Biologia plantarum 64: 541-550, 2020 | DOI: 10.32615/bp.2020.062
MicroRNA profiling the resurrection plant Haberlea rhodopensis unveils essential regulators of survival under severe drought
- 1 Department of Plant Physiology and Molecular Biology, University of Plovdiv, BG-4000 Plovdiv, Bulgaria
- 2 Institute of Molecular Biology and Biotechnologies, BG-4108 Markovo, Bulgaria
- 3 Center of Plant Systems Biology and Biotechnology, BG-4000 Plovdiv, Bulgaria
- 4 Fruit Growing Institute - Plovdiv, BG-4000 Plovdiv, Bulgaria
Small RNAs (sRNAs) are essential components of gene-regulatory networks, which guide plant development and tune it to environmental challenges. Though the past years have witnessed evidences on sRNA importance for stress response, there is scarce data on their involvement in resurrection plant survival under severe drought. Haberlea rhodopensis (hrh) is an angiosperm resurrection species, whose vegetative tissues can tolerate desiccation and recover upon rehydration. In this study, high-throughput sequencing sRNAs indicated a higher complexity of the sRNA population, especially of a 24 nt sRNA category, in the desiccated vegetative tissue of H. rhodopensis compared to unstressed tissues. The cross-species discovery was performed to predict 77 mature microRNAs (miRNAs), most of which were assigned to 23 high-confidence conserved miRNA families in the leaf tissue. Several members of the miR156/157, miR166, and miR399 families were found to be desiccation-responsive. The miR156/157 family members were found up-regulated upon dehydration and down-regulated upon rehydration, while the miR166 and miR399 family members followed an opposite trend of expression. A probable miR156/157 target, orthologous to the SQUAMOSA promoter binding protein-like, was reconstructed in H. rhodopensis based on genomic data available for this species and the closely related Boea hygrometrica. Reverse transcription quantittative PCR analysis confirmed the expression profile of hrh-miR156a-5p and hrh-miR157-5p established by sRNA sequencing and revealed an inverse expression pattern between these miRNAs and their targets in the desiccated tissue. Our study suggests that the miR156/157 and miR399 families are essential for plant survival under severe drought due to their ability to control plant development and growth by modulating transcription factor expression.
Keywords: desiccation tolerance, small RNAs, regulatory network.
Received: January 22, 2020; Revised: March 26, 2020; Accepted: April 21, 2020; Published online: August 10, 2020Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
Download file | Apostolova6419_Suppl.pdf File size: 227.94 kB |
References
- Afgan, E., Baker, D., Batut, B., Van den Beek, M., Bouvier, D., Cech, M., Chilton, J., Clements, D., Coraor, N., Grüning,B.A., Guerler, A., Hillman-Jackson, J., Hiltemann,S., Jalili,V., Rasche, H., Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A., Blankenberg, D.: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses. - Nucl. Acids Res. 46(Suppl.): W537-W544, 2018. Go to original source...
- Alpert, P.: The discovery, scope, and puzzle of desiccation tolerance in plants. - Plant Ecol. 151: 5-17, 2000. Go to original source...
- Anders, S., Huber, W.: Differential expression analysis for sequence count data. - Genome Biol. 11 (Suppl.): R106, 2010. Go to original source...
- Arshad, M., Feyissa, B.A., Amyot, L., Aung, B., Hannoufa, A.: MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. - Plant Sci. 258: 122-136, 2017. Go to original source...
- Axtell, M.J., Meyers, B.C.: Revisiting criteria for plant microRNA annotation in the era of big data. - Plant Cell 30: 272-284, 2018. Go to original source...
- Axtell, M.J., Bowman, J.L.: Evolution of plant microRNAs and their targets. - Trends Plant Sci. 13: 343-349, 2008. Go to original source...
- Bartel, D.P.: Metazoan MicroRNAs. - Cell 173: 20-51, 2018. Go to original source...
- Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., Voinnet, O.: Widespread translational inhibition by plant miRNAs and siRNAs. - Science 320: 1185-1190, 2008. Go to original source...
- Challabathula, D., Puthur, J.T., Bartels, D.: Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants. - Ann. N. Y. Acad. Sci. 1365: 89-99, 2016. Go to original source...
- Chen, C., Jin, J., James, D.A., Adams-Cioaba, M.A., Park, J.G., Guo, Y., Tenaglia, E., Xu, C., Gish, G., Min, J., Pawson, T.: Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. - Proc. nat. Acad. Sci. USA 106: 20336-20341, 2009. Go to original source...
- Chiou, T.: The role of microRNAs in sensing nutrient stress. - Plant Cell Environ. 30: 323-332, 2007. Go to original source...
- Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F., Su, C.L.: Regulation of phosphate homeostasis by microRNA in Arabidopsis. - Plant Cell 18: 412-421, 2006. Go to original source...
- Cuperus, J.T., Fahlgren, N., Carrington, J.C.: Evolution and functional diversification of MIRNA genes. - Cell 23: 431- 442, 2011.
