# INSTITUTE OF MATHEMATICS 

## Quantifying properties (K) and $\mu^{s}$

Dongyang Chen<br>Tomasz Kania<br>Yingbin Ruan

ஃ
ACADEMY
I
U
N
THE

Preprint No. 8-2021
PRAHA 2021

# QUANTIFYING PROPERTIES ( $K$ ) AND ( $\mu^{s}$ ) 

DONGYANG CHEN, TOMASZ KANIA, AND YINGBIN RUAN


#### Abstract

A Banach space $X$ has property $(K)$, whenever every weak* null sequence in the dual space admits a convex block subsequence $\left(f_{n}\right)_{n=1}^{\infty}$ so that $\left\langle f_{n}, x_{n}\right\rangle \rightarrow 0$ as $n \rightarrow \infty$ for every weakly null sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $X ; X$ has property $\left(\mu^{s}\right)$ if every weak ${ }^{*}$ null sequence in $X^{*}$ admits a subsequence so that all of its subsequences are Cesàro convergent to 0 with respect to the Mackey topology. Both property ( $\mu^{s}$ ) and reflexivity (or even the Grothendieck property) imply property ( $K$ ). In the present paper we propose natural ways for quantifying the aforementioned properties in the spirit of recent results concerning other familiar properties of Banach spaces.


## 1. Introduction

The present paper is inspired by many recent results that quantify various familiar properties of Banach spaces such as weak sequential completeness [KPS], reciprocal Dunford-Pettis property [KS], Schur property [KS1], Dunford-Pettis property [KKS], Banach-Saks property [BKS], property $(V)[\mathrm{Kr}]$, Grothendieck property [Be], etc. We continue this line of research and investigate possible quantifications of related properties $(K)$ and ( $\mu^{s}$ ) introduced by Kwapień and Rodríguez, respectively.

Mazur's lemma (see, e.g., [D, p. 11]) states that every weakly convergent sequence in a Banach space has a convex block subsequence that is norm convergent to the same limit. (A sequence $\left(y_{n}\right)_{n=1}^{\infty}$ in a Banach space $X$ is a convex block subsequence of a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ provided that there exists a strictly increasing sequence of positive integers $\left(k_{n}\right)_{n=1}^{\infty}$ so that $y_{n} \in \operatorname{conv}\left(x_{i}\right)_{i=k_{n-1}+1}^{k_{n}}$ for every $n \in \mathbb{N}$, where we set $k_{0}=0$; we denote by $\operatorname{cbs}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$ the collection of all convex block subsequences of $\left.\left(x_{n}\right)_{n=1}^{\infty}.\right)$ Kalton and Pełczyński [KP, Proposition 2.2] proved that if a Banach space $X$ contains an isomorphic copy of $c_{0}$, then for every $\sigma$-finite measure $\mu$ the kernel of any surjection $Q$ from $L_{1}(\mu)$ onto $X$ is uncomplemented in its second dual. Consequently, $\operatorname{ker} Q$ is not isomorphic to a Banach lattice; the original argument relied on the Lindenstrauss Lifting Principle. Having read a preliminary version of [KP], Kwapień introduced property $(K)$ to provide an alternative proof of [KP, Propositon 2.2] which did not appeal to the Lindenstrauss Lifting Principle (Kwapien's idea was incorporated in [KP], where it was presented with his permission). Property ( $K$ ) is central to our considerations:

Definition 1.1. A Banach space $X$ has property $(K)$, whenever every weak* null sequence in $X^{*}$ admits a convex block subsequence $\left(f_{n}\right)_{n=1}^{\infty}$ so that $\lim _{n \rightarrow \infty}\left\langle f_{n}, x_{n}\right\rangle=0$ for every weakly null sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $X$.

Put equivalently, Definition 1.1 stipulates that the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ converges to 0 with respect to the Mackey topology $\mu\left(X^{*}, X\right)$, which is the (locally convex) topology of uniform convergence in $X^{*}$ on weakly compact subsets of $X$ (see [DDS, Lemma 3.5]).

Property ( $K$ ) may be thought of as a counterpart of Mazur's lemma with respect to the weak* topology. It was shown in $[\mathrm{KP}]$ that the space $L_{1}(\mu)$ for a $\sigma$-finite measure has property $(K)$, yet $c_{0}$ fails to have this property. Schur spaces, i.e., spaces in which weak convergence of sequences coincides with norm convergence have property $(K)$ for trivial reasons. It follows from Mazur's lemma that Grothendieck spaces, in particular, reflexive spaces, have property $(K)$. (A Banach space $X$ is a Grothendieck space, whenever every weak* convergent sequence in $X^{*}$ converges weakly.)

Figiel, Johnson, and Pełczyński [FJP] refined property ( $K$ ) by introducing a weaker property that they call property $(k)$; this property appeared implicitly also in [Jo]. Property ( $k$ ) was used in [FJP] to show that the Separable Complementation Property need not pass to subspaces.

It was proved in [FJP] that property $(k)$ is enjoyed by every separable subspace of a weakly sequentially complete Banach lattice, weakly sequentially complete Banach lattices with weak units, and every separable subspace of the predual of a von Neumann algebra. Oja [FJP] pointed out that the Radon-Nikodým property implies property $(k)$. However, it was shown [FJP] that the $\ell_{1}$-sum of continuum many copies of $L_{1}[0,1]$ as well as Banach spaces containing complemented subspaces isomorphic to $c_{0}$ fail property $(k)$.

