Photosynthetica, 2020 (vol. 58), SPECIAL ISSUE

Photosynthetica 2020, 58(SI):293-300 | DOI: 10.32615/ps.2019.147

Special issue in honour of Prof. Reto J. Strasser – Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice

P. FASEELA1, A.K. SINISHA1, M. BRESTIČ2, J.T. PUTHUR1
1 Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, India
2 Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic

The aim of this study was to evaluate the validity of some chlorophyll (Chl) a fluorescence parameters as early indicators of a particular abiotic stress and also to characterize the effect of different abiotic stresses [high light, NaCl, polyethylene glycol (PEG)-induced osmotic stress, and heavy metals] on the electron transport chain of rice (Oryza sativa L.) seedlings. The results clearly revealed that Chl a fluorescence parameters differ between abiotic stress types and also allowed us to select some parameters which were specifically and intensively affected under different abiotic stresses. We observed that the performance index is a common sensitive parameter to evaluate the effect of above four different abiotic stresses in rice seedlings. Certain Chl a fluorescence parameters were significant for a specific stress. The ratio between the rate constants of photochemical and nonphotochemical deactivation of excited Chl molecules (FV/F0) was prominently decreasing and the maximum quantum yield of nonphotochemical deexcitation was prominently increasing upon exposure to high light stress. The maximum quantum yield of electron transport and the electron transport from PSII donor side to PSII reaction center was highly reduced under NaCl stress in rice seedlings. Moreover, FV/F0 and PSII structure function index were prominently decreasing and the dissipation per cross section was significantly enhancing under PEG stress. The pool size of reduced plastoquinone on the reducing side of PSII [total complementary area between the fluorescence induction curve and maximal chlorophyll fluorescence (FM)], FM, and the probability by which electrons move from PSII to PSI acceptor side were significantly decreasing under heavy metal stress.

Additional key words: JIP-test; photosynthesis; plant efficiency analyzer.

Received: June 11, 2019; Accepted: November 5, 2019; Prepublished online: December 17, 2019; Published: May 28, 2020Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
FASEELA, P., SINISHA, A.K., BRESTIČ, M., & PUTHUR, J.T. (2020). Special issue in honour of Prof. Reto J. Strasser – Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica58(SPECIAL ISSUE), 293-300. doi: 10.32615/ps.2019.147.
Download citation

