Photosynthetica, 2018 (vol. 56), issue 4

Photosynthetica 2018, 56(4):1123-1133 | DOI: 10.1007/s11099-018-0808-6

Comparative chloroplast proteome analysis of exogenously supplied trehalose to wheat seedlings under heat stress

Y. Luo1,*, H. Y. Liu1, Y. Z. Fan1, W. Wang1, Y. Y. Zhao1
1 Instruments Sharing Platform of School of Life Sciences, East China Normal University, Shanghai, China

The aim of our study was to investigate the underlying molecular mechanisms of exogenously supplied trehalose affecting wheat photosynthesis under heat stress. The amount of ATP synthase (ATPase), oxygen-evolving enhancer protein (OEE), PsbP, Rubisco, chloroplast fructose-bisphosphate aldolase (FBPA), and ferredoxin-NADP(H) oxidoreductase (FNR) were downregulated, while PSI reaction center subunits were upregulated under heat stress. However, in the trehalose-pretreated groups, the amount of FNR, cytochrome b6f complex, PSI reaction center subunits, ATPase, FBPA, and Rubisco were upregulated under normal growth conditions and heat stress. Besides, during the recovery period, the upregulation in CAB, PsbP, OEE2, and ATPase suggested that trehalose pretreatment might help to the recovery of PSII and PSI. These results indicate that trehalose pretreatment effectively regulates the levels of the photosynthesis-related proteins and relieves the damage of heat stress to wheat chloroplast.

Keywords: chlorophyll fluorescence; chloroplast; photosynthesis-related proteome; PSI activity

Received: January 31, 2017; Accepted: July 28, 2017; Prepublished online: December 1, 2018; Published: November 1, 2018Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Luo, Y., Liu, H.Y., Fan, Y.Z., Wang, W., & Zhao, Y.Y. (2018). Comparative chloroplast proteome analysis of exogenously supplied trehalose to wheat seedlings under heat stress. Photosynthetica56(4), 1123-1133. doi: 10.1007/s11099-018-0808-6.
Download citation

