ⊗ vl1+···+ln−1+ln))),

and

E
(m)
W ◦m+1 Φ : V ⊗m+n →W z1,...,zm+n−1

,

is given by

(E
(m)
W ◦m+1 Φ)(v1 ⊗ · · · ⊗ vm+n)

= E(E
(m)
W (v1 ⊗ · · · ⊗ vm; Φ(vm+1 ⊗ · · · ⊗ vm+n))).
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Finally,

E
W ;(m)
WV ◦0 Φ : V ⊗m+n →W z1,...,zm+n−1

,

is defined by

(E
W ;(m)
WV ◦0 Φ)(v1 ⊗ · · · ⊗ vm+n) = E(E

W ;(m)
WV (Φ(v1 ⊗ · · · ⊗ vn); vn+1 ⊗ · · · ⊗ vn+m)).

In the case that l1 = · · · = li−1 = li+1 = 1 and li = m − n − 1, for some 1 ≤ i ≤ n,

we will use Φ ◦i E(li)
V ; 1 to denote Φ ◦ (E

(l1)
V ; 1 ⊗ · · · ⊗ E

(ln)
V ; 1).

1.2. Maps composable with vertex operators. Since W -valued rational func-
tions above are valued in W , for z ∈ C×, u, v ∈ V , w ∈ W , YV (u, z)v ∈ V , and
YW (u, z)v ∈ W , one might not be able to compose in general a linear map from a
tensor power of V to W z1,...,zn with vertex operators. Thus in [5] they consider linear

maps from tensor powers of V to W z1,...,zn such that these maps can be composed
with vertex operators in the sense mentioned above.

Definition 6. For a V -module W =
∐
n∈CW(n) and m ∈ C, let Pm : W → W(m)

be the projection from W to W(m). Let Φ : V ⊗n → W z1,...,zn be a linear map.
For m ∈ N, Φ is said [5] to be composable with m vertex operators if the following
conditions are satisfied:

(1) Let l1, . . . , ln ∈ Z+ such that l1 + · · · + ln = m + n, v1, . . . , vm+n ∈ V and
w′ ∈W ′. Set

Ψi = E
(li)
V (vk1 ⊗ · · · ⊗ vki ; 1V )(zk1 , . . . , zki),

where k1 = l1 + · · ·+ li−1 + 1, ..., vki = l1 + · · ·+ li−1 + li, for i = 1, . . . , n.
Then there exist positive integers Nn

m(vi, vj) depending only on vi and vj for
i, j = 1, . . . , k, i 6= j such that the series∑

r1,...,rn∈Z
〈w′, (Φ(Pr1Ψ1 ⊗ · · · ⊗ PrnΨn))(ζ1, . . . , ζn)〉,

is absolutely convergent when |zl1+···+li−1+p − ζi| + |zl1+···+lj−1+q − ζi| <
|ζi − ζj |, for i, j = 1, . . . , k, i 6= j and for p = 1, . . . , li and q = 1, . . . , lj . The
sum must be analytically extended to a rational function in (z1, . . . , zm+n),
independent of (ζ1, . . . , ζn), with the only possible poles at zi = zj , of order
less than or equal to Nn

m(vi, vj), for i, j = 1, . . . , k, i 6= j.
(2) For v1, . . . , vm+n ∈ V , there exist positive integers Nn

m(vi, vj), depending
only on vi and vj , for i, j = 1, . . . , k, i 6= j, such that for w′ ∈ W ′, and
vn,m = (v1+m ⊗ · · · ⊗ vn+m), zn,m = (z1+m, . . . , zn+m), such that∑

q∈C
〈w′, (E(m)

W (v1 ⊗ · · · ⊗ vm;Pq((Φ(vn,m))(zn,m)))〉,

is absolutely convergent when zi 6= zj , i 6= j |zi| > |zk| > 0 for i = 1, . . . ,m,
and k = m + 1, . . . ,m + n, and the sum can be analytically extended to a
rational function in (z1, . . . , zm+n) with the only possible poles at zi = zj , of
orders less than or equal to Nn

m(vi, vj), for i, j = 1, . . . , k, i 6= j,.

In [5] one finds:
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Proposition 1. The subspace of Hom(V ⊗n,Wz1,...,zn) consisting of linear maps hav-
ing the L(−1)-derivative property, having the L(0)-conjugation property or being com-
posable with m vertex operators is invariant under the action of Sn.

2. Chain complexes and cohomologies

Let us recall the definition of shuffles [5].

Definition 7. For l ∈ N and 1 ≤ s ≤ l− 1, let Jl;s be the set of elements of Sl which
preserve the order of the first s numbers and the order of the last l− s numbers, i.e.,

Jl,s = {σ ∈ Sl | σ(1) < · · · < σ(s), σ(s+ 1) < · · · < σ(l)}.

The elements of Jl;s are called shuffles. Let J−1l;s = {σ | σ ∈ Jl;s}.

Now we introduce the notion of a Cnm(V,W)-space:

Definition 8. Let V be a vertex operator algebra and W a V -module. For n ∈ Z+,
let Cn0 (V,W) be the vector space of all linear maps from V ⊗n to Wz1,...,zn satisfying
the L(−1)-derivative property and the L(0)-conjugation property. For m, n ∈ Z+, let
Cnm(V,W) be the vector spaces of all linear maps from V ⊗n to Wz1,...,zn composable
with m vertex operators, and satisfying the L(−1)-derivative property, the L(0)-
conjugation property, and such that∑

σ∈J−1
l;s

(−1)|σ|σ
(
Φ(vσ(1) ⊗ · · · ⊗ vσ(l))

)
= 0. (2.1)

Using a generalization of the construciton of the vertex algebra bundle and coordinate-
free formulation of vertex operators in [1] for the case of W-valued forms, we obtain
following

Lemma 1. that an element (1.2) of Cnm(V,W) is invariant with respect the group
Autz1,...,znO(n) of n-dimensional independent changes of formal parameters

(z1, . . . , zn) 7→ (ρ1(z1, . . . , zn), . . . , ρn(z1, . . . , zn)).

�

We also find in [5]

Proposition 2. Let C0
m(V,W) = W. Then we have Cnm(V,W) ⊂ Cnm−1(V,W), for

m ∈ Z+.