Property $(K)$ admits a number of characterisations. More precisely, let $X$ be a Banach space. Then the following assertions are equivalent:
(a) $X$ has property $(K)$.
(b) Every weak* null sequence in $X^{*}$ admits a convex block subsequence $\left(f_{n}\right)_{n=1}^{\infty}$ so that $\lim _{n \rightarrow \infty}\left\langle f_{n}, x_{n}\right\rangle=0$ for every weakly null sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $X$.
(c) Every weak* null sequence in $X^{*}$ admits a convex block subsequence that is $\mu\left(X^{*}, X\right)$-null.
(d) Every weak* convergent sequence in $X^{*}$ admits a convex block subsequence that is $\mu\left(X^{*}, X\right)$-Cauchy.

In Section 3 of the present paper, we prove quantitative versions of the aforestated characterisations. In order to do so, we introduce a quantity $\alpha$ that characterises $\mu\left(X^{*}, X\right)$ null sequences and subsequently we introduce a quantity $K_{1}$ that characterises property $(K)$. This is a quantitative version of clause (c). In order to quantify (b), we introduce a quantity $\beta$ that turns out to be equivalent to $\alpha$ for weak* null sequences. By using the
quantity $\beta$, we introduce a further quantity $K_{2}$ that we then prove is then equivalent to the quantity $K_{1}$. Finally, to quantify (d), we introduce a quantity $K_{3}$ in terms of ca $\rho_{\rho^{*}}$ defined in [KKS] that measures $\mu\left(X^{*}, X\right)$-Cauchyness and prove that $K_{3}$ is equivalent to $K_{1}$. In summary, we quantify property $(K)$ by means of the following estimates:

$$
K_{2}(X) \leqslant K_{1}(X) \leqslant 2 K_{2}(X)
$$

and

$$
K_{1}(X) \leqslant K_{3}(X) \leqslant 4 K_{1}(X)
$$

Furthermore, we investigate the values of the quantity $K_{2}$ in certain familiar Banach spaces failing property $(K)$ and obtain that, in particular, $K_{2}\left(c_{0}\right)=1$ and the $K_{2}$-value of the $\ell_{1}$-sum of $\mathfrak{c}$ copies of $L_{1}[0,1]$ is equal to 1 . (Curiously, Frankiewicz and Plebanek [FP] proved that under Martin's Axiom, the $\ell_{1}$-sum of fewer than $\mathfrak{c}$ copies of $L_{1}[0,1]$ still has property ( $K$ ).)

The purpose of Section 4 is to quantify the following widely known implications:

$$
X \text { is reflexive } \Rightarrow X \text { is a Grothendieck space } \Rightarrow X \text { has property }(K) .
$$

In order to quantify $(\star)$, we first make a slight improvement on characterisations of weak compactness due to Ülger [U] (see also [DRS]). Using this improvement, we establish a characterisation of the Grothendieck property, which is used to introduce a quantity $G$ measuring the Grothendieck property. This quantification of the Grothendieck property is different from the quantitative Grothendieck property proposed by Bendová ([Be]). Again using the improvement, we introduce a new quantity $R$ measuring reflexivity for Banach spaces. Meanwhile, the relationship between the quantity $R$ and several classical equivalent quantities measuring weak non-compactness is discussed. We also investigate possible values of the quantity $R$ of some classical Banach spaces. Having introduced $G$ and $R$, we quantify the implications $(\star)$ as follows:

$$
K_{1}(X) \leqslant G(X) \leqslant R\left(X^{*}\right) .
$$

Avilés and Rodríguez [AR] studied the implications $(\star)$ for Banach spaces not containing isomorphic copies of $\ell_{1}$ and proved that for such space $X$ :

$$
X \text { is reflexive } \Leftrightarrow X \text { is a Grothendieck space } \Leftrightarrow X \text { has property }(K) \text {. }
$$

Finally, we quantify ( $(\star$ ) as follows:

$$
K_{1}(X) \leqslant G(X) \leqslant R\left(X^{*}\right) \leqslant 8 K_{2}(X)
$$

A bounded subset $A$ of a Banach space $X$ is a Banach-Saks set if each sequence in $A$ has a Cesàro convergent subsequence. A Banach space $X$ is said to have the Banach-Saks property if its closed unit ball $B_{X}$ is a Banach-Saks set. Banach and Saks proved in [BS] that the spaces $L_{p}[0,1]$ and $\ell_{p}(1<p<\infty)$ enjoy the Banach-Saks property, hence the
name. Kakutani [Ka] later showed that uniformly convex spaces have the Banach-Saks property (hence so do superreflexive spaces). Any space with the Banach-Saks property is reflexive [NW], but there are reflexive spaces without the Banach-Saks property [Ba]. A localised version of the result of [NW] says that any Banach-Saks set is relatively weakly compact [LART].

It follows from the Erdős-Magidor Theorem (Theorem 2.3) that a Banach space $X$ has the Banach-Saks property if and only if every bounded sequence in $X$ admits a subsequence such that all of its subsequences are Cesàro convergent. Property $\left(\mu^{s}\right)$, introduced by Rodríguez [Ro], is a statement refining the Banach-Saks property for weak* null sequences in the dual space.

