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Abstract 
 
Salt stress causes decrease in plant growth and productivity by disrupting physiological processes, especially photosyn-
thesis. The accumulation of intracellular sodium ions at salt stress changes the ratio of K : Na, which seems to affect the 
bioenergetic processes of photosynthesis. Both multiple inhibitory effects of salt stress on photosynthesis and possible 
salt stress tolerance mechanisms in cyanobacteria and plants are reviewed. 
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General introduction 
 
Salt stress is a major abiotic stress problem in arid and 
semi-arid regions and irrigation areas. Approximately 
7 % of the world’s land area, 20 % of the world’s cultiva-
ted land, and nearly half of the irrigated land is affected 
with high salt contents (Rhoades and Loveday 1990, 
Szabolcs 1994). High salt contents can influence physio-
logical processes of both cyanobacteria and plants. Most 
plants are non-halophytes, with either a relatively low salt 
tolerance or severely inhibited growth at low salinity 
levels. Plant species differ awfully in the growth response 
to salinity (Batterton and Van Baalen 1971, Downton 
1982, Moisender et al. 2002, Sheekh et al. 2002). 

Salt stress affects plant physiology at both whole-
plant and cellular levels through osmotic and ionic stress 
(Joset et al. 1996, Hayashi and Murata 1998, Hasegawa 
et al. 2000, Muranaka et al. 2002a,b, Ranjbarfordoei  
et al. 2002, Murphy et al. 2003). Osmotic stress is linked 
to salt stress: salt stress involves an excess of sodium ions 
whereas osmotic stress is primarily due to a deficit of wa-
ter without a direct role of sodium ions (Hsiao 1986, 
Joset et al. 1996, Munns 2002). Ionic imbalance occurs in 

the cells due to excessive accumulation of Na+ and Cl– 
and reduces uptake of other mineral nutrients, such as K+, 
Ca2+, and Mn2+ (Ball et al. 1987, Hasegawa et al. 2000). 
The accumulation of toxic amounts of salts in the leaf 
apoplasm leads to dehydration and turgor loss, and death 
of leaf cells and tissues (Marschner 1995). Both the dehy-
dration of cells and high sodium to potassium ratio due to 
accumulation of high amounts of sodium ions inactivate 
enzymes and affect metabolic processes in plants (Booth 
and Beardall 1991). 

Salt stress has various effects on plant physiological 
processes such as increased respiration rate and ion toxi-
city, changes in plant growth, mineral distribution, mem-
brane instability resulting from calcium displacement by 
sodium (Marschner 1986), membrane permeability 
(Gupta et al. 2002), and decreased efficiency of photo-
synthesis (Boyer 1976, Downton 1977, Kirst 1989, 
Hasegawa et al. 2000, Munns 2002, Ashraf and Shahbaz 
2003, Kao et al. 2003, Sayed 2003). In this article we re-
view the effects of salts stress on bioenergetic processes 
of photosynthesis. 

 
Organization of photosynthetic electron transport system and function 

 
Photosynthetic electron transport, a light-driven redox 
process involves the conversion of photon energy into the 
chemical energy. The site of photosynthetic electron 
transport is thylakoid membrane. In higher plants thyla-
koid membranes are located in the chloroplast, whereas in 
cyanobacteria these membranes are dispersed in the 
cytosol of intact cells. Four multi-protein complexes em-

bedded in the thylakoid membranes are involved in the 
electron transport process: photosystem 2 (PS2), cyto-
chrome (Cyt) b6/f, photosystem 1 (PS1), and ATP syntha-
se complex. In addition to these, two mobile electron car-
riers, namely plastoquinone (PQ) and plastocyanin (PCy), 
are also involved in this electron transport. Both photo-
systems (PS1 and PS2) are pigment-protein complexes. 
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PS2 primarily mediates non-cyclic electron transport 
from water to PQ. PS2 contains chlorophyll (Chl), pheo-
phytin (Pheo), β-carotene, P680, quinone acceptors (QA 
and QB), and several intrinsic and extrinsic proteins of 
water oxidation complex. These electrons transfer from 
PQ pool to the cytochrome (Cyt) b6/f complex. PS1 con-
tains Chl a, P700, β-carotene, and several intrinsic and 
extrinsic polypeptides. P700 in PS1 enables it to pick up 

electrons from the Cyt b6/f complex by way of PCy and 
raise them to a sufficiently high redox potential that,  
after passing through ferredoxin, can reduce NADP+ to 
NADPH. The use of artificial electron donors, acceptors, 
and inhibitors has led to understanding the functions of 
chloroplasts. The sites of action of commonly used do-
nors, acceptors, and inhibitors are as follows (compiled 
from Trebst 1974 and Murthy and Rajagopal 1995): 