In [5] the co-boundary operator for the double complex spaces Cnm(V,W) was
introduced:

δnm : Cnm(V,W)→ Cn+1
m−1(V,W). (2.2)

For Φ ∈ Cnm(V,W), it is given by

δnm(Φ) = E
(1)
W ◦2 Φ +

n∑
i=1

(−1)iΦ ◦i E(2)
V ;1 + (−1)n+1σn+1,1,...,n(E

(1)
W ◦2 Φ), (2.3)
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where ◦i is defined in Subsection 1. Explicitly, for v1, . . . , vn+1 ∈ V , w′ ∈ W ′ and
(z1, . . . , zn+1) ∈ Fn+1C,

〈w′, ((δnm(Φ))(v1 ⊗ · · · ⊗ vn+1))(z1, . . . , zn+1)〉
= R(〈w′, YW (v1, z1)(Φ(v2 ⊗ · · · ⊗ vn+1))(z2, . . . , zn+1)〉)

+
n∑
i=1

(−1)iR(〈w′, (Φ(v1 ⊗ · · · ⊗ vi−1 ⊗ YV (vi, zi − zi+1)vi+1

⊗ · · · ⊗ vn+1))(z1, . . . , zi−1, zi+1, . . . , zn+1)〉)
+(−1)n+1R(〈w′, YW (vn+1, zn+1)(Φ(v1 ⊗ · · · ⊗ vn))(z1, . . . , zn)〉).

In the case n = 2, there is a subspace of C2
0 (V,W) containing C2

m(V,W) for all
m ∈ Z+ such that δ2m is still defined on this subspace. Let C2

1
2

(V,W) be the subspace

of C2
0 (V,W) consisting of elements Φ such that for v1, v2, v3 ∈ V , w′ ∈W ′,∑

r∈C

(
〈w′, E(1)

W (v1;Pr((Φ(v2 ⊗ v3))(z2 − ζ, z3 − ζ)))(z1, ζ)〉

+〈w′, (Φ(v1 ⊗ Pr((E(2)
V (v2 ⊗ v3; 1))(z2 − ζ, z3 − ζ))))(z1, ζ)〉

)
,

and ∑
r∈C

(
〈w′, (Φ(Pr((E

(2)
V (v1 ⊗ v2; 1))(z1 − ζ, z2 − ζ))⊗ v3))(ζ, z3)〉

+〈w′, EW ;(1)
WV (Pr((Φ(v1 ⊗ v2))(z1 − ζ, z2 − ζ)); v3))(ζ, z3)〉

)
are absolutely convergent in the regions |z1− ζ| > |z2− ζ|, |z2− ζ| > 0 and |ζ − z3| >
|z1−ζ|, |z2−ζ| > 0, respectively, and can be analytically extended to rational functions
in z1 and z2 with the only possible poles at z1, z2 = 0 and z1 = z2. It is clear that
C2
m(V,W) ⊂ C2

1
2

(V,W) for m ∈ Z+. The co-boundary operator

δ21
2

: C2
1
2
(V,W)→ C3

0 (V,W), (2.4)

is defined in [5] by

δ21
2
(Φ) = E

(1)
W ◦2 Φ +

2∑
i=1

(−1)iE
(2)
V,1V

◦i Φ + E
W ;(1)
WV ◦2 Φ,

〈w′, ((δ21
2
(Φ))(v1 ⊗ v2 ⊗ v3))(z1, z2, z3)〉

= R(〈w′, (E(1)
W (v1; Φ(v2 ⊗ v3))(z1, z2, z3)〉

+〈w′, (Φ(v1 ⊗ E(2)
V (v2 ⊗ v3; 1)))(z1, z2, z3)〉)

−R(〈w′, (Φ(E
(2)
V (v1 ⊗ v2; 1))⊗ v3))(z1, z2, z3)〉

+〈w′, (EW ;(1)
WV (Φ(v1 ⊗ v2); v3))(z1, z2, z3)〉) (2.5)

for w′ ∈W ′, Φ ∈ C2
1
2

(V,W), v1, v2, v3 ∈ V and (z1, z2, z3) ∈ F3C.

Consider the short sequence of the double complex spaces

0 −→ C0
3 (V,W)

δ03−→ C1
2 (V,W)

δ12−→ C2
1
2
(V,W)

δ21
2−→ C3

0 (V,W) −→ 0, (2.6)
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of (2.2). The first and last arrows are trivial embeddings and projections.
In [5] we find:

Proposition 3. For n ∈ N and m ∈ Z+ + 1, the co-boundary operators (2.3) and
(2.5) satisfy the chain complex conditions, i.e.,

δn+1
m−1 ◦ δnm = 0,

δ21
2
◦ δ12 = 0.

Since

δ12(C1
2 (V,W)) ⊂ C2

1 (V,W) ⊂ C2
1
2
(V,W),

the second formula follows from the first one, and

δ21
2
◦ δ12 = δ21 ◦ δ12 = 0.

Using the double complexes (2.2) and (2.4), for m ∈ Z+ and n ∈ N, one introduces
in [5] the n-th cohomology Hn

m(V,W ) of a grading-restricted vertex algebra V with
coefficient in W , and composable with m vertex operators to be

Hn
m(V,W) = ker δnm/im δn−1m+1,

H2
1
2
(V,W) = ker δ21

2
/im δ12 .

3. The ε-product of Cnm(V,W)-spaces

In this section we introduce definition of the ε-product of double complex spaces
Cnm(V,W) with the image in another double complex space coherent with respect to
the original differential (2.2), and satisfying the symmetry (2.1), LV (0)-conjugation
(1.6), and LV (−1)-derivative (1.4) properties and derive an analogue of Leibniz for-
mula.

3.1. Motivation and geometrical interpretation. The structure of Cnm(V,W)-
spaces is quite complicated and it is difficult to introduce algebraically a product
of its elements. In order to define an appropriate product of two Cnm(V,W)-spaces
we first have to interpret them geometrically. Basically, a Cnm(V,W)-space must be
associated with a certain model space, the algebraicW-language should be transferred
to a geometrical one, two model spaces should be ”connected” appropriately, and,
finally, a product should be defined.

For two Wx1,...,xk
- and Wy1,...,yn-spaces we first associate formal complex param-

eters in the sets (x1, . . . , xk) and (y1, . . . , yn) to parameters of two auxiliary spaces.
Then we describe a geometric procedure to form a resulting model space by combining
two original model spaces. Formal parameters ofWz1,...,zk+n

should be then identified
with parameters of the resulting space.