Definition 1.2. A Banach space $X$ has property $\left(\mu^{s}\right)$, whenever every weak* null sequence in $X^{*}$ admits a subsequence so that all of its subsequences are Cesàro convergent to 0 with respect to $\mu\left(X^{*}, X\right)$.

Clearly, if $X^{*}$ has the Banach-Saks property, then $X$ has property $\left(\mu^{s}\right)$. The converse is true for reflexive spaces [Ro, Proposition 2.2]. Moreover, it was pointed out [Ro, Lemma 2.1, Remark 2.3] that property $\left(\mu^{s}\right)$ is strictly stronger than property $(K)$.

The goal of Section 5 is to quantify the following implications ([Ro]):
$X^{*}$ has the Banach-Saks property $\Rightarrow X$ has property $\left(\mu^{s}\right) \Rightarrow X$ has property $(K)$.
( $\star \star \star$ )
To quantify property $\left(\mu^{s}\right)$, we first introduce a quantity $c \alpha$ by means of $\alpha$ that measures the rate of Cesàro convergence to 0 with respect to $\mu\left(X^{*}, X\right)$. By using the quantity $c \alpha$, we introduce a quantity $\mu^{s}$ that we then prove characterises property $\left(\mu^{s}\right)$. Furthermore, we introduce a quantity bs $(X)$ that characterises the Banach-Saks property of a Banach space $X$. This quantity is stronger than the quantity introduced in [BKS] that measures how far a bounded set is from being Banach-Saks. By using the quantities $\mu^{s}$ and bs, we quantify ( $\star \star \star$ ) as follows:

$$
\frac{1}{3} K_{1}(X) \leqslant \mu^{s}(X) \leqslant \operatorname{bs}\left(X^{*}\right)
$$

Finally, we prove that, for a reflexive space $X$,

$$
\mu^{s}(X) \leqslant \operatorname{bs}\left(X^{*}\right) \leqslant 4 \mu^{s}(X)
$$

which is a quantitative version of [Ro, Proposition 2.2].

## 2. Preliminaries

We use standard notation and terminology in-line with [AK] and [LT]. Throughout this paper, all Banach spaces are infinite-dimensional over the fixed field of real or complex numbers. By a subspace we mean a closed, linear subspace. An operator will always mean
a bounded linear operator. If $X$ is a Banach space, we denote by $B_{X}$ the closed unit ball $\{x \in X:\|x\| \leqslant 1\}$ and by $\mathcal{F}_{X}$ the family of all weakly compact subsets in $B_{X}$. For a subset $A$ of $X, \operatorname{conv}(A)$ stands for the convex hull of $A$. For brevity of notation, we denote by $\operatorname{ss}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$ the family of all subsequences of a sequence $\left(x_{n}\right)_{n=1}^{\infty}$.
2.1. Weak compactness. Let us invoke the following characterisation of weak compactness due to Ülger [U].

Lemma 2.1. A bounded subset $A$ of a Banach space $X$ is relatively weakly compact if and only if given any sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $A$, there exists a sequence $\left(z_{n}\right)_{n=1}^{\infty}$ with $z_{n} \in \operatorname{conv}\left(x_{i}: i \geqslant n\right)$ that converges weakly.

Diestel, Ruess, and Schachermayer [DRS] improved Lemma 2.1 as follows.
Lemma 2.2. For a bounded subset $A$ of $X$ the following statements are equivalent:
(1) $A$ is relatively weakly compact.
(2) For every sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $A$, there is a norm-convergent sequence $\left(z_{n}\right)_{n=1}^{\infty}$ such that $z_{n} \in \operatorname{conv}\left(x_{i}: i \geqslant n\right)$.
(3) For every sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $A$, there is a weakly convergent sequence $\left(z_{n}\right)_{n=1}^{\infty}$ such that $z_{n} \in \operatorname{conv}\left(x_{i}: i \geqslant n\right)$.

Let $A$ and $B$ are non-empty subsets of a Banach space $X$, we set

- $\mathrm{d}(A, B)=\inf \{\|a-b\|: a \in A, b \in B\}$,
- $\widehat{\mathrm{d}}(A, B)=\sup \{\mathrm{d}(a, B): a \in A\}$.
$\mathrm{d}(A, B)$ is the ordinary distance between $A$ and $B$, and $\widehat{\mathrm{d}}(A, B)$ is the (non-symmetrised) Hausdorff distance from $A$ to $B$. When $A$ is a bounded subset of a Banach space $X$, following [KKS], we set
- $\mathrm{wk}_{X}(A)=\widehat{\mathrm{d}}\left(\bar{A}^{\sigma\left(X^{* *}, X^{*}\right)}, X\right)$;
- $\operatorname{wck}_{X}(A)=\sup \left\{\mathrm{d}\left(\operatorname{clust}_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right), X\right):\left(x_{n}\right)_{n=1}^{\infty}\right.$ is a sequence in $\left.A\right\}$, where clust ${ }_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$ is the set of all weak ${ }^{*}$-cluster points of $\left(x_{n}\right)_{n=1}^{\infty}$ in $X^{* *}$.
- $\gamma_{X}(A)=\sup \left\{\left|\lim _{n} \lim _{m}\left\langle f_{m}, x_{n}\right\rangle-\lim _{m} \lim _{n}\left\langle f_{m}, x_{n}\right\rangle\right|:\left(x_{n}\right)_{n=1}^{\infty}\right.$ is a sequence in $A$, $\left(f_{m}\right)_{m=1}^{\infty}$ is a sequence in $B_{X^{*}}$ and all the involved limits exist $\}$.
It follows from [AC, Theorem 2.3] that

$$
\operatorname{wck}_{X}(A) \leqslant \operatorname{wk}_{X}(A) \leqslant \gamma_{X}(A) \leqslant 2 \operatorname{wck}_{X}(A) .
$$

