My research interests lie broadly in Advanced Data Structures, Algorithms, Computational Geometry, Approximation Algorithms. Recently, I am working in Terrain Visibility problems and Problems with Imprecision, for the project titled "Structural properties of visibility in terrains and farthest color Voronoi diagrams". |
My research focuses on extremal and probabilistic combinatorics. In particular, I am interested in the study of Ramsey Theory, random graphs, pseudo-random structures and tree embeddings. There has been a drift of my studies towards subjects with deeper probabilistic roots as I study different models of random graphs. |
My main area of research interest is Geometric Approximation Algorithms. As a researcher, I would like to contribute to the field of geometric algorithms and advance my future research towards the modeling of real-world problems through the perspective of computational geometry, and associated approximation algorithms. |
Vahideh Keikha
My main research area is in Computational Geometry. I am particularly interested in problems involving data uncertainty, approximation algorithms, data structures, and random algorithms. I have joined the project "Structural properties of visibility in terrains and farthest color Voronoi diagrams" and, I have also become interested in graph drawing and many related problems. |
Diana's research interests lie in extremal graph theory, Ramsey theory, probabilistic method, and limits of graphs. In particular together with Komlós, Hladký, Simonovits, Stein, and Szemerédi, she used a generalisation of the regularity lemma to sparse graphs to assymptotically solve a cojecture of Loebl, Komlós and Sós on trees. Together with Böttcher, Hladký and Taraz, she used the Rödl nibble method to make significant progress on a conjecture of Gyárfás about packing trees. |
Hanka Řada I am a Ph. D. student at FNSPE, CTU in Prague and my research topi there are the multidimensional continued fraction. This topic is strongly connected with combinatroics on words and number theory. I am also very interested in graph theory and I am now participating on a project which includes research about embedding trees in host graphs. |
My research interests lie in the field of combinatorics and graph theory, mostly in extremal graph and hypergraph theory. I have studied Turán, Ramsey and embedding problems of tight cycles and paths in hypergraphs. |
My main research areas area Computational Geometry and Graph Drawing, with an emphasis on proximity graphs and Voronoi diagrams, visibility and interval graphs. Recently I have also become interested in Extremal Graph Theory and I have started to work on problems involving graph tilings and graph limits. |
My main research interests are extremal and probabilistic combinatorics. I have worked on problems involving moderate deviations on the count of arithmetic progressions in random sets and recently I have become interested in problems involving graph limits, graphons and inhomogeneous random graphs. |
My main interests are random discrete structures and tail probability inequalities. I have contributed to progress on the Kim-Vu Sandwich Conjecture (and its extension to random hypergraphs) and the Upper Tail Problem for subgraph counts in the random graph G(n,p). Moreover, I have applied results of extremal hypergraph theory to obtain some optimal tail inequalities for sums of independent random variables. |