Note that according to our assumption, (x1, . . . , xk) ∈ FkC, and (y1, . . . , yn) ∈
FnC. As it follows from the definition of the configuration space FnC in Subsection
1, in the case of coincidence of two formal parameters they are excluded from FnC.
In general, it may happen that some number r of formal parameters of Wx1,...,xk

coincide with some r formal parameters of Wy1,...,yn on the whole C (or on a domain
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of definition). Then, we exclude one formal parameter from each coinciding pair. We
require that the set of formal parameters

(z1, . . . , zk+n−r) = (. . . , xi1 , . . . , xir , . . . ; . . . , ŷj1 , . . . , ŷjr , . . .), (3.1)

where .̂ denotes the exclusion of corresponding formal parameter for xil = yjl ,
1 ≤ l ≤ r, for the resulting model space would belong to Fk+n−rC. We denote this

operation of formal parameters exclusion by R̂ F(x1, . . . , xk; y1, . . . , yn; ε).
Now we formulate the definition of the ε-product of two Cnm(V,W)-spaces:

Definition 9. For F(v1, x1; . . . ; vk, xk) ∈ Ckm(V,W), and F(v′1, y1; . . . ; v′n, yn) ∈
Cnm′(V,W) the product

F(v1, x1; . . . ; vk, xk) ·ε F(v′1, y1; . . . ; v′n, yn)

7→ R̂ F (v1, x1; . . . ; vk, xk; v′1, y1; . . . ; v′n, yn; ε) , (3.2)

is a Wz1,...,zk+n−r
-valued rational form

〈w′, R̂ F(v1, x1; . . . ; vk, xk; v′1, y1; . . . ; v′n, yn; ε)〉
=
∑
u∈V
〈w′, YWWV (F(v1, x1; . . . ; vk, xk), ζ1) u〉

〈w′, YWWV (F(v′1, y1; . . . ; v′i1 , ŷi1 ; . . . ; . . . ; v′jr , ŷjr ; . . . ; v′n, yn), ζ2) u〉, (3.3)

via (1.1), parametrized by ζ1, ζ2 ∈ C, and we exclude all monomials (xil − yjl),
1 ≤ l ≤ r, from (3.5). The sum is taken over any Vl-basis {u}, where u is the dual of
u with respect to a non-degenerate bilinear form 〈. , .〉λ, (5.8) over V , (see Appendix
5).

Remark 1. Due to the symmetry of the geometrical interpretation describe above, we
could exclude from the set (x1, . . . , xk) in (3.5) r formal parameters which belong to
coinciding pairs resulting to the same definition of the ε-product.

By the standard reasoning [2, 12], (3.5) does not depend on the choice of a basis of
u ∈ Vl, l ∈ Z. In the case when multiplied forms F do not contain V -elements, i.e.,
for Φ, Ψ ∈ W, (3.5) defines the product Φ ·ε Ψ associated to a rational function:

R(ε) =
∑
l∈Z

εl
∑
u∈Vl

〈w′, YWWV (Φ, ζ1) u〉〈w′, YWWV (Ψ, ζ2) u〉, (3.4)

which defines F(ε) ∈ W via R(ε) = 〈w′,F(ε)〉.

3.2. Convergence and properties of of the ε-product. In order to prove con-
vergence of a product of elements of two spaces Wx1,...,xk

and Wy1,...,yn of rational
W-valued forms, we have to use a geometrical interpretation [7, 11]. Recall that a
Wz1,...,zn -space is defined by means of matrix elements of the form (1.1). For a vertex
algebra V , this corresponds [2] to a matrix element of a number of V -vertex opera-
tors with formal parameters identified with local coordinates on a Riemann sphere.
Geometrically, each space Wz1,...,zn can be also associated to a Riemann sphere with
a few marked points, and local coordinates vanishing at these points [7]. An extra
point can be associated to a center of an annulus used in order to sew the sphere with
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another sphere. The product (3.5) has then a geometric interpretation. The result-
ing model space would also be associated to a Riemann sphere formed as a result of
sewing procedure. In Appendix 6 we describe explicitly the geometrical procedure of
sewing of two spheres [11].

Let us identify (as in [7, 11, 12, 10, 3, 1]) two sets (x1, . . . , xk) and (y1, . . . , yn)
of complex formal parameters, with local coordinates of two sets of points on the
first and the second Riemann spheres correspondingly. Identify complex parameters
ζ1, ζ2 of (3.5) with coordinates (6.1) of the annuluses (6.3). After identification of
annuluses Aa and Aa, r coinciding coordinates may occur. This takes into account
case of coinciding formal parameters. In this way, we construct the map (3.2).

As we see in (3.5), the product is defined by a sum of products of matrix elements [2]
associated to each of two spheres. Such sum is supposed to describe a W-valued
rational differential form defined on a sphere formed as a result of geometrical sewing
[11] of two initial spheres. Since two initial spacesWx1,...,xk

and Wy1,...,yn are defined
through rational-valued forms expressed by matrix elements of the form (1.1). We
then arrive at the resulting product defines a Wz1,...,zk+n−r

-valued rational form by
means of an absolute convergent matrix element on the resulting sphere. The complex
sewing parameter, parameterizing the module space of sewin spheres, parametrizes
also the product of W-spaces.

Next, we formulate

Definition 10. We define the action of an element σ ∈ Sk+n−r on the product of
F(v1, x1; . . . ; vk, xk) ∈ Wx1,...,xk

, and F(v′1, y1; . . . ; v′n, yn) ∈ Wy1,...,yn , as

〈w′, σ(R̂ F)(v1, x1; . . . ; vk, xk; v′1, y1; . . . ; v′n, yn; ε)〉
= 〈w′,F(ṽσ(1), zσ(1); . . . ; ṽσ(k+n−r), zσ(k+n−r); ε)〉

=
∑
u∈V
〈w′, YWWV

(
F(ṽσ(1), zσ(1); . . . ; ṽσ(k), zσ(k)), ζ1

)
u〉

〈w′, YWWV

(
F(ṽσ(k+1), zσ(k+1); . . . ; ṽσ(k+n−r), zσ(k+n−r)), ζ2

)
u〉, (3.5)

where by (ṽσ(1), . . . , ṽσ(k+n−r)) we denote a permutation of

(ṽ1, . . . , ṽk+n−r) = (v1, . . . ; vk; . . . , v̂′j1 , . . . , v̂
′
jr , . . .). (3.6)

Let t be the number of common vertex operators the mappings F(v1, x1; . . .;
vk, xk) ∈ Ckm(V,W) and F(v′1, y1; . . . ; v′n, yn) ∈ Cnm′(V,W), are composable with. The

rational form corresponding to the ε-product R̂F (v1, x1; . . . ; vk, xk; v′1, y1; . . . ; v′n, yn; ε)
converges in ε, and satisfies (2.1), LV (0)-conjugation (1.6) and LV (−1)-derivative
(1.4) properties. Using Definition 8 of Cnm(V,W)-space and Definition 6 of mappsings
composable with vertex operators, we then have

Proposition 4. For F(v1, x1; . . . ; vk, xk) ∈ Ckm(V,W) and F(v′1, y1; . . . ; v′n, yn) ∈
Cnm′(V,W), the product R̂F (v1, x1; . . . ; vk, xk; v′1, y1; . . . ; v′n, yn; ε) (3.5) belongs to the

space Ck+n−rm+m′−t(V,W), i.e.,

·ε : Ckm(V,W)× Cnm′(V,W)→ Ck+n−rm+m′−t(V,W). (3.7)

�
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Remark 2. Note that due to (5.3), in Definition (3.5) it is assumed that F(v1, x1;
. . . ; vk, xk) and F(v′1, y1; . . . ; v′n, yn) are composable with the V -module W vertex
operators YW (u,−ζ1) and YW (u,−ζ2) correspondingly. The product (3.5) is actually
defined by a sum of products of matrix elements of ordinary V -module W vertex
operators acting on W-elements. The elements u ∈ V and u ∈ V ′ are connected by
(5.9), and ζ1, ζ2 are related by (6.4). The form of the product defined above is natural
in terms of the theory of chacaters for vertex operator algebras [10, 3, 12].