2.2. Mackey topology. Let $X$ be a Banach space. The Mackey topology, $\mu\left(X^{*}, X\right)$, is the strongest locally convex topology on $X^{*}$ which is compatible with the dual pairing $\left\langle X^{*}, X\right\rangle$. In particular, $\bar{C}^{w^{*}}=\bar{C}^{\mu\left(X^{*}, X\right)}$ for every convex subset $C$ of $X^{*}$. If the dual unit ball endowed with the relative Mackey topology, $\left(B_{X^{*}}, \mu\left(X^{*}, X\right)\right)$, is metrisable, then $X$ has property $(K)$. Schlüchtermann and Wheeler [SW] term Banach spaces $X$ for which
$\left(B_{X^{*}}, \mu\left(X^{*}, X\right)\right)$ is metrisable as strongly weakly compactly generated (SWCG) spaces. As proved in [SW], a Banach space $X$ is SWCG if and only if there exists a weakly compact subset $K$ of $X$ so that for every weakly compact subset $L$ of $X$ and $\varepsilon>0$, there is a positive integer $n$ with $L \subseteq n K+\varepsilon B_{X}$. Moreover, reflexive spaces, separable Schur spaces, the space of operators of trace-class on a separable Hilbert space, and $L_{1}(\mu)$ for a $\sigma$-finite measure $\mu$ are SWCG.
2.3. Banach-Saks sets. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a bounded sequence in a Banach space. We set

$$
\operatorname{ca}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)=\inf _{n \in \mathbb{N}} \sup _{k, l \geqslant n}\left\|x_{k}-x_{l}\right\| .
$$

Clearly $\left(x_{n}\right)_{n=1}^{\infty}$ is norm-Cauchy if and only if $\mathrm{ca}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)=0$. Following [BKS], we define

$$
\operatorname{cca}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)=\operatorname{ca}\left(\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)_{n=1}^{\infty}\right) .
$$

Clearly, $\operatorname{cca}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)=0$ if and only if $\left(x_{n}\right)_{n=1}^{\infty}$ is Cesàro convergent.
A subset $A$ of a Banach space is Banach-Saks, whenever every sequence in $A$ has a Cesàro convergent subsequence.

We shall require the well-known 0-1 law by Erdős-Magidor [EM].
Theorem 2.3. (Erdős-Magidor) Every bounded sequence in a Banach space has a subsequence such that either all its further subsequences are Cesàro convergent, or none of them.

For a bounded set $A$ in a Banach space $X$, Bendová, Kalenda and Spurný [BKS] introduced the following quantity

$$
\operatorname{bs}(A)=\sup _{\left(x_{n}\right)_{n=1}^{\infty} \subseteq A\left(y_{n}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)} \operatorname{cca}\left(\left(y_{n}\right)_{n=1}^{\infty}\right)
$$

measuring how far is $A$ from being a Banach-Saks set. More precisely, they proved that $A$ is a Banach-Saks set if and only if $\operatorname{bs}(A)=0$.

## 3. Quantifications of property ( $K$ )

Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a bounded sequence in $X^{*}$. Following [KKS], we set

$$
\operatorname{ca}_{\rho^{*}}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)=\sup _{K \in \mathcal{F}_{X}} \inf _{n \in \mathbb{N}} \sup _{k, l \geqslant n} \sup _{x \in K}\left|\left\langle f_{k}-f_{l}, x\right\rangle\right|,
$$

then $\operatorname{ca}_{\rho^{*}}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)=0$ if and only if $\left(f_{n}\right)_{n=1}^{\infty}$ is $\mu\left(X^{*}, X\right)$-Cauchy (i.e., $\mu\left(X^{*}, X\right)$-convergent as the Mackey topology $\mu\left(X^{*}, X\right)$ [Ja, Proposition 4 on p. 197] is complete). We set

$$
\alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right)=\sup _{K \in \mathcal{F}_{X}} \limsup _{n \rightarrow \infty} \sup _{x \in K}\left|\left\langle f_{n}, x\right\rangle\right|,
$$

then $\alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right)=0$ if and only if $\left(f_{n}\right)_{n=1}^{\infty}$ is $\mu\left(X^{*}, X\right)$-null, and

$$
\beta\left(\left(f_{n}\right)_{n=1}^{\infty}\right)=\sup _{\substack{\left(x_{n}\right), \infty \\ \text { weakly } \\ \text { weBl } \\ \text { null }}} \limsup _{n \rightarrow \infty}\left|\left\langle f_{n}, x_{n}\right\rangle\right| .
$$

The following result is a quantitative version of [DDS, Lemma 3.3].
Lemma 3.1. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a weak* null sequence in $X^{*}$. Then

$$
\beta\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \leqslant \alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \leqslant 2 \beta\left(\left(f_{n}\right)_{n=1}^{\infty}\right) .
$$

