Photosynthetica, 2015 (vol. 53), issue 1

Photosynthetica 2015, 53(1):72-84 | DOI: 10.1007/s11099-015-0086-5

Easy-to-make portable chamber for in situ CO2 exchange measurements on biological soil crusts

M. Ladrón De Guevara1,*, R. Lázaro1, J. L. Quero2,3, S. Chamizo1, F. Domingo1
1 Departamento de Desertificación y Geoecología, Estación Experimental de Zonas Áridas., Consejo Superior de Investigaciones Científicas (CSIC), La Cañada de San Urbano-Almería, Spain
2 Departamento de Ingeniería Forestal, Escuela Técnica Superior de Ingeniería Agronómica y de Montes (ETSIAM), Universidad de Córdoba, Córdoba, Spain
3 Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain

Commercial chambers for in vivo gas exchange are usually designed to measure on vascular plants, but not on cryptogams and other organisms forming biological soil crusts (BSCs). We have therefore designed two versions of a chamber with different volumes for determining CO2 exchange with a portable photosynthesis system, for three main purposes: (1) to measure in situ CO2 exchange on soils covered by BSCs with minimal physical and microenvironmental disturbance; (2) to acquire CO2-exchange measurements comparable with the most widely employed systems and methodologies; and (3) to monitor CO2 exchange over time. Different configurations were tested in the two versions of the chamber and fluxes were compared to those measured by four reference commercial chambers: three attached to two respirometers, and a conifer chamber attached to a portable photosynthesis system. Most comparisons were done on biologically crusted soil samples. When using devices in a closed system, fluxes were higher and the relationships to the reference chambers were weaker. Nevertheless, high correlations between our chamber operating in open system and measurements of commercial respiration and photosynthetic chambers were found in all cases (R 2 > 0.9), indicating the suitability of the chamber designed for in situ measurements of CO2 gas exchange on BSCs.

Keywords: chamber; cyanobacteria; infrared gas analyzer; lichen; moss; net photosynthesis; soil respiration

Received: December 6, 2013; Accepted: August 18, 2014; Published: March 1, 2015Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
De Guevara, M.L., Lázaro, R., Quero, J.L., Chamizo, S., & Domingo, F. (2015). Easy-to-make portable chamber for in situ CO2 exchange measurements on biological soil crusts. Photosynthetica53(1), 72-84. doi: 10.1007/s11099-015-0086-5.
Download citation