 

          a1    a2             a3 
 in1       ↑ in2 ↑    in3      in4      ↑ in5 

H2O → Z → P680 → Pheo → QA → QB → PQ → Cyt b6f → PCy → P700 → X → NADH+  
      ↑d1     ↑d2  ↑d3 
 

where acceptors are a1: silicomolybdic acid; a2: phenyle-
nediamine, p-benzoquinone, 2,5-dimethyl-p-benzoquino-
ne, and 2,5-dichloro-p-benzoquinone; a3: methylviolo-
gen, anthraquinone, ferricyanide. Donors are d1: cate-
chol, ascorbate, H2O2, diphenylcarbazide, NH2OH; d2: 

duroquinol; d3: diaminodurene; dichlorophenolindophe-
nol, tetramethyl phenyldurene. All are reduced by ascor-
bate. Inhibitors are in1: NH2OH; in2: diuron; in3: dibro-
mothymoquinone; in4: KCN and HgCl2; in5: DSPD. 

 
Salt stress effects on photosynthesis 
 
Photosynthetic pigments: In higher plants, Chl content 
decreases in salt susceptible plants such as tomato 
(Lapina and Popov 1970), potato (Abdullah and Ahmed 
1990), pea (Hamada and El-Enany 1994), and Phaseolus 
vulgaris (Seemann and Critchley 1985). But Chl content 
has been increased in salt tolerant plants such as pearl 
millet (Reddy and Vora 1986), mustard (Singh et al. 
1990), and wheat (Kulshreshtha et al. 1987). Content of 
carotenoids (Cars) increased in rice plants under salt 
stress (Misra et al. 1997) and decreased in black cumin 
(Hajar et al. 1996). 

Similarly, various response of Chl content to salt 
stress was found in some cyanobacteria. In Synechocystis 
sp. PCC 6803, at moderate (342 mM) NaCl concentration 
the Chl a content increased while at 684 or 1 026 mM it 
sharply decreased (Schubert and Hagemann 1990, 
Schubert et al. 1993). However, no change in Chl a con-
tent was observed in Spirulina platensis grown under 
0.8 M NaCl (Verma and Mohanty 2000a, Lu and 
Vonshak 2002). In Synechocystis sp. PCC 6803, Schubert 
et al. (1993) found an increase in Cars content in respon-
se to high salinity (1 026 mM NaCl), namely in echine-
none, oscillaxanthin, and myxoxanthophyll, while β-caro-
tene showed only small differences. This increased Car 
content might diminish the amount of photons available 
for the absorption by Chl a by shadowing and thus, irra-
diance can act as secondary stress factor. 

In cyanobacteria, phycobiliproteins (PBPs) that are 
attached to the stromal surface of thylakoid membranes 
serve as the primary light-harvesting antenna for PS2. 
The composition and function of PBPs in cyanobacteria 
changed in response to stress conditions (Grossman et al. 
1993). Salt stress mainly decreases the content of phyco-
cyanin and thereby interrupts the energy transfer from 
PBPs to PS2 reaction centre (Schubert and Hagemann 

1990, Schubert et al. 1993, Lu et al. 1999, Lu and 
Vonshak 2002). Sodium stress due to the addition of 
NaCl, NaNO3, and NaHCO3 caused decrease in the 
energy transfer from allophycocyanin to PS2 in Sp. 
platensis (Verma and Mohanty 2000b). 