Proof. The former inequality is trivial. It remains to prove the latter one.
Let $0<c<\alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$. Then there exist a weakly compact subset $K \subseteq B_{X}$, a subsequence $\left(f_{k_{n}}\right)_{n=1}^{\infty}$ of $\left(f_{n}\right)_{n=1}^{\infty}$, and a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $K$ so that $\left|\left\langle f_{k_{n}}, x_{n}\right\rangle\right|>c$ for all $n$. Since $K$ is weakly compact, by the Eberlein-Šmulian theorem, $\left(x_{n}\right)_{n=1}^{\infty}$ admits a subsequence $\left(x_{n_{m}}\right)_{m=1}^{\infty}$ that converges weakly to some $x \in K$. We define a sequence $\left(z_{n}\right)_{n=1}^{\infty}$ in $X$ by

$$
z_{k_{n_{m}}}=\frac{1}{2}\left(x_{n_{m}}-x\right) \quad(m=1,2, \ldots)
$$

and $z_{n}=0$ for $n \notin\left\{k_{n_{m}}\right\}_{m=1}^{\infty}$. Then $\left(z_{n}\right)_{n=1}^{\infty}$ is weakly null in $B_{X}$. For each $m$, we get

$$
\left|\left\langle f_{k_{n_{m}}}, z_{k_{n_{m}}}\right\rangle\right|=\frac{1}{2}\left|\left\langle f_{k_{n_{m}}}, x_{n_{m}}\right\rangle-\left\langle f_{k_{n_{m}}}, x\right\rangle\right| \geqslant \frac{1}{2}\left(c-\left|\left\langle f_{k_{n_{m}}}, x\right\rangle\right|\right) .
$$

Since $\left(f_{n}\right)_{n=1}^{\infty}$ is $\sigma\left(X^{*}, X\right)$-null, we get

$$
\limsup _{n \rightarrow \infty}\left|\left\langle f_{n}, z_{n}\right\rangle\right| \geqslant \limsup _{m \rightarrow \infty}\left|\left\langle f_{k_{n_{m}}}, z_{k_{n_{m}}}\right\rangle\right| \geqslant \frac{c}{2} .
$$

Since $c$ is arbitrary, we arrive at $\beta\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \geqslant \frac{1}{2} \alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$.
Lemma 3.2. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a bounded sequence in $X^{*}$ and $f \in X^{*}$. Then

$$
\operatorname{ca}_{\rho^{*}}\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \leqslant 2 \alpha\left(\left(f_{n}-f\right)_{n=1}^{\infty}\right)
$$

Proof. Let $c>\alpha\left(\left(f_{n}-f\right)_{n=1}^{\infty}\right)$ be arbitrary. Let $K \in \mathcal{F}_{X}$. Then there exists a positive integer $n$ so that $\sup _{x \in K}\left|\left\langle f_{k}-f, x\right\rangle\right|<c$ for all $k \geqslant n$. Hence, for $k, l \geqslant n$, we get

$$
\sup _{x \in K}\left|\left\langle f_{k}-f_{l}, x\right\rangle\right|=\sup _{x \in K}\left|\left\langle\left(f_{k}-f\right)-\left(f_{l}-f\right), x\right\rangle\right| \leqslant 2 c .
$$

This implies that $\operatorname{ca}_{\rho^{*}}\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \leqslant 2 c$. As $c$ was arbitrary, the proof is complete.
Lemma 3.3. Suppose that $\left(f_{n}\right)_{n=1}^{\infty}$ converges to $f \in X^{*}$ in the weak* topology. Then

$$
\alpha\left(\left(f_{n}-f\right)_{n=1}^{\infty}\right) \leqslant \operatorname{ca}_{\rho^{*}}\left(\left(f_{n}\right)_{n=1}^{\infty}\right) .
$$

Proof. Let $c>\operatorname{ca}_{\rho^{*}}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$ be arbitrary. Let $K \in \mathcal{F}_{X}$. Then there exists a positive integer $n$ so that $\sup _{x \in K}\left|\left\langle f_{k}-f_{l}, x\right\rangle\right|<c$ for all $k, l \geqslant n$. Hence, for each $x \in K$, we get $\left|\left\langle f_{k}-f_{l}, x\right\rangle\right|<c$ for all $k, l \geqslant n$. Letting $l \rightarrow \infty$, we get $\left|\left\langle f_{k}-f, x\right\rangle\right| \leqslant c$. This means that $\sup _{x \in K}\left|\left\langle f_{k}-f, x\right\rangle\right| \leqslant c$ for all $k \geqslant n$ and, consequently, $\alpha\left(\left(f_{n}-f\right)_{n=1}^{\infty}\right) \leqslant c$. As $c$ was arbitrary, the proof is finished.

Definition 3.4. Let $X$ be a Banach space. We set

$$
K_{2}(X)=\sup _{\substack{\left(f_{n}\right)_{n=1}^{\infty} \subseteq B_{X^{*}} \\ \text { weak* }}} \inf _{\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)} \beta\left(\left(g_{n}\right)_{n=1}^{\infty}\right)
$$

and

$$
K_{3}(X)=\sup _{\substack {\left(f_{n} n\right) \begin{subarray}{c}{\infty \\
\text { weak } \\
\text { weik }{ ( f _ { n } n ) \begin{subarray} { c } { \infty \\
\text { weak } \\
\text { weik } } } \\
{\inf _{X^{*}}\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbsh}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)}\end{subarray}} \operatorname{ca}_{\rho^{*}}\left(\left(g_{n}\right)_{n=1}^{\infty}\right)
$$

The three quantities $K_{1}, K_{2}$, and $K_{3}$ are actually equivalent.
Proposition 3.5. Let $X$ be a Banach space. Then
(i) $K_{2}(X) \leqslant K_{1}(X) \leqslant 2 K_{2}(X)$,
(ii) $K_{1}(X) \leqslant K_{3}(X) \leqslant 4 K_{1}(X)$.