Remark 3. For purposes of construction of cohomological invariant, we do not exclude
in this paper the case of r pais of common formal parameters xi = yj , 1 ≤ i ≤ k, 1 ≤
j ≤ n, for F(v1, x1; . . . ; vk, xk) ∈ Ckm(V,W) and F(v′1, y1; . . . ; v′n, yn) ∈ Cnm′(V,W) in
Proposition 1. Such formal parameter pairs are excluded from the right hand side of
the map (3.7).

We then have two corollaries:

Corollary 1. For the spaces Wx1,...,xk
and Wy1,...,yn with the product (3.5) F ∈

Wz1,...,zk+n−r
, the subspace of Hom(V ⊗n,Wz1,...,zk+n−r

consisting of linear maps hav-
ing the LW (−1)-derivative property, having the LV (0)-conjugation property or being
composable with m vertex operators is invariant under the action of Sk+n−r.

Corollary 2. For a fixed set (v1, . . . vk; vk+1, . . . , vk+n) ∈ V of vertex algebra ele-
ments, and fixed k + n, and m+m′, the ε-product F(v1, z1; . . . ; vk, zk; vk+1, zk+1; . . .
; vk+n−r, yk+n−r; ε),

·ε : Ckm(V,W)× Cnm′(V,W)→ Ck+n−rm+m′−t(V,W),

of the spaces Ckm(V,W) and Cnm′(V,W), for all choices of k, n, m, m′ ≥ 0, is the

same element of Ck+n−rm+m′−t(V,W) for all possible k ≥ 0. �

By Lemma 1, elements of the space Ck+n−rm+m′−t resulting from the ε-product are in-

variant with respect to changes of formal parameters of the group Autz1,...,zk+n−r
O(k+n−r).

We then have

Definition 11. For fixed sets (v1, . . . , vk), (v′1, . . . , v
′
n) ∈ V , (x1, . . . , xk) ∈ C, (y1, . . . , yn)

∈ C, we call the set of allWx1,...,xk;y1,...,yn -valued rational forms R̂F(v1, x1; . . . ; vk, xk
; v′1, y1; . . . ; v′n, yn; ε) defined by (3.5) with the parameter ε exhausting all possible
values, the complete product of the spaces Wx1,...,xk

and Wy1,...,yn .

3.3. Coboundary operator acting on the product space. In Proposition 4 we
proved that the product (3.5) of elements F1Ckm(V,W) and F2 ∈ Cnm′(V,W) belongs

to Ck+n−rm+m′−t(V,W). Thus, the product admits the action ot the differential operator

δk+n−rm+m′−t defined in (2.2) where r is the number of common formal parameters, and
t the number of commpon composable vertex operators for F1 and F2. The co-
boundary operator (2.2) possesses a variation of Leibniz law with respect to the
product (3.5). We then have
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Proposition 5. For F(v1, x1; . . . ; vk, xk) ∈ Ckm(V,W) and F(v′1, y1; . . . ; v′n, yn) ∈
Cnm′(V,W), the action of δk+n−rm+m′−t on their product (3.5) is given by

δk+n−rm+m′−t (F(v1, x1; . . . ; vk, xk) ·ε F(v′1, y1; . . . ; v′n, yn))

=
(
δkmF(ṽ1, z1; . . . ; ṽk, zk)

)
·ε F(ṽk+1, zk+1; . . . ; ṽk+n, zk+n−r)

+(−1)kF(ṽ1, z1; . . . ; ṽk, zk) ·ε
(
δn−rm′−tF(ṽ1, zk+1; . . . ; ṽk+n−r, zk+n−r)

)
,

(3.8)

where we use the notation as in (3.1) and (3.6).

Appendix 7 contains the proof of this Proposition.

Remark 4. Checking (2.2) we see that an extra arbitrary vertex algebra element
vn+1 ∈ V , as well as corresponding extra arbitrary formal parameter zn+1 appear
as a result of the action of δnm on F ∈ Cnm(V,W) mapping it to Cn+1

m−1(V,W). In
application to the ε-product (3.5) these extra arbitrary elements are involved in the

definition of the action of δk+n−rm+m′−t on F(v1, x1; . . . ; vk, xk) ·ε F(v′1, y1; . . . ; v′n, yn).

Note that both sides of (3.8) belong to the space Cn+n
′−r+1

m+m′−t+1(V,W ). The co-

boundary operators δnm and δn
′

m′ in (3.8) do not include the number of common vertex
algebra elements (and formal parameters), neither the number of common vertex
operators corresponding mappings composable with. The dependence on common
vertex algebra elements, parameters, and composable vertex operators is taken into
account in mappings multiplying the action of co-boundary operators on Φ.

Finally, we have the following

Corollary 3. The multiplication (3.5) extends the chain-cochain complex structure
of Proposition 3 to all products Ckm(V,W)× Cnm′(V,W), k, n ≥ 0, m, m′ ≥ 0. �

Corollary 4. The product (3.5) and the product operator (2.2) endow the space
Ckm(V,W) × Cnm(V,W), k, n ≥ 0, m, m′ ≥ 0, with the structure of a bi-graded

differential algebra G(V,W, ·ε, δk+n−rm+m′−t). �

For elements of the spaces C2
ex(V,W) we have the following

Corollary 5. The product of elements of the spaces C2
ex(V,W) and Cnm(V,W) is

given by (3.5),
·ε : C2

ex(V,W)× Cnm(V,W)→ Cn+2−r
m (V,W), (3.9)

and, in particular,

·ε : C2
ex(V,W)× C2

ex(V,W)→ C4−r
0 (V,W).

�

3.4. The commutator. Let us consider the mappings Φ(v1, z1 ; . . .; vn, zk) ∈ Ckm(V,W),
and Ψ(vk+1, zk+1; . . . ; vk+n, zk+n) ∈ Cnm′(V,W), with have r common vertex algebra
elements (and, correspondingly, r formal variables), and t common vertex operators
mappings Φ and Ψ are composable with. Note that when applying the co-boundary
operators (2.3) and (2.5) to a map Φ(v1, z1; . . . ; vn, zn) ∈ Cnm(V,W),

δnm : Φ(v1, z1; . . . ; vn, zn)→ Φ(v′1, z
′
1; . . . ; v′n+1, z

′
n+1) ∈ Cn+1

m−1(V,W),
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one does not necessary assume that we keep the same set of vertex algebra ele-
ments/formal parameters and vertex operators composable with for δnmΦ, though
it might happen that some of them could be common with Φ.

