Biologia plantarum 64: 692-700, 2020 | DOI: 10.32615/bp.2020.096

Identification of potential key genes affecting soybean growth under salt stress via transcriptome study

N. LI1,2, Z. LI2, S. FAN2, Y. PU1, Y. GONG1, R. TIAN1, X. GUO2, H. DING1,2,*
1 Scientific Research Office, Shandong Center of Crop Germplasm Resources, 250100, Jinan, Shandong, P.R. China
2 College of Life Science, Shandong Normal University, 250014, Jinan, Shandong, P.R. China

Soybean is one of the most important economic crops in the world. However, the salinization of soil results in the decrease of soybean yield as it is only a moderately salt-tolerant crop. We treated three soybean cultivars with low and high concentrations of NaCl. The differentially expressed genes between the control group and the salt treatment group were identified by mRNA sequencing and analyzed by gene ontology and Kyoto encyclopedia of genes and genomes annotations. We performed weighted gene co-expression network analysis on all samples and found genes most related to the phenotype. After verifying the results of differentially expressed genes by quantitative PCR, we finally identified Glyma06G01990, Glyma08G22730, Glyma019G05140, and Glyma06G20160 as key genes affecting the soybean growth under salt stress.

Keywords: differentially expressed genes, Glycine max, RNA-seq, WGCNA.

Received: February 11, 2020; Revised: June 24, 2020; Accepted: June 25, 2020; Published online: October 6, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LI, N., LI, Z., FAN, S., PU, Y., GONG, Y., TIAN, R., GUO, X., & DING, H. (2020). Identification of potential key genes affecting soybean growth under salt stress via transcriptome study. Biologia plantarum64, 692-700. doi: 10.32615/bp.2020.096.
Download citation