Proof. The statement (i) follows from Lemma 3.1. It suffices to prove (ii).
It follows from Lemma 3.3 that $K_{1}(X) \leqslant K_{3}(X)$. Let $0<c<K_{3}(X)$. Then there exists a weak*-Cauchy sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $B_{X^{*}}$ so that for every $\left(h_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$ we have $\operatorname{ca}_{\rho^{*}}\left(\left(h_{n}\right)_{n=1}^{\infty}\right)>c$. Clearly, $\left(f_{n}\right)_{n=1}^{\infty}$ converges to some $f \in B_{X^{*}}$ in the weak* topology. Take any $\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(\frac{1}{2}\left(f_{n}-f\right)\right)_{n=1}^{\infty}\right)$. Then $2 g_{n}=h_{n}-f(n \in \mathbb{N})$, where $\left(h_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$. By Lemma 3.2, we get

$$
c<\operatorname{ca}_{\rho^{*}}\left(\left(h_{n}\right)_{n=1}^{\infty}\right)=2 \operatorname{ca}_{\rho^{*}}\left(\left(g_{n}\right)_{n=1}^{\infty}\right) \leqslant 4 \alpha\left(\left(g_{n}\right)_{n=1}^{\infty}\right)
$$

Hence $c \leqslant 4 K_{1}(X)$. Since $c$ is arbitrary, we get $K_{3}(X) \leqslant 4 K_{1}(X)$.
The subsequent result implies that the quantities $K_{1}, K_{2}$, and $K_{3}$ do characterise property $(K)$.

Theorem 3.6. A Banach space $X$ has property $(K)$ if and only if $K_{1}(X)=0$.

To prove Theorem 3.6, we require two elementary lemmata whose proofs are omitted.
Lemma 3.7. If $\left(y_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$, then $\operatorname{cbs}\left(\left(y_{n}\right)_{n=1}^{\infty}\right) \subseteq \operatorname{cbs}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$. More precisely, if $y_{n} \in \operatorname{conv}\left(x_{i}\right)_{i=k_{n-1}+1}^{k_{n}}$ and $z_{n} \in \operatorname{conv}\left(y_{j}\right)_{j=m_{n-1}+1}^{m_{n}}$, then $z_{n} \in \operatorname{conv}\left(x_{i}\right)_{i=k_{m_{n-1}+1}}^{k_{m_{n}}}$.

Lemma 3.8. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a bounded sequence in $X^{*}$. Then

$$
\alpha\left(\left(g_{n}\right)_{n=1}^{\infty}\right) \leqslant \alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right), \quad\left(\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)\right)
$$

Proof of Theorem 3.6. The necessity is trivial, so it suffices to prove the sufficiency.
Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a weak*-null sequence in $B_{X^{*}}$. Since $K_{1}(X)=0$, for each $k$ we get inductively a sequence $\left(f_{n}^{(k)}\right)_{n=1}^{\infty}$ in $X^{*}$ so that for $k \in \mathbb{N}$.

- $\left(f_{n}^{(1)}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$,
- $\left(f_{n}^{(k+1)}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}^{(k)}\right)_{n=1}^{\infty}\right)$,
- $\alpha\left(\left(f_{n}^{(k)}\right)_{n=1}^{\infty}\right)<\frac{1}{k}$.

For $n \in \mathbb{N}$, we set $g_{n}=f_{n}^{(n)}$. By Lemma 3.7, we get $\left(g_{n}\right)_{n \geqslant k} \in \operatorname{cbs}\left(\left(f_{n}^{(k)}\right)_{n=1}^{\infty}\right)$ for each $k$. By Lemma 3.8, we get

$$
\alpha\left(\left(g_{n}\right)_{n=1}^{\infty}\right)=\alpha\left(\left(g_{n}\right)_{n \geqslant k}\right) \leqslant \alpha\left(\left(f_{n}^{(k)}\right)_{n=1}^{\infty}\right)<\frac{1}{k} \quad(k=1,2, \ldots) .
$$

This means that $\alpha\left(\left(g_{n}\right)_{n=1}^{\infty}\right)=0$ and $\left(g_{n}\right)_{n=1}^{\infty}$ is $\mu\left(X^{*}, X\right)$-null. Consequently, $X$ has property ( $K$ ).

## Example 3.9.

(a) Let $X$ be a Banach space so that $B_{X^{*}}$ is $\sigma\left(X^{*}, X\right)$-sequentially compact or $\ell_{1}$ does not embed into $X$. If $X$ contains a subspace isomorphic to $c_{0}$, then $K_{2}(X)=1$. In particular,

$$
K_{2}\left(c_{0}\right)=K_{2}(c)=K_{2}(C[0,1])=1 .
$$

(b) $K_{2}\left(\ell_{1}\left(\mathbb{R}, L_{1}[0,1]\right)\right)=1$; here $\ell_{1}\left(\mathbb{R}, L_{1}[0,1]\right)$ stands for the $\ell_{1}$-sum of $\mathfrak{c}$ copies of $L_{1}[0,1]$.