 
Photosynthetic electron transport reactions: Salt stress 
increases the accumulation of NaCl in chloroplasts of 
higher plants or in the cytoplasm of cyanobacterial cells, 
affects growth rate, and is often associated with decrease 
in photosynthetic electron transport activities in photo-
synthesis (Boyer 1976, Kirst 1989). In higher plants, salt 
stress inhibits PS2 activity (Mishra et al. 1991, Masojídek 
and Hall 1992, Belkhodja et al. 1994, Everard et al. 1994, 
Singh and Dubey 1995,  Tiwari et al. 1997, Kao et al. 
2003, Parida et al. 2003). In some studies salt stress had 
no effect on PS2 (Robinson et al. 1983, Brugnoli and 
Björkman 1992, Morales et al. 1992). The PS2 inhibition 
under salt stress was characterized by Misra et al. (1999). 
In some reports, the PS2 activity was decreased in re-
sponse to salt stress due to the dissociation of 23 kDa 
polypeptide extrinsically bound to PS2 (Kuwabara and 
Murata 1982, Miyao and Murata 1983, Murata et al. 
1992). 

In cyanobacteria, various salt stress conditions stimu-
late the rate of respiration (Jeanjean et al. 1993, Lu and 
Vonshak 1999) and PS1 activity (Joset et al. 1996), and 
impair the rate of photosynthesis (Vonshak et al. 1988, 
1995, Zeng and Vonshak 1998). Salt stress inhibited PS2 
mediated oxygen evolution activity in Synechocystis sp. 
PCC 6803 (Schubert and Hagemann 1990, Schubert et al. 
1993). Allakhverdiev et al. (2000) showed that the chan-
ges in K/N ratio inactivated both PS2 and PS1 in Syne-
chococcus cells. Restoration of PS2 activity by diphenyl-
carbazide (DPC), an artificial electron donor to PS2 in 



EFFECTS OF SALT STRESS ON BASIC PROCESSES OF PHOTOSYNTHESIS 

483 

salt treated cyanobacterial thylakoids, suggests that water 
splitting complex is the site of action of salt stress in Sy-
nechococcus cells (Allakhverdiev et al. 2000). However, 
in some cyanobacteria the PS2 reaction centre is the 
target for salt stress. Depending on the environment, both 
the water oxidation complex and PS2 reaction centres (in-
crease in the number of QB non-reducing sites) are targets 
for salt stress in S. platensis (Lu et al. 1999, Lu and 
Vonshak 2002). Recently, Allakhverdiev et al. (2002) re-
ported for Synechocystis that the combination of light and 
salt stress inactivated PS2 activity; particularly, salt stress 
inhibited the de novo synthesis of proteins, specifically 
the synthesis of D1 protein of PS2. 

In cyanobacteria and eukaryotic algae, salt stress in-
creased electron transport activity of PS1 (Gilmour et al. 
1985, Canaani 1990, Fork and Herbert 1993, Jeanjean  
et al. 1993, Endo et al. 1995, Hibino et al. 1996, Lu and 
Vonshak 1999). Upon a shift to high salt stress, the 
amount of P700 and PS1 reaction centres was increased 
in Synechocystis sp. PCC 6803 (Jeanjean et al. 1993). 
This in turn caused increase in the cyclic electron trans- 
 

port around PS1. 
 

Photophosphorylation and CO2 fixation: In cyanobac-
teria, salt stress increases the efficiency of photophospho-
rylation by stimulating the cyclic photosynthetic electron 
flow around PS1 (for review, see Joset et al. 1996). Upon 
the addition of high amount of NaCl to the growth me-
dium the activity of cyclic photophosphorylation was in-
creased in Synechocystis sp. PCC 6803 (Jeanjean et al. 
1993). The first step of photosynthetic CO2 assimilation 
is catalyzed by ribulose-1,5-bisphosphate carboxylase/ 
oxygenase (RuBPCO; EC 4.1.1.39) in C3 plants, and by 
phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) 
in C4 plants. Salt stress enhances the oxygenase activity 
of RuBPCO while it curtails its carboxylase activity 
(Sivakumar et al. 2000). In the halotolerant cyanobacte-
rium A. halophytica, the content of RuBPCO and the rate 
of CO2 fixation are increased in response to high salt 
stress (Takabe et al. 1988). Echevarría et al. (2001) and 
García-Mauriño et al. (2003) reveal that PEPC activity is 
enhanced by salt stress. 