Supplementary files

Download filephs-201501-0010_S1.docx

File size: 1.87 MB

Download filephs-201501-0010_S2.docx

File size: 15.57 kB

Download filephs-201501-0010_S3.docx

File size: 15.5 kB

References

  1. Almagro M., López J., Querejeta J.I., Martínez-Mena M.: Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. - Soil Biol. Biochem. 41: 594-605, 2009. Go to original source...
  2. Arevalo C.B.M., Bhatti J.S., Chang S.X. et al.: Soil respiration in four different land use systems in north central Alberta, Canada. - J. Geophys. Res. 115: 1-12, 2010. Go to original source...
  3. Belnap J., Büdel B., Lange O.L.: Biological soil crusts: characteristics and distribution. - In: Belnap J., Lange O.L. (ed.): Biological Soil Crusts: Structure, Function and Management. Pp. 3-30. Springer, New York 2003. Go to original source...
  4. Bloom A.J., Mooney H.A., Björkman O., Berry J.A.: Materials and methods for carbon dioxide and water exchange analysis. - Plant Cell Environ. 3: 371-376, 1980. Go to original source...
  5. Botting R.S., Fredeen A.L.: Net ecosystem CO2 exchange for moss and lichen dominated forest floors of old-growth subboreal spruce forests in central British Columbia, Canada. - Forest Ecol. Manag. 235: 240-251, 2006. Go to original source...
  6. Bowling D.R., Grote E.E., Belnap J.: Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. - J. Geophys. Res. 116: 1-17, 2011. Go to original source...
  7. Bremer D.J., Ham J.M.: Measurement and partitioning of in situ carbon dioxide fluxes in turfgrasses using a pressurized chamber. - Agron. J. 97: 627-632, 2005. Go to original source...
  8. Brostoff W.N., Sharifi M.R., Rundel P.W.: Photosynthesis of cryptobiotic crusts in a seasonally inundated system of pans and dunes at Edwards Air Force Base, western Mojave desert, California: Laboratory Studies. - Flora 197: 143-151, 2002. Go to original source...
  9. Brostoff W.N., Sharifi M.R., Rundel P.W.: Photosynthesis of cryptobiotic soil crusts in a seasonally inundated system of pans and dunes in the western Mojave Desert, CA: Field studies. - Flora 200: 592-600, 2005. Go to original source...
  10. Büdel B., Colesie C., Green T.G.A. et al.: Improved appreciation of the functioning and importance of biological soil crusts in Europe - the Soil Crust International project (SCIN). - Biodivers. Conserv. 23: 1639-1658, 2014. Go to original source...
  11. Carstairs A.G., Oechel W.C.: Effects of several microclimatic factors and nutrients on net carbon dioxide exchange in Cladonia alpestris. - Arctic Alpine Res. 10: 81-94, 1978. Go to original source...
  12. Castillo-Monroy A.P., Maestre F.T., Rey A. et al.: Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. - Ecosystems 14: 835-847, 2011. Go to original source...
  13. Chen S., Lin G., Huang J., He M.: Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes. - J. Plant Ecol. 1: 237-246, 2008. Go to original source...
  14. Cocker D.R. III, Flagan R.C., Seinfeld J.H.: State-of-the-art chamber facility for studying atmospheric aerosol chemistry. - Environ. Sci. Technol. 35: 2594-2601, 2001. Go to original source...
  15. Conen F., Smith K.A.: An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere. - Eur. J. Soil Sci. 51: 111-117, 2000. Go to original source...
  16. Cox P.M., Betts R.A., Jones C.D. et al.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. - Nature 408: 184-187, 2000. Go to original source...
  17. Davidson E.A., Savage K., Verchot L.V., Navarro R.: Minimizing artifacts and biases in chamber-based measurements of soil respiration. - Agric. Forest Meteorol. 113: 21-37, 2002. Go to original source...
  18. Dring M.J., Brown F.A.: Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. - Mar. Ecol.-Prog. Ser. 68: 301-308, 1982. Go to original source...
  19. Elbert W., Weber B., Burrows S. et al.: Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. - Nat. Geosci. 5: 459-462, 2012. Go to original source...
  20. Escolar C., Martínez I., Bowker M.A., Maestre F.T.: Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. - Philos. T. R. Soc. B 367: 3087-3099, 2012. Go to original source...
  21. Fang C., Moncrieff J.B.: An improved dynamic chamber technique for measuring CO2 efflux from the surface of soil. - Funct. Ecol. 10: 297-305, 1996. Go to original source...
  22. Fang C., Moncrieff J.B.: An open-top chamber for measuring soil respiration and the influence of pressure difference on CO2 efflux measurement. - Funct. Ecol. 12: 319-325, 1998. Go to original source...
  23. Field C.B., Ball J.T., Berry J.A.: Photosynthesis: principles and field techniques. - In: Pearcy R.W., Ehleringer J.R., Mooney H.A., Rundel, P.W. (ed.): Plant Physiological Ecology. Field Methods and Instrumentation. Pp. 209-253. Chapman and Hall, New York 1989. Go to original source...
  24. Freijer J.I., Bouten W.: A Comparison of Field Methods for Measuring Soil Carbon Dioxide Evolution: Experiments and Simulation. - Plant Soil 135: 133-142, 1991. Go to original source...