Proof. (a). Let $\varepsilon>0$. It follows from [DRT, Theorem 6] (respectively, [DF, Theorem 2.2]) that there exists a subspace $Z$ of $X$ so that $Z$ is $(1+\varepsilon)$-isomorphic to $c_{0}$ and a projection $P$ from $X$ onto $Z$ with $\|P\| \leqslant 1+\varepsilon$. Let $T: c_{0} \rightarrow Z$ be an operator so that

$$
\frac{1}{1+\varepsilon}\|z\| \leqslant\|T z\| \leqslant\|z\| \quad\left(z \in c_{0}\right)
$$

Let $S=T^{-1} P$. Then $S T=I_{c_{0}}$ and $\|S\| \leqslant(1+\varepsilon)^{2}$. For each $n$, we set $f_{n}=\frac{S^{*} e_{n}^{*}}{(1+\varepsilon)^{2}}$, where $\left(e_{n}^{*}\right)_{n}$ is the unit vector basis of $\ell_{1}$. Then $\left(f_{n}\right)_{n=1}^{\infty}$ is weak* null in $B_{X^{*}}$. Take any $\left(y_{n}^{*}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$ and write

$$
y_{n}^{*}=\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} f_{i},
$$

where $\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i}=1$, and $\lambda_{i} \geqslant 0$. For every $n$, let $z_{n}=\sum_{i=k_{n-1}+1}^{k_{n}} e_{i}$, where $\left(e_{n}\right)_{n=1}^{\infty}$ is the unit vector unit basis of $c_{0}$. Clearly, $\left(T z_{n}\right)_{n=1}^{\infty}$ is weakly null in $B_{X}$. Moreover, for every $n$, we get

$$
\left|\left\langle y_{n}^{*}, T z_{n}\right\rangle\right|=\frac{1}{(1+\varepsilon)^{2}}\left|\left\langle\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} e_{i}^{*}, \sum_{j=k_{n-1}+1}^{k_{n}} e_{j}\right\rangle\right|=\frac{1}{(1+\varepsilon)^{2}} .
$$

This means that $\beta\left(\left(g_{n}\right)_{n=1}^{\infty}\right) \geqslant \frac{1}{(1+\varepsilon)^{2}}$ and so $K_{2}(X) \geqslant \frac{1}{(1+\varepsilon)^{2}}$. Letting $\varepsilon \rightarrow 0$, we get $K_{2}(X)=1$.
(b). Let $\Lambda$ be the set of all strictly increasing sequences $\left(k_{n}\right)_{n=1}^{\infty}$ of positive integers with $k_{1}=1$. Set $X=\ell_{1}\left(\Lambda, L_{1}[0,1]\right)$. Let $\left(r_{j}\right)_{j=1}^{\infty}$ be a sequence of Rademacher functions. Define $\left(g_{n}^{*}\right)_{n=1}^{\infty} \subseteq X^{*}$ by

$$
g_{n}^{*}(t)=r_{j(n, t)}
$$

where $t=\left(k_{m}\right)_{m=1}^{\infty} \in \Lambda, k_{j(n, t)} \leqslant n<k_{j(n, t)+1}$.

Since $g_{n}^{*}(t) \xrightarrow{\text { weak }^{*}} 0$ in $L_{\infty}[0,1](t \in \Lambda)$ and $\left\|g_{n}^{*}\right\|=1(n \in \mathbb{N})$, we get $g_{n}^{*} \xrightarrow{\text { weak }} 0$. Given $\left(h_{m}^{*}\right)_{m=1}^{\infty} \in \operatorname{cbs}\left(\left(g_{n}^{*}\right)_{n}\right)$, we write

$$
h_{m}^{*}=\sum_{j=k_{m}^{\circ}}^{k_{m+1}^{\circ}-1} \lambda_{j} g_{j}^{*} \quad\left(t_{0}=\left(k_{m}^{\circ}\right)_{m} \in \Lambda\right) .
$$

For each $m$, define $h_{m} \in X$ by $h_{m}(t)=r_{m}$ if $t=t_{0}$ and $h_{m}(t)=0$ otherwise. Then $\left(h_{m}\right)_{m=1}^{\infty}$ is weakly null in $B_{X}$. Moreover, $\left\langle h_{m}^{*}, h_{m}\right\rangle=1$ for each $m$. This implies that $\beta\left(\left(h_{m}^{*}\right)_{m=1}^{\infty}\right)=1$. Consequently, $K_{2}(X)=1$.

## 4. Quantifying the Grothendieck property and reflexivity

The following result is a slight improvement on Lemma 2.2. For the sake of completeness, we include the proof here.

Lemma 4.1. For a bounded subset $A$ of $X$ the following are equivalent:
(1) $A$ is relatively weakly compact.
(2) Every sequence in $A$ admits a convex block subsequence that is norm convergent.
(3) Every sequence in A admits a convex block subsequence that is weakly convergent.