Let us define an extra product (related to the ε-product) the product of Φ and Ψ,

Φ ·Ψ : V ⊗(k+n−r) →Wz1,...,zk+n−r
, (3.10)

Φ ·Ψ = [Φ,·ε Ψ] = Φ ·ε Ψ−Ψ ·ε Φ, (3.11)

where brackets denote ordinary commutator in Wz1,...,zk+n−r
. Due to the properties

of the maps Φ ∈ Ckm(V,W) and Ψ ∈ Cnm′(V,W), the map (Φ ·εΨ) belongs to the space

Ck+n−rm+m′−t(V,W). For k = n and

Ψ(vn+1, zn+1; . . . ; v2n, z2n) = Φ(v1, z1; . . . ; vn, zn),

we obtain from (3.11) and (3.5) that

Φ(v1, z1; . . . ; vn, zn) · Φ(v1, z1; . . . ; vn, zn) = 0. (3.12)

4. The invariants

In this section we provide the main result of the paper by deriving the simplest
cohomological invariants associated to the short double complex (2.4) for a grading-
restricted vertex algebra.

Let us give first some further definitions. In this section we skip the dependence on
vertex algebra elements and formal parameters in notations for elements of Cmn (V,W).

Definition 12. In analogy with differential forms, we call a map Φ ∈ Cnm(V,W)
closed if

δnmΦ = 0.

For m ≥ 1, we call it exact if there exists Ψ ∈ Cn+1
m−1(V,W) such that

Ψ = δnmΦ.

Definition 13. For Φ ∈ Cnm(V,W) we call the cohomology class of mappings [Φ] the
set of all closed forms that differs from Φ by an exact mapping, i.e., for χ ∈ Cn−1m+1,

[Φ] = Φ + δn−1m+1χ,

(we assume that both parts of the last formula belongs to the same space Cnm(V,W)).

Under a natural extra condition, the short double complex (2.6) allows us to es-
tablish relations among elements of double complex spaces. In particular, we re-
quire that for a pair of double complex spaces Cn1

k1
(V,W) and Cn2

k2
(V,W) there ex-

ist subspaces C ′
n1

k1 (V,W) ⊂ Cn1

k1
(V,W) and C ′

n2

k2 (V,W) ⊂ Cn2

k2
(V,W) such that for

Φ1 ∈ C ′n1

k1 (V,W) and Φ2 ∈ C ′n2

k2
(V,W),

Φ1 · δn2

k2
Φ2 = 0, (4.1)

namely, Φ1 supposed to be orthogonal to δn2

k2
Φ2 (i.e., commutative with respect to the

product (3.11)). We call this the orthogonality condition for mappings and actions of
co-boundary operators for a double complex. It is easy to see that the assumption
to belong to the same double complex space for both sides of the equations following
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from the orthogonality condition applies the bi-grading condition on double complex
spaces. Note that in the case of differential forms considered on a smooth manifold,
the Frobenius theorem for a distribution provides the orthogonality condition. In this
Section we derive algebraic relations occurring from the orthogonality condition on
the short double complex (2.6). We formulate

Proposition 6. The orthogonality condition for the short double complex sequence
(2.6) determines the cohomological classes:[(

δ12Φ
)
· Φ
]
,
[(
δ03χ
)
· χ
]
,
[(
δ1tα
)
· α
]
, (4.2)

for 0 ≤ t ≤ 2, with non-vanishing
(
δ12Φ

)
· Φ,

(
δ03χ
)
· χ, and

(
δ1tα
)
· α. These classes

are independent on the choice of Φ ∈ C1
2 (V,W), χ ∈ C0

3 (V,W), and α ∈ C1
t (V,W).

Remark 5. A cohomology class with vanishing
(
δ12Φ

)
·Φ ·α is given by

[(
δ12Φ

)
· Φ · α

]
.

Proof. Let us consider two maps χ ∈ C0
3 (V,W), Φ ∈ C1

2 (V,W). We require them to
be orthogonal, i.e.,

Φ · δ03χ = 0. (4.3)

Thus, there exists α ∈ Cnm(V,W), such that

δ03χ = Φ · α, (4.4)

and 1 = 1 + n− r, 2 = 2 +m− t, i.e., n = r, which leads to r = 1; m = t, 0 ≤ t ≤ 2,
i.e., α ∈ C1

t (V,W). All other orthogonality conditions for the short sequence (2.6)
does not allow relations of the form (4.4).

Consider now (4.3). We obtain, using (3.8)

δ2−r
′

4−t′ (Φ · δ
0
3χ) =

(
δ12Φ

)
· δ03χ+ Φ · δ12δ03χ =

(
δ12Φ

)
· δ03χ =

(
δ12Φ

)
· Φ · α.

Thus

0 = δ3−r
′

3−t′ δ
2−r′
4−t′ (Φ · δ

0
3χ) = δ3−r

′

3−t′
((
δ12Φ

)
· Φ · α.

)
,

and
((
δ12Φ

)
· Φ · α

)
is closed. At the same time, from (4.3) it follows that

0 = δ12Φ · δ03χ− Φ · δ12δ03χ =
(
Φ · δ03χ

)
.

Thus

δ12Φ · δ03χ = δ12Φ · Φ · α = 0.

Consider (4.4). Acting by δ12 and substituting back we obtain

0 = δ12δ
0
3χ = δ12(Φ · α) = δ12(Φ) · α− Φ · δ1tα.

thus

δ12(Φ) · α = Φ · δ1tα.
The last equality trivializes on applying δ3t+1 to both sides.

Let us show now the non-vanishing property of
((
δ12Φ

)
· Φ
)
. Indeed, suppose

(
δ12Φ

)
·

Φ = 0. Then there exists γ ∈ Cnm(V,W), such that δ12Φ = γ · Φ. Both sides of the
last equality should belong to the same double complex space but one can see that
it is not possible. Thus,

(
δ12Φ

)
· Φ is non-vanishing. One proves in the same way

that
(
δ03χ
)
· χ and

(
δ1tα
)
· α do not vanish too. Now let us show that

[(
δ12Φ

)
· Φ
]

is
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invariant, i.e., it does not depend on the choice of Φ ∈ C1
2 (V,W). Substitute Φ by

(Φ + η) ∈ C1
2 (V,W). We have(
δ12 (Φ + η)

)
· (Φ + η) =

(
δ12Φ

)
· Φ +

((
δ12Φ

)
· η − Φ · δ12η

)
+

(
Φ · δ12η + δ12η · Φ

)
+
(
δ12η
)
· η. (4.5)

Since (
Φ · δ12η +

(
δ12η
)
· Φ
)

= Φδ12η − (δ12η)Φ +
(
δ12η
)

Φ− Φ δ12η = 0,

then (4.5) represents the same cohomology class
[(
δ12Φ

)
· Φ · α

]
. The same folds for[(

δ03χ
)
· χ
]
, and

[(
δ1tα
)
· α
]
. �

Remark 6. Due to Proposition 1, all chahomological classes are invariant with respect
to correponding group Autz1,...,znO(n) changes of formal parameters.