Supplementary files

Download fileLi6430_Suppl.pdf

File size: 673.86 kB

References

  1. Ashraf, M., Akram, N.A.: Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. - Biotechnol. Adv. 27: 744-752, 2009. Go to original source...
  2. Badr, A.S., Genet, P., Vinit-Dunand, F., Toussaint, M.L., Epron, D., Badot, P.M.:. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. - Plant Sci. 166: 12-18, 2004.
  3. Chaudhary, J., Patil, G.B., Sonah, H., Deshmukh, R.K., Vuong, T. D., Valliyodan, B., Nguyen, H.T.: Expanding omics resources for improvement of soybean seed composition traits. - Front. Plant Sci. 6: 1021, 2015. Go to original source...
  4. Chen, H.T., Liu, X.Q., Zhang, H.M., Yuan, X.X., Gu, H.P., Cui, X.Y., Chen, X.: Advances in salinity tolerance of soybean: genetic diversity, heredity, and gene identification contribute to improving salinity tolerance. - J. integr. Agr. 17: 83-89, 2018. Go to original source...
  5. Cools, T., De Veylder, L.: DNA stress checkpoint control and plant development. - Curr. Opin. Plant Biol. 12: 23-28, 2009. Go to original source...
  6. Cui, J., Ren, G., Qiao, H., Xiang, X., Huang, L., Chang, J.: Comparative transcriptome analysis of seedling stage of two sorghum cultivars under salt stress. - J. Plant Growth Regul. 37:1-13, 2018. Go to original source...
  7. Da Silva, J.M., Arrabaca, M.C.: Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. - J. Plant Physiol. 161: 551-555, 2004. Go to original source...
  8. Dang, Z.H., Zheng, L.L., Wang, J., Gao, Z., Wu, S.B., Qi, Z., Wang, Y.C.: Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. - BMC Genomics 14: 29, 2013. Go to original source...
  9. Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H.: Free radical-induced damage to DNA: mechanisms and measurement. - Free Radical Biol. Med. 32: 1102-1115, 2002. Go to original source...
  10. Dubey, R.S., Singh, A.K.: Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. - Biol. Plant. 42: 233-239, 1999. Go to original source...
  11. Fettke, J., Fernie, A.R.: Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism. - Trends Plant Sci. 20: 490-497, 2015. Go to original source...
  12. Gao, Q.Y., Xiong, T.T., Li, X.P., Chen, W.X., Zhu, X.Y.: Calcium and calcium sensors in fruit development and ripening. - Scientia Hort. 253: 412-421, 2019. Go to original source...
  13. Geilfus, C.M.: Review on the significance of chlorine for crop yield and quality. - Plant Sci. 270: 114-122, 2018. Go to original source...
  14. Gidda, S.K., Shockey, J.M., Rothstein, S.J., Dyer, J.M., Mullen, R.T.: Arabidopsis thaliana GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilysine ER retrieval motif in plant cells. - Plant Physiol. Biochem. 47: 867-879, 2009. Go to original source...
  15. Gu, C.S., Xu, S., Wang, Z.Q., Liu, L.Q., Zhang, Y.X., Deng, Y.M, Huang, S.Z.: De novo, sequencing, assembly, and analysis of Iris lactea, var. chinensis, roots' transcriptome in response to salt stress. - Plant Physiol. Biochem. 125: 1-12, 2018. Go to original source...
  16. Gu, R.S, Fonseca, S., Puskas, L.G., Hackler, L., Jr., Zvara, A., Dudits, D., Pais, M.S.: Transcript identification and profiling during salt stress and recovery of Populus euphratica. - Tree Physiol. 24: 265-276, 2004. Go to original source...
  17. Gupta, S.M., Pandey, P., Grover, A., Patade, V.Y., Singh, S., Ahmed, Z.: Cloning and characterization of GPAT gene from Lepidium latifolium L.: a step towards translational research in agri-genomics for food and fuel. - Mol. Biol. Rep. 40: 4235-4240, 2013. Go to original source...
  18. Im, Y.J., Han, O., Chung, G.C., Cho, B.H.: Antisense expression of an Arabidopsis ω-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. - Mol. Cells 13: 264-271, 2002.
  19. Kachroo, P., Shanklin, J., Shah, J., Whittle, E.J., Klessig, D.F.: A fatty acid desaturase modulates the activation of defense signaling pathways in plants. - Proc. nat. Acad. Sci. USA 98: 9448-9453, 2001. Go to original source...
  20. Khelil, A., Menu, T., Ricard, B.: Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. - Plant Physiol. Biochem. 45: 551-559, 2007. Go to original source...
  21. Kim, D., Langmead, B., Salzberg, S.L.: HISAT: a fast spliced aligner with low memory requirements. - Nat. Methods 12: 357-360, 2015. Go to original source...
  22. Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. - BMC Bioinformatics 9: 559, 2008. Go to original source...
  23. Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. - Bioinformatics 24: 719-720, 2008. Go to original source...
  24. Le, D.T., Nishiyama, R., Watanabe, Y., Mochida, K., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S.: Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. - DNA Res. 18: 263-276, 2011. Go to original source...
  25. Li, B., Dewey, C.N.: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. - BMC Bioinformatics 12: 323, 2011. Go to original source...
  26. Li, P., Li, Y.J., Zhang, F.J., Zhang, G.Z., Jiang, X.Y., Yu, H.M., Hou, B.K.: The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. - Plant J. 89: 85-103, 2017. Go to original source...
  27. Li, Y.H., Beisson, F., Koo, A.J., Molina, I., Pollard, M., Ohlrogge, J.: Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. - Proc. nat. Acad. Sci. USA 104: 18339-18344, 2007. Go to original source...
  28. Lim, E.K., Baldauf, S., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Jackson, R.G., Taguchi, G., Ross, J., Bowles, D.J.: Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. - Glycobiology 13: 139-145, 2003. Go to original source...
  29. Lim, E.K., Bowles, D.J.: A class of plant glycosyltransferases involved in cellular homeostasis. - Embo J. 23: 2915-2922, 2014.
  30. Liu, A.L., Xiao, Z.X., Li, M.W., Wong, F.L., Yung, W.S., Ku, Y.S., Wang, Q.W., Wang, X., Xie, M., Yim, A.K., Chan, T.F., Lam, H.M.: Transcriptomic reprogramming in soybean seedlings under salt stress. - Plant Cell Environ. 42: 98-114, 2018. Go to original source...
  31. Long, W.H., Zou, X.L., Zhang, X.K.: Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage. - PloS ONE 10: e0116217, 2015. Go to original source...
  32. Luo, Y.P., Coskun, V., Liang, A.B., Yu, J.H., Cheng, L.M., Ge, W.H., Shi, Z.P., Zhang, K.S., Li, C., Cui, Y., Lin, H.J., Luo, D.D., Wang, J.B., Lin, C., Dai, Z., Zhu, H.W., Zhang, J., Liu, J., Liu, H.L., De Vellis, J., Horvath, S., Sun, Y.E., Li, S.G.: Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. - Cell 161: 1175-1186, 2015.
  33. Munns, R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  34. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. - Genome Res. 13: 2498-2504, 2003. Go to original source...
  35. Sharifi, M., Ghorbanli, M., Ebrahimzadeh, H.: Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. - J Plant Physiol. 164: 1144-1151, 2007. Go to original source...
  36. Shi, H.Z., Xiong, L.M., Stevenson, B., Lu, T.G., Zhu, J.K.: The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. - Plant Cell 14: 575-588, 2002. Go to original source...
  37. Tester, M., Davenport, R.: Na+ tolerance and Na+ transport in higher plants. - Ann. Bot. 91: 503-527, 2003. Go to original source...
  38. Ueda, A., Shi, W.M., Nakamura, T., Takabe, T.: Analysis of salt-inducible genes in barley roots by differential display. - J. Plant Res. 115: 119-130, 2002. Go to original source...
  39. Wang, D., Shannon, M.C.: Emergence and seedling growth of soybean cultivars and maturity groups under salinity. - Plant Soil 214: 117-124, 1999. Go to original source...
  40. Wang, F., Wan, S.B., Meng, Q.W., Li, X.G.: Regulation of Ca2+ in plant response mechanisms under salt stress. - Life Sci. Res. 16: 362-367, 2012.
  41. Wang, X.P., Zhu, B.P., Jiang, Z.G., Wang, S.C.: Calcium-mediation of jasmonate biosynthesis and signaling in plants. - Plant Sci. 287: 110192, 2019. Go to original source...
  42. Yadav, S., Irfan, M., Ahmad, A., Hayat, S.: Causes of salinity and plant manifestations to salt stress: a review. - J environ. Biol. 32: 667-685, 2011.
  43. Yang, F.J., Li, T.L., Zang, Z.J., Lu, S.W.: Effects of timing of exogenous calcium application on the alleviation of salt stress in the tomato seedlings. - Scientia agr. sin. 43: 1181-1188, 2010.
  44. Yu, C.G., Xu, S., Yin, Y.L.: Transcriptome analysis of the Taxodium 'Zhongshanshan 405' roots in response to salinity stress. - Plant Physiol. Biochem. 100: 156-165, 2016. Go to original source...
  45. Yuan, F., Lyu, M.J., Leng, B.Y., Zhu, X.G., Wang, B.S.: The transcriptome of NaCl-treated Limonium bicolor leaves reveals the genes controlling salt secretion of salt gland. - Plant mol. Biol. 91: 241-256, 2016. Go to original source...