- Dai, X., Zhao, P.X.: psRNAtarget: a plant small RNA target analysis server. - Nucl. Acids Res. 39: W155 - W159, 2011. Go to original source...
- Dai, X., Zhuang, Z., Zhao, P.X.: psRNAtarget: a plant small RNA target analysis server (2017 release). - Nucl. Acids Res. 46: W49-W54, 2018. Go to original source...
- Daskalova, E., Dontcheva, S., Yahoubyan, G., Minkov, I., Toneva, V.: A strategy for conservation and investigation of the protected resurrection plant Haberlea rhodopensis.Friv. - BioRisk 6: 41-60, 2011. Go to original source...
- Ding, Y., Tao, Y., Zhu, C.: Emerging roles of microRNAs in the mediation of drought stress response in plants. - J. exp. Bot. 64: 3077-3086, 2013. Go to original source...
- Farrant, J.M.: Mechanisms of desiccation tolerance in angiosperm resurrection plants. - In: Jenks, M.A., Wood, A.J. (ed.): Plant Desiccation Tolerance. Pp. 51 - 90. Blackwell Publishing, Ames 2007. Go to original source...
- Farrant, J.M., Cooper, K., Hilgart, A., Abdalla, K.O., Bentley, J., Thomson, J.A., Dace, H.J., Peton, N., Mundree, S.G., Rafudeen, M.S.: A molecular physiological review of vegetative desiccation tolerance in the resurrection plant Xerophyta viscosa (Baker). - Planta 42: 407-426, 2015. Go to original source...
- Farrant, J.M., Moore, J.P.: Programming desiccation-tolerance: from plants to seeds to resurrection plants. - Curr. Opin. Plant Biol. 14: 340-345, 2011. Go to original source...
- Ferdous, J., Hussain, S.S., Shi, B.: Role of microRNAs in plant drought tolerance. - Plant biotechnol. J. 13: 293-305, 2015. Go to original source...
- Gaff, D.F., Oliver, M.J.: The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. - Funct. Plant Biol. 40: 315-328, 2013. Go to original source...
- Gechev, T.S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., Minkov, I., Hille, J., Temanni, M.R., Marriott, A.S., Bergström, E.: Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. - Cell Mol. Life Sci. 70: 689-709, 2013. Go to original source...
- Georgieva, K., Szigeti, Z., Sarvari, E., Gaspar, L., Maslenkova, L., Peeva, V., Peli, E., Tuba, Z.: Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. - Planta 225: 955-964, 2007. Go to original source...
- Gou, J.Y., Felippes, F.F., Liu, C.J., Weigel, D., Wang, J.W.: Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. - Plant Cell 23: 1512-1522, 2011. Go to original source...
- Grant-Downton, R.T., Dickinson, H.G.: Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. - Ann. Bot. 96: 143-1164, 2005. Go to original source...
- Griffiths-Jones, S.: The microRNA registry. - Nucl. Acids Res. 32(Suppl.): D109-D111, 2004. Go to original source...
- Kamthan, A., Chaudhuri, A., Kamthan, M., Datta, A.: Small RNAs in plants: recent development and application for crop improvement. - Front. Plant Sci. 6: 208, 2015. Go to original source...
- Kantar, M., Unver, T., Budak, H.: Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. - Funct. integr. Genomics 10: 493, 2010. Go to original source...
- Khraiwesh, B., Zhu, J.K., Zhu, J.: Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. - Biochim. biophys. Acta 1819: 137-148, 2012.
- Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. - Bioinformatics 25: 1754-1760, 2009. Go to original source...
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.: 1000 genome project data processing subgroup: the sequence alignment/map format and SAM tools. - Bioinformatics 25: 2078-2079,2009. Go to original source...
- Li, R., Chen, D., Wang, T., Wan, Y., Li, R., Fang, R., Zhao, W.: High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba). - PloS ONE 12: e0172883, 2017. Go to original source...
- Li, Y., Alonso-Peral, M., Wong, G., Wang, M.B., Millar, A.A.: Ubiquitous miR159 repression of MYB33/65 in Arabidopsis rosettes is robust and is not perturbed by a wide range of stresses. - BMC Plant Biol. 16: 179, 2016. Go to original source...
- Liu, J., Moyankova, D., Lin, C.T., Mladenov, P., Sun, R.Z., Djilianov, D., Deng, X.: Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis. - BMC Plant Biol. 18: 351, 2018. Go to original source...
- Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. - Methods 25: 402-408, 2001. Go to original source...
- Llave, C., Kasschau, K., Rector, M.A., Carrington, J.C.: Endogenous and silencing-associated small RNAs in plants. - Plant Cell 14: 1605-1619, 2002. Go to original source...
- Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D.: A plant miRNA contributes to antibacterial resistance by repressing auxin signalling. - Science 312: 436-439, 2006. Go to original source...
- Njaci, I., Williams, B., Castillo-González, C., Dickman, M.B., Zhang, X., Mundree, S.: Genome-wide investigation of the role of microRNAs in desiccation tolerance in the resurrection grass Tripogon loliiformis. - Plants 7: 68, 2018. Go to original source...