The orthogonality condition for a double complex sequence (2.6), together with
the action of co-boundary operators (2.2) and (2.4), and the multiplication formulas
(3.11)–(3.8), define a differential bi-graded algebra depending on vertex algebra ele-
ments and formal parameters. In particular, for the short sequence (2.6), we obtain in
this way the generators and commutation relations for a continual Lie algebra G(V )
(a generalization of ordinary Lie algebras with continual space of roots, c.f. [9]) with
the continual root space represented by a grading-restricted vertex algebra V .

Lemma 2. For the short sequence (2.6) we get a continual Lie algebra G(V ) with
generators {

Φ(v1), χ, α(v2), δ12Φ(v1), δ03χ, δ
1
tα(v2), 0 ≤ t ≤ 2

}
, (4.6)

and commutation relations for a continual Lie algebra G(V )

Φ · δ1tα = α · δ12Φ 6= 0,

δ03χ = Φ · α, (4.7)

with all other relations being trivial. The sum of cohomological classes (4.2) provides
an invariant of G(V ).

Proof. Recall that Φ(v1)(z1) ∈ C1
2 (V,W), χ ∈ C0

3 (V,W), α ∈ C1
t (V,W), 0 ≤ t ≤ 2.

One easily checks the commutation relations coming from the orthogonality and bi-
grading conditions. Further applications of (2.2), (2.4), and (4.1) to (2.6) lead to
trivial results. Φ · δ1tα 6= 0 is proven by contradiction. It is easy to check Jacobi
identities for (4.6) and (4.7). With a redefinition

H = δ03χ,

H∗ = χ,

X+(v1) = Φ(v1),

X−(v2) = α(v2),

Y+(v1) = δ12Φ(v1),

Y−(v2) = δ1tα(v2), (4.8)
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the commutation relations (4.7) become:

[X+(v1), X−(v2)] = H,

[X+(v1), Y−(v1)] = [X−(v2), Y+(v1)] ,

i.e., the orthogonality condition brings about a representation of an affinization [8]
of continual counterpart of the Lie algebra sl2. Vertex algebra elements in (4.8) play
the role of roots belonging to continual non-commutative root space given by a vertex
algebra V . �
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5. Appendix: Grading-restricted vertex algebras and their modules

In this section, following [5] we recall basic properties of grading-restricted vertex
algebras and their grading-restricted generalized modules, useful for our purposes in
later sections. We work over the base field C of complex numbers. A vertex algebra
(V, YV ,1), cf. [8], consists of a Z-graded complex vector space

V =
⊕
n∈Z

V(n), dimV(n) <∞ for each n ∈ Z,

and linear map

YV : V → End (V )[[z, z−1]],

for a formal parameter z and a distinguished vector 1V ∈ V . The evaluation of YV
on v ∈ V is the vertex operator

YV (v) ≡ YV (v, z) =
∑
n∈Z

v(n)z−n−1,

with components

(YV (v))n = v(n) ∈ End (V ),

where YV (v, z)1 = v + O(z). Now we describe further restrictions [5], defining a
grading-restricted vertex algebra:

(1) Grading-restriction condition: V(n) is finite dimensional for all n ∈ Z, and
V(n) = 0 for n� 0.

(2) Lower-truncation condition: For u, v ∈ V , YV (u, z)v contains only finitely
many negative power terms, that is, YV (u, z)v ∈ V ((z)) (the space of formal
Laurent series in z with coefficients in V ).

(3) Identity property: Let 1V be the identity operator on V . Then

YV (1V , z) = IdV .

(4) Creation property: For u ∈ V , YV (u, z)1V ∈ V [[z]] and

lim
z→0

YV (u, z)1V = u.
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(5) Duality: For u1, u2, v ∈ V , v′ ∈ V ′ =
∐
n∈Z V

∗
(n) (V ∗(n) denotes the dual

vector space to V(n) and 〈 ., .〉 the evaluation pairing V ′ ⊗ V → C), the series
〈v′, YV (u2, z2)YV (u1, z1)v〉, and 〈v′, YV (YV (u1, z1−z2)u2, z2)v〉, are absolutely
convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0,
respectively, to a common rational function in z1 and z2 with the only possible
poles at z1 = 0 = z2 and z1 = z2.

One assumes the existence of Virasoro vector ω ∈ V : its vertex operator
Y (ω, z) =

∑
n∈Z L(n)z−n−2 is determined by Virasoro operators L(n) : V →

V fulfilling (notice that with abuse of notation we denote LV (n) = L(n))

[L(m), L(n)] = (m− n)L(m+ n) +
c

12
(m3 −m)δm+b,0IdV,

(c is called the central charge of V ). The grading operator is given by L(0)u =
nu, u ∈ V(n), (n is called the weight of u and denoted by wt (u)).

(6) LV (0)-bracket formula: Let LV (0) : V → V be defined by LV (0)v = nv for
v ∈ V(n). Then

[LV (0), YV (v, z)] = YV (LV (0)v, z) + z
d

dz
YV (v, z),

for v ∈ V .
(7) LV (−1)-derivative property: Let LV (−1) : V → V be the operator given by

LV (−1)v = Reszz
−2YV (v, z)1 = Y(−2)(v)1,

for v ∈ V . Then for v ∈ V ,

d

dz
YV (u, z) = YV (LV (−1)u, z) = [LV (−1), YV (u, z)].

Correspondingly, a grading-restricted generalized V -module is a vector spaceW equipped
with a vertex operator map

YW : V ⊗W →W [[z, z−1]],

u⊗ w 7→ YW (u,w) ≡ YW (u, z)w =
∑
n∈Z

(YW )n(u,w)z−n−1,

and linear operators LW (0) and LW (−1) on W satisfying conditions similar as in the
definition for a grading-restricted vertex algebra. In particular,

(1) Grading-restriction condition: The vector space W is C-graded, that is, W =∐
α∈CW(α), such that W(α) = 0 when the real part of α is sufficiently negative.