Importance of low NaCl in photosynthesis 
 
The significance of sodium for cyanobacterial photosyn-
thesis has been demonstrated in several cases including 
growth (Miller et al. 1984, Brown et al. 1990), nitrogen 
fixation (Apte and Thomas 1983, Maeso et al. 1987), the 
uptake of nutrients such as nitrate and phosphate 
(Rodriguez et al. 1988, Fernandez-Valiente and 
Avendano 1993), and energy transduction (Brown et al. 
1990). Chiefly in cyanobacteria, a decrease in the cellular 
content of both Chl and PBPs (Maeso et al. 1987) was 
observed in the sodium deficient medium. The loss in 
photosynthetic net oxygen evolution was observed in 
Synechocystis sp. PCC 6714 (Zhao and Brand 1989), in 
alkaliphilic cyanobacterium S. platensis (Schlesinger  
et al. 1996, Pogoryelov et al. 2003), and in alkali tolerant 

cyanobacterium Synechocococcus leopoliensis (Miller  
et al. 1984, Espie et al. 1988) upon the sodium depriva-
tion from growth medium. The effect of loss in PS2 acti-
vity due to sodium deprivation is reversible by the addi-
tion of Ca2+ and Na+ in Synechocystis (Zhao and Brand 
1988, 1989). Na-ions are important in cyclic electron 
transport around PS1 under stress (Van Thor et al. 2000). 
A group of cyanobacteria living at alkaline pH require so-
dium to maintain acidic intracellular pH relative to the 
external alkaline pH which is maintained by Na+/H+ anti-
porter activity and thereby prevent the loss of all physio-
logical and metabolic activities (Krulwich et al. 1982, 
Krulwhich 1995, Pogoryelov et al. 2003). 

 
Tolerance mechanisms in response to salt stress 
 
A variety of salt tolerance mechanisms observed in pho-
tosynthesising organisms is given below. 
1. Higher plants are particularly limited in their salt tole-
rance range, whereas other photosynthetic organisms 
such as cyanobacteria acclimate better (Joset et al. 1996). 
Many plants and cyanobacteria exposed to salt stress pro-
duce co-solutes such as sucrose, trehalose, proline, glu-
cosyl-glycerol, and glycine-/glutamate-betaine (Gorham 
et al. 1985, Nomura et al. 1995). These co-solutes play an 
important role in salt tolerance of plants and cyano-
bacteria (for review see Joset et al. 1996). 
2. In plants, exogenous addition of proline protects plant 
growth and productivity by reducing the production of 
free radicals and/or scavenging the free radicals (Singh et 
al. 1996, Jain et al. 2001). Also the external supple- 
 

ments of Ca2+ ameliorate the effects of salinity in plants, 
most probably by facilitating higher K : Na selectivity 
(Miyao and Murata 1984, Hasegawa et al. 2000). 
3. In Synechocystis, un-saturation of fatty acids in the 
thylakoid membranes is important for the tolerance of 
photosynthetic machinery to salt stress. Un-saturation of 
fatty acids reverses the suppressed activity and synthesis 
of the Na+/H+ antiporter system due to salt stress 
(Allakhverdiev et al. 1999). 
4. Vacuolar H+-ATPase is required for salt tolerance as 
it imports cations such as Na+ into the vacuole (Golldack 
and Dietz 2001, Hamilton et al. 2002, Parks et al. 2002). 
In cyanobacteria, P-ATPase, which is located in the 
plasma membrane, is responsible for extrusion of Na+ 
from cytoplasm (Peschek et al. 1994). 



P. SUDHIR, S.D.S. MURTHY 

484 

Conclusions 
 
The above studies show that salt stress exhibits various 
inhibitory effects on bioenergetic processes of photo-
synthesis. For better understanding of the mechanisms of 
salt stress, comparative studies should be made using the 

salt stress resistant mutants. In-addition, studies made at 
molecular level would help understand the adaptive 
mechanisms and initiation of responses under salt stress. 
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