  25. Friedlingstein P., Cox P., Betts R. et al.: Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. - J. Climate 19: 3337-3353, 2006. Go to original source...
  26. Friedmann E.I., Kappen L., Meyer M.A., Nienow J.A.: Longterm productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. - Microb. Ecol. 25: 51-69, 1993. Go to original source...
  27. Gao F., Yates S.R.: Simulation of enclosure-based methods for measuring gas emissions from soil to the atmosphere. - J. Geophys. Res. 103: 26127-26136, 1998. Go to original source...
  28. Grote E.E., Belnap J., Housman D.C., Sparks J.P.: Carbon exchange in biological soil crust communities under differential temperatures and soil water content: implications for global change. - Glob. Change Biol. 16: 2763-2774, 2010. Go to original source...
  29. Healy R.W., Striegl R.G., Russell T.F. et al.: Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: identification of physical processes. - Soil Sci. Soc. Am. J. 60: 740-747, 1996. Go to original source...
  30. Hutchinson G.L., Mosier A.R.: Improved soil cover method for field measurement of nitrous oxide fluxes. - Soil Sci. Soc. Am. J. 45: 311-316, 1981. Go to original source...
  31. Hutchinson G.L., Livingston G.P., Healy R.W., Striegl R.G.: Chamber measurement of surface-atmosphere trace gas exchange: numerical evaluation of dependence on soil, interfacial layer, and source/sink properties. - J. Geophys. Res.-Atmos. 105: 8865-8875, 2000. Go to original source...
  32. Janssens I.A., Kowalski A.S., Longdoz B., Ceulemans R.: Assessing forest soil CO2 efflux: an in situ comparison of four techniques. - Tree Physiol. 20: 23-32, 2000. Go to original source...
  33. Kanemasu E.T., Powers W.L., Sij J.W.: Field chamber measurements of CO2 efflux from soil surface. - Soil Sci. 118: 233-237, 1974. Go to original source...
  34. Kershaw K.A.: Physiological-environmental interactions in lichens. II. The pattern of net photosynthetic acclimation in Peltigera canina (L.). Willd. var. praetextata (Floerke in Somm.) Hue, and Peltigera polydactyla (Neck.) Hoffm. - New Phytol. 79: 377-390, 1977. Go to original source...
  35. Kesselmeier J., Schäfer L., Ciccioli P. et al.: Emission of monoterpenes and isoprene from a Mediterranean oak species Quercus ilex L. measured within the BEMA (Biogenic Emissions in the Mediterranean Area) project. - Atmos. Environ. 30: 1841-1850, 1996.
  36. Ladrón de Guevara M., Lázaro R., Quero J.L. et al.: Simulated climate change reduced the capacity of lichen-dominated biocrusts to act as carbon sinks in two semi-arid Mediterranean ecosystems. - Biodivers. Conserv. 23: 1787-1807, 2014.
  37. Lange O.L.: Photosynthesis of soil-crust biota as dependent on environmental factors. - In: Belnap J., Lange O.L. (ed): Biological Soil Crusts: Structure, Function and Management. Pp. 217-240. Springer, New York 2003. Go to original source...
  38. Lange O.L., Kilian E., Ziegler H.: Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. - Oecologia 71: 104-110, 1986. Go to original source...
  39. Lange O.L., Kidron G.J., Büdel B. et al.: Taxonomic composition and photosynthetic characteristic of the 'biological soil crusts' covering sand dunes in the western Negev Desert. - Funct. Ecol. 6: 519-527, 1992. Go to original source...
  40. Lange O.L., Belnap J., Reichenberger H., Meyer A.: Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: Role of water content on light and temperature responses of CO2 exchange. - Flora 192: 1-15, 1997. Go to original source...
  41. Lange O.L., Green T.G., Heber U.: Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? - J. Exp. Bot. 52: 2033-2042, 2001. Go to original source...
  42. Langensiepen M., Kupisch M., van Wijk M.T., Ewert F.: Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing. - Agric. Forest Meteorol. 164: 61-70, 2012. Go to original source...
  43. Le Dantec V., Epron D., Dufrêne E.: Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. - Plant Soil 214: 125-132, 1999. Go to original source...
  44. Li X.R., Zhang P., Su Y.G., Jia R.L.: Carbonfixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study. - Catena 97: 119-126, 2012. Go to original source...
  45. LI-COR: Interfacing custom chambers to the LI-6400 sensor head. LI-6400 Application note 3. Pp. 8. LI-COR Biosciences Inc., Lincoln 2003.
  46. LI-COR: Using the LI-6400/LI-6400XT Portable Photosynthesis system. Version 6.2. LI-COR Biosciences Inc., Lincoln 2012.
  47. Livingston G.P., Hutchinson G.L.: Enclosure-based measurement of trace gas exchange: applications and sources of error. - In: Matson P.A., Harriss R.C. (ed): Biogenic Trace Gases: Measuring Emissions from Soil and Water. Pp. 14-51. Blackwell Scientific Publications, Oxford 1995.
  48. Livingston G.P., Hutchinson G.L., Spartalian K.: Diffusion theory improves chamber-based measures of trace gas emissions. - Geophys. Res. Lett. 32: L24817, 2005. Go to original source...
  49. Lund C.P., Riley W.J., Pierce L.L., Field C.B.: The effects of chamber pressurization on soil-surface CO2 flux and implications for NEE measurements under elevated CO2. - Glob. Change Biol. 5: 269-281, 1999. Go to original source...