(2) Lower-truncation condition: For u ∈ V and w ∈W , YW (u, z)w contains only
finitely many negative power terms, that is, YW (u, z)w ∈W ((z)).

(3) Identity property: Let IdW be the identity operator on W , YW (1, z) = IdW .
(4) Duality: For u1, u2 ∈ V , w ∈ W , w′ ∈ W ′ =

∐
n∈ZW

∗
(n) (W ′ is the dual

V -module to W ), the series

〈w′, YW (u1, z1)YW (u2, z2)w〉,
〈w′, YW (u2, z2)YW (u1, z1)w〉,
〈w′, YW (YV (u1, z1 − z2)u2, z2)w〉, (5.1)
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are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0,
|z2| > |z1 − z2| > 0, respectively, to a common rational function in z1 and z2
with the only possible poles at z1 = 0 = z2 and z1 = z2.

The locality

YW (v1, z1)YW (v2, z2) ∼ YW (v2, z2)YW (v1, z1),

and associativity

YW (v1, z1)YW (v2, z2) ∼ YW (YV v1, z1 − z2)v2, z2),

properties for the vertex operators in a V -module W follow from the Jacobi
identity [8].

(5) LW (0)-bracket formula: For v ∈ V ,

[LW (0), YW (v, z)] = YW (L(0)v, z) + z
d

dz
YW (v, z).

(6) LW (0)-grading property: For w ∈ W(α), there exists N ∈ Z+ such that

(LW (0)− α)Nw = 0.
(7) LW (−1)-derivative property: For v ∈ V ,

d

dz
YW (u, z) = YW (LV (−1)u, z) = [LW (−1), YW (u, z)].

For v ∈ V , and w ∈W , the intertwining operator

YWWV : V →W,

v 7→ YWWV (w, z)v, (5.2)

is defined by

YWWV (w, z)v = ezLW (−1)YW (v,−z)w. (5.3)

5.1. Non-degenerate invariant bilinear form on V . The subalgebra

{LV (−1), LV (0), LV (1)} ∼= SL(2,C),

associated with Möbius transformations on z naturally acts on V , (cf., e.g. [8]). In
particular,

γλ =

(
0 λ
−λ 0

)
: z 7→ w = −λ

2

z
, (5.4)

is generated by

Tλ = exp (λLV (−1)) exp
(
λ−1LV (1)

)
exp (λLV (−1)) ,

where

TλY (u, z)T−1λ = Y

(
exp

(
− z

λ2
LV (1)

)(
− z
λ

)−2LV (0)

u,−λ
2

z

)
. (5.5)

In our considerations (cf. Appendix 6) of Riemann sphere sewing, we use in particular,
the Möbius map

z 7→ z′ = ε/z,

associated with the sewing condition (6.4) with

λ = −ξε 1
2 , (5.6)
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with ξ ∈ {±
√
−1}. The adjoint vertex operator [8, 2] is defined by

Y †(u, z) =
∑
n∈Z

u†(n)z−n−1 = TλY (u, z)T−1λ . (5.7)

A bilinear form 〈., .〉λ on V is invariant if for all a, b, u ∈ V , if

〈Y (u, z)a, b〉λ = 〈a, Y †(u, z)b〉λ, (5.8)

i.e.
〈u(n)a, b〉λ = 〈a, u†(n)b〉λ.

Thus it follows that
〈LV (0)a, b〉λ = 〈a, LV (0)b〉λ, (5.9)

so that
〈a, b〉λ = 0, (5.10)

if wt(a) 6= wt(b) for homogeneous a, b. One also finds

〈a, b〉λ = 〈b, a〉λ.
The form 〈., .〉λ is unique up to normalization if LV (1)V1 = V0. Given any V basis
{uα} we define the dual V basis {uβ} where

〈uα, uβ〉λ = δαβ .

6. Appendix: A sphere formed from sewing of two spheres

The matrix element for a number of vertex operators of a vertex algebra is usually
associated [2, 3, 10] with a vertex algebra character on a sphere. We extrapolate
this notion to the case of Wz1,...,zn spaces. In Section 3 we explained that a space
Wz1,...,zn can be associated with a Riemann sphere with marked points, while the
product of two such spaces is then associated with a sewing of such two spheres
with a number of marked points and extra points with local coordinates identified
with formal parameters of Wx1,...,xk

and Wy1,...,yn . In order to supply an appropriate
geometric construction for the product, we use the ε-sewing procedure (described in
this Appendix) for two initial spheres to obtain a matrix element associated with
(3.2).

Remark 7. In addition to the ε-sewing procedure of two initial spheres, one can
alternatively use the self-sewing procedure [11] for the sphere to get, at first, the
torus, and then by sending parameters to appropriate limit by shrinking genus to
zero. As a result, one obtains again the sphere but with a different parameterization.
In the case of spheres, such a procedure consideration of the product of W-spaces so
we focus in this paper on the ε-formalizm only.

In our particular case ofW-values rational functions obtained from matrix elements

(1.1) two initial auxiliary spaces we take Riemann spheres Σ
(0)
a , a = 1, 2, and the

resulting space is formed by the sphere Σ(0) obtained by the procedure of sewing

Σ
(0)
a . The formal parameters (x1, . . . , xk) and (y1, . . . , yn) are identified with local

coordinates of k and n points on two initial spheres Σ
(0)
a , a = 1, 2 correspondingly. In

the ε sewing procedure, some r points among (p1, . . . , pk) may coincide with points
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among (p′1, . . . , p
′
n) when we identify the annuluses (6.3). This corresponds to the

singular case of coincidence of r formal parameters.
Consider the sphere formed by sewing together two initial spheres in the sewing

scheme referred to as the ε-formalism in [11]. Let Σ
(0)
a , a = 1, 2 be to initial spheres.

Introduce a complex sewing parameter ε where

|ε| ≤ r1r2,

Consider k distinct points on pi ∈ Σ
(0)
1 , i = 1, . . . , k, with local coordinates (x1, . . . , xk) ∈

FkC, and distinct points pj ∈ Σ
(0)
2 , j = 1, . . . , n, with local coordinates (y1, . . . , yn) ∈

FnC, with
|xi| ≥ |ε|/r2,
|yi| ≥ |ε|/r1.

Choose a local coordinate za ∈ C on Σ
(0)
a in the neighborhood of points pa ∈ Σ

(0)
a ,

a = 1, 2. Consider the closed disks

|ζa| ≤ ra,
and excise the disk

{ζa, |ζa| ≤ |ε|/ra} ⊂ Σ(0)
a , (6.1)

to form a punctured sphere

Σ̂(0)
a = Σ(0)

a \{ζa, |ζa| ≤ |ε|/ra}.
We use the convention

1 = 2, 2 = 1. (6.2)

Define the annulus
Aa = {ζa, |ε|/ra ≤ |ζa| ≤ ra} ⊂ Σ̂(0)

a , (6.3)

and identify A1 and A2 as a single region A = A1 ' A2 via the sewing relation

ζ1ζ2 = ε. (6.4)

In this way we obtain a genus zero compact Riemann surface

Σ(0) =
{

Σ̂
(0)
1 \A1

}
∪
{

Σ̂
(0)
2 \A2

}
∪ A.