References

  1. Acosta-Motos J.R., Ortuño M.F., Bernal-Vicente A. et al.: Plant responses to salt stress: adaptive mechanisms. - Agronomy 7: 18, 2017. Go to original source...
  2. Asrar H., Hussain T., Hadi S.M.S. et al.: Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata L. Staph. - Environ. Exp. Bot. 135: 86-95, 2017. Go to original source...
  3. Bacarin M.A., Deuner S., da Silva F.S.P. et al.: Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L. - Braz. J. Plant Physiol. 23: 245-253, 2011. Go to original source...
  4. Batra N.G., Sharma V., Kumari N.: Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. - J. Plant Interact. 9: 712-721, 2014. Go to original source...
  5. Brestič M., Živčák M.: PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. - In: Rout G.R., Das A.B. (ed.): Molecular Stress Physiology of Plants. Pp. 87-131. Springer, New Delhi 2013. Go to original source...
  6. Dąbrowski P., Baczewska A.H., Pawluśkiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass. - J. Photoch. Photobio. B. 157: 22-31, 2016. Go to original source...
  7. Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji M.H. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors-Basel 19: 2736, 2019. Go to original source...
  8. Dąbrowski P., Kalaji M.H., Baczewska A.H. et al.: Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. - J. Lumin. 183: 322-333, 2017. Go to original source...
  9. Dąbrowski P., Pawluśkiewicz B., Baczewska A.H. et al.: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. - Zemdirbyste 102: 305-312, 2015. Go to original source...
  10. Dresselhaus T., Hückelhoven R.: Biotic and abiotic stress responses in crop plants. - Agronomy 8: 267, 2018. Go to original source...
  11. Faseela P., Puthur J.T.: Chlorophyll a fluorescence changes in response to short and long term high light stress in rice seedlings. - Indian J. Plant Physi. 22: 30-33, 2017. Go to original source...
  12. Faseela P., Puthur J.T.: The imprints of the high light and UV-B stresses in Oryza sativa L. 'Kanchana' seedlings are differentially modulated. - J. Photoch. Photobio. B. 178: 551-559, 2018. Go to original source...
  13. Feng B., Liu P., Li G. et al.: Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain filling stage of different heat resistant winter wheat varieties. - J. Agron. Crop Sci. 200: 143-155, 2014. Go to original source...
  14. Fiorucci A.S., Fankhauser C.: Plant strategies for enhancing access to sunlight. - Curr. Biol. 27: 931-940, 2017. Go to original source...
  15. Grover A., Minhas D.: Towards production of abiotic stress tolerant transgenic rice plants: issues, progress and future research needs. - P. Natl. A. Sci. India B 66: 13-32, 2000.
  16. Hassan I.A., Basahi J.M., Ismail I.M.: Gas exchange, chlorophyll fluorescence and antioxidants as bioindicators of airborne heavy metal pollution in Jeddah, Saudi Arabia. - Curr. World Environ. 8: 203-213, 2013. Go to original source...
  17. Hniličková H., Hnilička F., Martinková J., Kraus K.: Effects of salt stress on water status, photosynthesis and chlorophyll fluo- rescence of rocket. - Plant Soil Environ. 63: 362-367, 2017.
  18. Kalaji H.M., Bosa K., Kościelniak J., Hossain Z.: Chlorophyll a fluorescence - a useful tool for the early detection of temperature stress in spring barley, Hordeum vulgare L. - Omics 15: 925-934, 2011b. Go to original source...
  19. Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K.: Fluorescence parameters as early indicators of light stress in barley. - J. Photoch. Photobio. B. 112: 1-6, 2012. Go to original source...
  20. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011a. Go to original source...
  21. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluores-cence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  22. Kalaji H.M., Loboda T.: Photosystem II of barley seedlings under cadmium and lead stress. - Plant Soil Environ. 53: 511-516, 2007.
  23. Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. - Plant Physiol. Bioch. 81: 16-25, 2014. Go to original source...
  24. Kalaji H.M., Rastogi A., Živčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  25. Kalaji H.M., Schansker G., Brestič M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. - Photosynth. Res. 132: 13-66, 2017. Go to original source...
  26. Kasajima I.: Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis. - BMC Res. Notes 10: 168, 2017. Go to original source...
  27. Kasajima I., Takahara K., Kawai-Yamada M., Uchimiya H.: Estimation of the relative sizes of rate constants for chloro-phyll de-excitation processes through comparison of inverse fluorescence intensities. - Plant Cell Physiol. 50: 1600-1616, 2009. Go to original source...
  28. Khatri K., Rathore M.S.: Photosystem photochemistry, prompt and delayed fluorescence, photosynthetic responses and electron flow in tobacco under drought and salt stress. - Photosynthetica 57: 61-74, 2019. Go to original source...