- Pant, B.D., Buhtz, A., Kehr, J., Scheible, W.R.: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. - Plant J. cell. mol. Biol. 53: 731-738, 2008. Go to original source...
- Phillips, J.R., Dalmay, T., Bartels, D.: The role of small RNAs in abiotic stress. - FEBS Lett. 581: 3592-3597, 2007. Go to original source...
- Pontier, D., Yahubyan, G., Vega, D., Bulski, A., Saez-Vasquez, J., Hakimi, M.A., Lerbs-Mache, S., Colot, V., Lagrange, T.: Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. - Genes Dev. 19: 2030-2040, 2005. Go to original source...
- Preston, J.C., Hileman, L.C.: Functional evolution in the plant Squamosa-promoter binding protein-like (SPL) gene family. - Front. Plant Sci. 4: 80, 2013. Go to original source...
- Qi, Y., He, X., Wang, X.J., Kohany, O., Jurka, J., Hannon, G.J.: Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. - Nature 443: 1008-1012, 2006. Go to original source...
- Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., Bartel, D.P.: MicroRNAs in plants. - Genes Dev. 16: 1616-1626, 2002. Go to original source...
- Rhoades, M., Reinhart, B., Lim, L., Burge, C., Bartel, B., Bartel, D.: Prediction of plant microRNA targets. - Cell 110: 513-520, 2002. Go to original source...
- Rubio-Somoza, I., Weigel, D.: MicroRNA networks and developmental plasticity in plants. - Trends Plant Sci. 16: 258-64, 2011. Go to original source...
- Ryan, J.C.: A comparative history of resurrection plants. - CLCWeb: Comparative Literature and Culture 19: 1, 2017. Go to original source...
- Scott, P.: Resurrection plants and the secrets of eternal leaf. - Ann. Bot. 85: 159-166, 2000. Go to original source...
- Shriram, V., Kumar, V., Devarumath, R.M., Khare, T.S., Wani, S.H.: MicroRNAs аs potential targets for abiotic stress tolerance in plants. - Front. Plant Sci. 7: 817, 2016. Go to original source...
- Shukla, L.I., Chinnusamy, V., Sunkar, R.: The role of microRNAs and other endogenous small RNAs in plant stress responses. -Biochim. biophys. Acta 1779: 743-748, 2008. Go to original source...
- Sunkar, R., Chinnusam, V., Zhu, J., Zhu, J.K.: Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. - Trends Plant Sci. 12: 301-309, 2007. Go to original source...
- Taylor, R.S., Tarver, J.E., Hiscock, S.J., Donoghue, P.C.: Evolutionary history of plant microRNAs. - Trends Plant Sci. 19: 175-182, 2014. Go to original source...
- Taylor, R.S., Tarver, J.E., Foroozani, A., Donoghue, P.C.J.: MicroRNA annotation of plant genomes - Do it right or not at all. - BioEssays 39: 1600113, 2017. Go to original source...
- Turner, N.C.: Techniques and experimental approaches for the measurement of plant water stress. - Plant Soil 58: 339-366, 1981. Go to original source...
- Varkonyi-Gasic, E., Wu, R., Wood, M., Walton E.F., Hellens, R.P.: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. - Plant Methods 3: 12, 2007. Go to original source...
- Vicré, M., Lerouxel, O., Farrant, J.M., Lerouge, P., Driouich, A.: Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. - Physiol. Plant. 120: 229-239, 2004. Go to original source...
- Wang, H., Wang, H.: Molecular plant miR156/SPL module, a regulatory hub and versatiletToolbox. Gears up crops for enhanced agronomic traits. - Mol. Plant 8: 677-688, 2015. Go to original source...
- Wang, Y.G., An, M., Zhou, S.F., She, Y.H., Li, W.C., Fu, F.L.: Expression profile of maize microRNAs corresponding to their target genes under drought stress. - Biochem. Genet. 52: 474-93, 2014. Go to original source...
- Xiao, L., Yang, G., Zhang, L., Yang, X., Zhao, S., Ji, Z., Zhou, Q., Hu, M., Wang, Y., Chen, M., Xu, Y., Jin, H., Xiao, X., Hu, G., Bao, F., Hu, Y., Wan, P., Li, L., Deng, X., Kuang, T., Xiang, C., Zhu, J.K., Oliver, M.J., He, Y.: The resurrection genome of Boea hygrometrica: a blueprint for survival of dehydration. - Proc. nat. Acad. Sci. USA 112: 5833-5837, 2015. Go to original source...
- Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S.E., Carrington, J.C.: Genetic and functional diversification of small RNA pathways in plants. - PloS Biol. 2: E104, 2004. Go to original source...
- Yang, J., Zhang, N., Mi, X., Wu, L., Ma, R., Zhu, X., Yao, L., Jin, X., Si, H., Wang, D.: Identification of miR159s and their target genes and expression analysis under drought stress in potato. - Comput. Biol. Chem. 53: 204-213, 2014. Go to original source...
- Yang, L., Xu, M., Koo, Y., He, J., Poethig, R.S.: Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. - eLife 2: e00260, 2013. Go to original source...