This sphere form a suitable geometrical model for the construction of a product of
W-valued rational forms in Section 3.

7. Appendix: proof of Proposition 5

Proof. For a vertex operator YV,W (v, z) let us introduce a notation ωV,W = YV,W (v, z) dzwtv.

Let us use notations (3.1) and (3.6). According to (2.2), the action of δk+n−rm+m′−t on

R̂F(v1, x1; . . . ; vk, xk; v′1, y1; . . . ; v′k, yn; ε) is given by

〈w′, δk+n−rm+m′−tR̂ F(v1, x1; . . . ; vk, xk; v′1, y1; . . . ; v′n, yn; ε)〉

= 〈w′,
k∑
i=1

(−1)i R̂ F(ṽ1, z1; . . . ; ṽi−1, zi−1; ωV (ṽi, zi − zi+1)ṽi+1, zi+1; ṽi+2, zi+2;

. . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n, zk+n; ε)〉
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+
n−r∑
i=1

(−1)i 〈w′,F (ṽ1, z1; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+i−1, zk+i−1;

ωV (ṽk+i, zk+i − zk+i+1) ṽk+i+1, zk+i+1;

ṽk+i+2, zk+i+2; . . . ; ṽk+n−r, zk+n−r; ε)〉

+〈w′, ωW (ṽ1, z1) F(ṽ2, z2; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r; ε)〉

+〈w, (−1)k+n+1−rωW (ṽk+n−r+1, zk+n−r+1)

F(ṽ1, z1; . . . ; ṽk, zk; ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r; ε)〉

=
∑
u∈V
〈w′,

k∑
i=1

(−1)i YWVW (F(ṽ1, z1; . . . ; ṽi−1, zi−1; ωV (ṽi, zi − zi+1)ṽi+1, zi+1;

ṽi+2, zi+2; . . . ; ṽk, zk), ζ1)u〉
〈w′, YWVW (F(ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

+
∑
u∈V

n−r∑
i=1

(−1)i 〈w′, YWVW (F (ṽ1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (F(ṽk+1, zk+1; . . . ; ṽk+i−1, zk+i−1;

ωV (ṽi, zk+i − zk+i+1) ṽk+i+1, zk+i+1; ṽk+i+2, zk+i+2;

. . . ; ṽk+n−r, zk+n−r), ζ2)u〉

+
∑
u∈V
〈w′, YWVW (ωW (ṽ1, z1) F(ṽ2, z2; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (F(ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

+
∑
u∈V
〈w′, YWVW ((−1)k+1ωW (ṽk+1, zk+1) F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

−
∑
u∈V
〈w′, (−1)k+1〈w′, YWVW (ωW (ṽk+1, zk+1) F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉
+
∑
u∈V
〈w′, YWVW (F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (ωW (ṽk+n−r+1, zk+n−r+1)

F(ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉
−
∑
u∈V
〈w′, YWVW (F(ṽ1, z1; . . . ; ṽk, zk), ζ1)〉

〈w′, YWVW (ωW (ṽk+n−r+1, zk+n−r+1)

F(ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)〉
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=
∑
u∈V
〈w′, YWVW (δkmF(ṽ1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (F(ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉
+(−1)k

∑
u∈V
〈w′, YWVW (F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (δn−rm′−tF(ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

= 〈w′, δkmF(ṽ1, z1; . . . ; ṽk, zk) ·ε 〈w′,F(ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r)〉
+(−1)k〈w′,F(ṽ1, z1; . . . ; ṽk, zk) ·ε δn−rm′−tF(ṽk+1, zk+1; . . . ; ṽk+n−r, zk+n−r)〉,

since, ∑
u∈V
〈w′, (−1)k+1YWVW (ωW (ṽk+1, zk+1) F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V
〈w′, (−1)k+1eζ1LW (−1)YW (u,−ζ1) ωW (ṽk+1, zk+1) F(ṽ1, z1; . . . ; ṽk, zk)〉

〈w′, YWVW (F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V
〈w′, (−1)k+1eζ1LW (−1)ωW (ṽk+1, zk+1)YW (u,−ζ1) F(ṽ1, z1; . . . ; ṽk, zk)〉

〈w′, YWVW (F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V
〈w′, (−1)k+1 ωW (ṽk+1, zk+1 + ζ1) eζ1LW (−1)YW (u,−ζ1) F(ṽ1, z1; . . . ; ṽk, zk)〉

〈w′, YWVW (F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
v∈V

∑
u∈V
〈v′, (−1)k+1 ωW (ṽk+1, zk+1 + ζ1)w〉

〈w′, eζ1LW (−1)YW (u,−ζ1) F(ṽ1, z1; . . . ; ṽk, zk)〉
〈w′, YWVW (F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V
〈w′, eζ1LW (−1)YW (u,−ζ1) F(ṽ1, z1; . . . ; ṽk, zk)〉∑

v∈V
〈v′, (−1)k+1 ωW (ṽk+1, zk+1 + ζ1)w〉

〈w′, YWVW (F(ṽk+2, zk+2; . . . ;

ṽk+n−r, zk+n−r), ζ2)u〉
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=
∑
u∈V
〈w′, YWVW (F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w′, (−1)k+1 ωW (ṽk+1, zk+1 + ζ1)

YWVW (F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉

=
∑
u∈V
〈w′, YWVW (F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w′, (−1)k+1 ωW (ṽk+1, zk+1 + ζ1)

eζ2LW (−1)YW (u,−ζ2) F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r)〉

=
∑
u∈V
〈w′, YWVW (F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u 〉

〈w′, (−1)k+1 eζ2LW (−1) YW (u,−ζ2) ωW (ṽk+1, zk+1 + ζ1 − ζ2)

F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r)〉

=
∑
u∈V
〈w′, YWVW (F(ṽ1, z1; . . . ; ṽk, zk), ζ1)u〉

〈w′, YWVW (ωW (ṽk+1, zk+1) F(ṽk+2, zk+2; . . . ; ṽk+n−r, zk+n−r), ζ2)u〉,
due to locality (5.1) of vertex opertors, and arbitrarness of ṽk+1 ∈ V and zk+1, we
can always put

ωW (ṽk+1, zk+1 + ζ1 − ζ2) = ωW (ṽk+2, zk+2),

for ṽk+1 = ṽk+2, zk+2 = zk+1 + ζ2 − ζ1. �
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