  29. Krasteva V., Alexandrov V., Chepisheva M. et al.: Drought induced damages of photosynthesis in bean and plantain plants analyzed in vivo by chlorophyll a fluorescence. - Bulg. J. Agric. Sci. 19: 39-44, 2013.
  30. Küpper H., Benedikty Z., Morina F. et al.: Analysis of OJIP chlorophyll fluorescence kinetics and QA reoxidation kinetics by direct fast imaging. - Plant Physiol. 179: 369-381, 2019. Go to original source...
  31. Lepeduš H., Brkić I., Cesar V. et al.: Chlorophyll fluorescence analysis of photosynthetic performance in seven maize inbred lines under water-limited conditions. - Period. Biol. 114: 73-76, 2012.
  32. Martinazzo E.G., Ramm A., Bacarin M.A.: The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. - Braz. J. Plant Physiol. 24: 237-246, 2013. Go to original source...
  33. Mathur S., Kalaji H.M., Jajoo. A.: Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. - Photosynthetica 54: 185-192, 2016. Go to original source...
  34. Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. - Plant Physiol. Bioch. 48: 16-20, 2010. Go to original source...
  35. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  36. Nagajyoti P.C., Lee K.D., Sreekanth T.V.M.: Heavy metals, occurrence and toxicity for plants: a review. - Environ. Chem. Lett. 8: 199-216, 2010. Go to original source...
  37. Paunov M., Koleva L., Vassilev A. et al.: Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. - Int. J. Mol. Sci. 19: 787, 2018. Go to original source...
  38. Puteh A.B., Saragih A.A., Ismail M.R., Mondal M.M.A.: Chlorophyll fluorescence parameters of cultivated (Oryza sativa L. ssp. indica) and weedy rice (Oryza sativa L. var. nivara) genotypes under water stress. - Aust. J. Crop Sci. 7: 1277-1283, 2013.
  39. Rastogi A., Živčák M., Tripathi D.K. et al.: Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. - Photosynthetica 57: 209-216, 2019. Go to original source...
  40. Rodziewicz P., Swarcewicz B., Chmielewska K. et al.: Influence of abiotic stresses on plant proteome and metabolome changes. - Acta Physiol. Plant. 36: 1-19, 2014. Go to original source...
  41. Silvestre S., de Sousa Araújo S., Vaz Patto M.C., Marques da Silva J.: Performance index: an expeditious tool to screen for improved drought resistance in the Lathyrus genus. - J. Integr. Plant Biol. 56: 610-621, 2014. Go to original source...
  42. Šprtová M., Nedbal L., Marek M.V.: Effect of enhanced UV-B radiation on chlorophyll a fluorescence parameters in Norway spruce needles. - J. Plant Physiol. 156: 234-241, 2000.
  43. Stirbet A., Govindjee: On the relation between the Kautsky effect, chlorophyll a fluorescence induction and photosystem II: basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B. 104: 236-257, 2011. Go to original source...
  44. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  45. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores- cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor and Francis, London 2000.
  46. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  47. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a fluorescence. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  48. Swoczyna T., Kalaji H.M., Pietkiewicz S. et al.: Photosynthetic apparatus efficiency of eight tree taxa as an indicator of their tolerance to urban environment. - Dendrobiology 63: 65-75, 2010.
  49. Yamane K., Kawasaki M., Taniguchi M., Miyake H.: Correlation between chloroplast ultrastructure and chlorophyll fluores-cence characteristics in the leaves of rice, Oryza sativa L. grown under salinity. - Plant Prod. Sci. 11: 139-145, 2008. Go to original source...
  50. Yamane K., Rahman M.S., Kawasaki M. et al.: Pretreatment with antioxidants decreases the effects of salt stress on chloroplast ultrastructure in rice leaf segments, Oryza sativa L. - Plant Prod. Sci. 7: 292-300, 2004. Go to original source...
  51. Yan K., Chen P., Shao H. et al.: Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. - PLoS ONE 8: e62100, 2013. Go to original source...
  52. Zhang T., Gong H., Wen X., Lu C.: Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. - J. Plant Physiol. 167: 951-958, 2010. Go to original source...
  53. Živčák M., Brestič M., Balatová Z. et al.: Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. - Photosynth. Res. 117: 529-546, 2013. Go to original source...
  54. Živčák M., Brestič M., Olšovská K.: Application of photosyn-thetic parameters in screening of wheat, Triticum aestivum L. genotypes for improved drought and high temperature tolerance. - In: Allen J.F., Gantt E., Goldbeck J.H., Osmond B. (ed.): Photosynthesis: Energy from the Sun. Pp. 1247-1250. Springer, Dordrecht 2008a. Go to original source...
  55. Živčák M., Brestič M., Olšovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. - Plant Soil Environ. 54: 133-139, 2008b.
  56. Živčák M., Olšovská K., Slamka P. et al.: Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. - Plant Soil Environ. 60: 210-215, 2014.
  57. Żurek G., Rybka K., Pogrzeba M. et al.: Chlorophyll a fluo-rescence in evaluation of the effect of heavy metal soil conta-mination on perennial grasses. - PLoS ONE 9: e91475, 2014.