  50. Madsen R.A., Demetriades-Shah T.H., Garcia R.L., McDermitt D.K.: Soil CO2 Flux Measurements: Comparisons Between the LI-COR LI-6400 and LI-8100. Li-6400 Technical Document. Pp. 4. LI-COR Biosciences Inc, Lincoln 2008.
  51. Maestre F.T., Escolar C., Ladrón de Guevara M. et al.: Changes in biocrust cover drive carbon cycle responses to climate change in drylands. - Glob. Change Biol. 19: 3835-3847, 2013. Go to original source...
  52. Magnani F., Mencuccini M., Borghetti M. et al.: The human footprint in the carbon cycle of temperate and boreal forests. - Nature 447: 848-851, 2007. Go to original source...
  53. Matthias A.D., Blackmer A.M., Bremner J.M.: A simple chamber technique for field measurement of emissions of nitrous oxide from soils. - J. Environ. Qual. 9: 251-256, 1980. Go to original source...
  54. Millan-Almaraz J.R., Guevara-Gonzalez R.G., Romero-Troncoso R.J. et al.: Advantages and disadvantages on photosynthesis measurement techniques: A review. - Afr. J. Biotechnol. 8: 7340-7349, 2009.
  55. Mosier A.R.: Chamber and isotope techniques. - In: Andreae M.O., Schimel D.S., Robertson G.P. (ed.): Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Pp. 175-187. John Wiley and Sons, Chinchester 1989.
  56. Nakayama F.S.: Soil respiration. - Remote Sens. Rev. 5: 311-321, 1990. Go to original source...
  57. Norman J.M., Kucharik C.J., Gower S.T. et al.: A comparison of six methods for measuring soil-surface carbon dioxide fluxes. - J. Geophys. Res. 102: 28771-28777, 1997. Go to original source...
  58. Oyonarte C., Rey A., Raimundo J. et al.: The use of soil respiration as an ecological indicator in arid ecosystems of the SE of Spain: spatial variability and controlling factors. - Ecol. Indic. 14: 40-49, 2012. Go to original source...
  59. Pumpanen J., Kolari P., Ilvesniemi H., et al.: Comparison of different chamber techniques for measuring soil CO2 efflux. - Agr. Forest Meteorol. 123: 159-176, 2004. Go to original source...
  60. Raich J.W., Schlesinger W.H.: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. - Tellus 44: 81-99, 1992. Go to original source...
  61. Rayment M.B., Jarvis P.G.: An improved open chamber system for measuring soil CO2 effluxes in the field. - J. Geophys. Res. 102: 28779-28784, 1997. Go to original source...
  62. Rey A., Pegoraro E., Tedeschi V. et al.: Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. - Glob. Change Biol. 8: 851-866, 2002. Go to original source...
  63. Rey A., Pegoraro E., Oyonarte C. et al.: Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain. - Soil Biol. Biochem. 43: 393-403, 2011. Go to original source...
  64. Rolston D.E., Fried M., Goldhamer D.A.: Denitrification measured directly from nitrogen and nitrous oxide gas fluxes. - Soil Sci. Soc. Am. J. 40: 259-266, 1976.
  65. Ryden J.C., Lund L.J., Focht D.D.: Direct in-field measurement of nitrous oxide flux from soils. - Soil Sci. Soc. Am. J. 42: 731-737, 1978. Go to original source...
  66. Schipperges B., Rydin H.: Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. - New Phytol. 140: 677-684, 1998. Go to original source...
  67. Schlesinger W.H.: Carbon balance in terrestrial detritus. - Ann. Rev. Ecol. Syst. 8: 51-81, 1977. Go to original source...
  68. Schroeter B., Sancho L.G., Valladares F.: In situ comparison of daily photosynthetic activity patterns of saxicolous lichens and mosses in Sierra de Guadarrama, central Spain. - Bryologist 102: 623-633, 1999. Go to original source...
  69. Sebacher D.I., Harriss R.C.: A system for measuring methane fluxes from inland and coastal wetland environments. - J. Environ. Qual. 11: 34-37, 1982. Go to original source...
  70. Sitch S., Smith B., Prentice I.C. et al.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. - Glob. Change Biol. 9: 161-185, 2003. Go to original source...
  71. Snelgar W.P., Brown D.H., Green T.G.A.: Provisional survey interaction between photosynthetic rate, respiratory rate and thallus water content in some New Zealand cryptogams. - New Zeal. J. Bot. 18: 247-256, 1980.
  72. Tang J.W., Bolstad P.V., Martin J.G.: Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. - Glob. Change Biol. 15: 145-155, 2009. Go to original source...
  73. Vourlitis G.L., Oechel W.C., Hastings S.J., Jenkins M.A.: A system for measuring in situ CO2 and CH4 flux in unmanaged ecosystems: an Arctic example. - Chemosphere 26: 329-337, 1993. Go to original source...
  74. Welles J.M., Demetriades-Shah T.H., McDermitt D.K.: Considerations for measuring ground CO2 effluxes with chambers. - Chem. Geol. 177: 3-13, 2001. Go to original source...
  75. Wilske B., Burgheimer J., Karnieli A. et al.: The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel. - Biogeosciences 5: 1411-1423, 2008. Go to original source...
  76. Zaady E., Kuhn U., Wilske B. et al.: Patterns of CO2 exchange in biological soil crusts of successional age. - Soil Biol. Biochem. 32: 959-966, 2000. Go to original source...