References

  1. Ahsan N., Donnart T., Nouri M.Z. et al.: Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach.-J. Proteome Res. 9: 4189-4204, 2010. Go to original source...
  2. Al-Naama M., Ewaze J.O., Green B.J. et al.: Trehalose accumulation in Baudoinia compniacensis following abiotic stress.-Int. Biodeter. Biodegr. 63: 765-768, 2009. Go to original source...
  3. Chi W.T., Fung R.W.M., Liu H.C. et al.: Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis.-Plant Cell Environ. 32: 917-927, 2009. Go to original source...
  4. El-Bashiti T., Hamamci H., Öktem H.A. et al.: Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions.-Plant Sci. 169: 47-54, 2005. Go to original source...
  5. Garg A.K., Kim J.K, Owens T.G. et al.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses.-P. Natl. Acad. Sci. USA 99: 15898-15903, 2002. Go to original source...
  6. Hu Z.H., Xu Y.N., Jiang G.Z. et al.: Degradation and inactivation of photosystem I complexes during linear heating.-Plant Sci. 166: 1177-1183, 2004 Go to original source...
  7. Ifuku K., Ido K., Sato F.: Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex.-J. Photoch. Photobio. B 104: 158-164, 2011. Go to original source...
  8. Ifuku K., Ishihara S., Shimamoto R. et al.: Structure, function, and evolution of the PsbP protein family in higher plants.-Photosynth. Res. 98: 427-437, 2008. Go to original source...
  9. Ifuku K., Yamamoto Y., Ono T.A. et al.: PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants.-Plant Physiol. 139: 1175-1184, 2005. Go to original source...
  10. IPCC (Intergovernmental Panel on Climate Change): Intergovernmental Panel on Climate Change Fourth Assessment Report: Climate Change 2007.-Synthesis Report. Pp. 30-31. World Meteorological Organization, Geneva 2008.
  11. Jin S.B.: Wheat cultivaters and their genealogy in China.-In: Jin S.B. (ed.): Wheat Cultivaters and their Genealogy in China (1st ed.). Pp. 112-115. China Agriculture Press, Beijing 1983.
  12. Katayama H., Nagasu T., Oda Y.: Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrixassisted laser desorption/ionization time-of-flight mass spectrometry.-Rapid Commun. Mass Sp. 15: 1416-1421, 2001. Go to original source...
  13. Kramer D.M., Johnson G., Kiirats O. et al.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.-Photosynth. Res. 79: 209-218, 2004. Go to original source...
  14. Laino P., Shelton D., Finnie C. et al.: Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress.-Proteomics 10: 2359-2368, 2010. Go to original source...
  15. Luo Y., Li F., Wang G.P. et al.: Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heatinduced damage.-Biol. Plantarum 54: 495-501, 2010. Go to original source...
  16. Luo Y., Li W.M., Wang W.: Trehalose: Protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress?-Environ. Exp. Bot. 63: 378-384, 2008. Go to original source...
  17. Lyu J.I., Min S.R., Lee J.H. et al.: Overexpression of a trehalose-6-phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato.-Plant Cell Tiss. Org. 112: 257-262, 2013. Go to original source...
  18. Majoul T., Bancel E., Triboï E. et al.: Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction.-Proteomics 4: 505-513, 2004. Go to original source...
  19. Mamedov M.D., Petrova I.O., Yanykin D.V. et al.: Effect of trehalose on oxygen evolution and electron transfer in photosystem 2 complexes.-Biochemistry-Moscow+ 80: 61-66, 2015. Go to original source...
  20. Martin W., Herrmann R.G.: Gene transfer from organelles to the nucleus: how much, what happens, and why?-Plant Physiol. 118: 9-17, 1998. Go to original source...
  21. Morgan-Kiss R., Ivanov A.G., Williams J. et al.: Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga.-BBA-Biomembranes 1561: 251-265, 2002. Go to original source...
  22. Pfündel E., Klughammer C., Schreiber U.: Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system.-PAM Appl. Notes 1: 21-24, 2008.
  23. Phee B.K., Cho J.H., Park S. et al.: Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress.-Proteomics 4: 3560-3568, 2004. Go to original source...
  24. Qiang X., Paulsen A.Q., Guikema J.A. et al.: Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation.-Environ. Exp. Bot. 35: 43-54, 1995.
  25. Richards A.B., Krakowka S., Dexter L.B. et al.: Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies.-Food Chem. Toxicol. 40: 871-898, 2002. Go to original source...
  26. Schreiber U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview.-In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll A Fluorescence. A Signature of Photosynthesis. Pp. 279-319. Springer, Dordrecht 2004. Go to original source...
  27. Silva J., Kim Y.J., Sukweenadhi J. et al.: Molecular characterization of 5-chlorophyll a/b -binding protein genes from Panax ginseng Meyer and their expression analysis during abiotic stresses.-Photosynthetica 54: 446-458, 2016. Go to original source...
  28. Szymanska R., Dluzewska J., Slesak I. et al.: Ferredoxin:NADP+ oxidoreductase bound to cytochrome b6f complex is active in plastoquinone reduction: implications for cyclic electron transport.-Physiol. Plantarum 141: 289-298, 2011 Go to original source...
  29. Wahid A., Gelani S., Ashraf M. et al.: Heat tolerance in plants: An overview.-Environ. Exp. Bot. 61: 199-223, 2007. Go to original source...
  30. Wang L., Liang W., Xing J. et al.: Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce.-J. Proteome Res. 12: 5124-5136, 2013. Go to original source...
  31. Wang X., Cai J., Jiang D. et al.: Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by postanthesis heat stress in wheat.-J. Plant Physiol. 168: 585-593, 2011. Go to original source...
  32. Wang Z.Y., Freire E., McCarty R.E.: Influence of nucleotide binding site occupancy on the thermal stability of the F1 portion of the chloroplast ATP synthase.-J. Biol. Chem. 268: 20785-20790, 1993.
  33. Wingler A., Paul M.: The role of trehalose metabolism in chloroplast development and leaf senescence.-In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Advances in Photosynthesis and Respiration. Pp. 551-565. Springer, New York 2013. Go to original source...
  34. Zhang H., Whitelegge J.P., Cramer W.A.: Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex.-J. Biol. Chem. 276: 38159-38165, 2001.
  35. Zhang L., Liu J.: Effects of heat stress on photosynthetic electron transport in a marine cyanobacterium Arthrospira sp.-J. Appl. Phycol. 28: 757-763, 2016. Go to original source...