Proof. (1) $\Rightarrow$ (2). Given a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $A$. Then $\left(x_{n}\right)_{n=1}^{\infty}$ admits a subsequence $\left(y_{n}\right)_{n=1}^{\infty}$ that is weakly convergent. By Mazur's lemma, $\left(y_{n}\right)_{n=1}^{\infty}$ admits a convex block subsequence $\left(z_{n}\right)_{n=1}^{\infty}$ that is norm convergent. It follows from Lemma 3.7 that $\left(z_{n}\right)_{n=1}^{\infty}$ is a convex block subsequence of $\left(x_{n}\right)_{n=1}^{\infty}$.
$(2) \Rightarrow(3)$ is trivial. It remains to prove $(3) \Rightarrow(1)$.
Let $K=\overline{\operatorname{conv}}(A)$. Given any $f \in X^{*}$. We let $c=\sup _{x \in K}\langle f, x\rangle=\sup _{x \in A}\langle f, x\rangle$. Choose a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $A$ so that $\left\langle f, x_{n}\right\rangle \rightarrow c$. By the assumption, there exists a sequence $\left(z_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$ so that $\left(z_{n}\right)_{n=1}^{\infty}$ converges weakly to some $x \in K$. It is easy to see that $\left\langle f, z_{n}\right\rangle \rightarrow c$. Hence $c=\langle f, x\rangle$. It follows from James' characterisation of weak compactness via norm-attaining functionals that $K$ is weakly compact and so $A$ is relatively weakly compact.

Proposition 4.2. A Banach space $X$ has the Grothendieck property if and only if every weak* null sequence in $X^{*}$ admits a convex block subsequence that is norm null.

Proof. The necessity follows from Mazur's lemma. It remains to prove the sufficiency.
Given a weak* null sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $X^{*}$ and any subsequence $\left(h_{n}\right)_{n=1}^{\infty}$ of $\left(f_{n}\right)_{n=1}^{\infty}$. By the hypothesis, $\left(h_{n}\right)_{n=1}^{\infty}$ admits a convex block subsequence $\left(g_{n}\right)_{n=1}^{\infty}$ that is norm null. By Lemma 4.1, the sequence $\left(f_{n}\right)_{n=1}^{\infty}$ is relatively weakly compact and hence is weakly null. Thus $X$ has the Grothendieck property.

Definition 4.3. Let $X$ be a Banach space. We set

$$
\left.G(X)=\sup _{\substack{\left(f_{n}\right) \\ \text { weak } \\ \text { weak } \\ \text { null }}} \inf _{\substack{B_{X}^{*}}} \lg _{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \limsup _{n \rightarrow \infty}\left\|g_{n}\right\| .
$$

The above-defined quantity measures, in a certain sense, how far is a given Banach space from being a Grothendieck space. This quantification of the Grothendieck property is very different from the one proposed by Bendová ([Be]) who introduced the so-called $\lambda$ Grothendieck space parametrised by $\lambda \geqslant 1$. Every $\lambda$-Grothendieck space is Grothendieck but not every Grothendieck space is $\lambda$-Grothendieck for some $\lambda \geqslant 1$ ([Be, Theorem 1.2]).

## Example 4.4.

(1) $G\left(c_{0}\right)=1$,
(2) $G\left(\ell_{1}\right)=1$,
(3) $G(C[0,1])=1$.

Proof. (1) is clear.
For (2), let $\left(s_{n}\right)_{n=1}^{\infty}$ be the summing basis of $c_{0}$, that is, $s_{n}=\sum_{k=1}^{n} e_{k}(n \in \mathbb{N})$. Then $\left(s_{\omega}-s_{n}\right)_{n=1}^{\infty}$ is a weak* null sequence in $B_{\ell_{\infty}}$, where $s_{\omega}$ is the sequence constantly equal to 1 . It is easy to see that for any $\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(s_{\omega}-s_{n}\right)_{n=1}^{\infty}\right)$ we have $\left\|g_{n}\right\|=1(n \in \mathbb{N})$. Consequently, $G\left(\ell_{1}\right)=1$.

In order to prove (3), for the sake of convenience, we consider $C[-1,1]$ instead. For each $n$, we define

$$
h_{n}(t)=\left\{\begin{aligned}
-\frac{n}{2}, & -\frac{1}{n} \leqslant t<0 \\
\frac{n}{2}, & 0 \leqslant t \leqslant \frac{1}{n} \\
0, & \text { otherwise }
\end{aligned}\right.
$$

and

$$
\varphi(t)=\left\{\begin{aligned}
-1, & -1 \leqslant t<0 \\
1, & 0 \leqslant t \leqslant 1
\end{aligned}\right.
$$

Let $\nu$ be the Lebesgue measure. A routine argument shows that $\lim _{n \rightarrow \infty} \int f h_{n} \mathrm{~d} \nu=0$ for all $f \in C[-1,1]$, which means that $\left(h_{n}\right)_{n=1}^{\infty}$ is a weak* null sequence in $B_{C[-1,1]^{*}}$ if we view each $h_{n} \in L_{1}[-1,1]$ as an element of $C[-1,1]^{*}$. Clearly, $\int \varphi \cdot h_{n} d \nu=1$ for each $n$. Take any $\left(\nu_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(h_{n}\right)_{n=1}^{\infty}\right)$ and write $\nu_{n}=\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} h_{i}$. Then

$$
\left\langle\varphi, \nu_{n}\right\rangle=\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i}\left\langle\varphi, h_{i}\right\rangle=1 \quad(n \in \mathbb{N}),
$$

which implies that $\left\|\nu_{n}\right\|=1$ if we regard $\varphi$ as an element of $B_{C[-1,1]^{* *}}$. We have thus proved that $G(C[-1,1])=1$.

We are going to use $G$ to quantify how far is a given Banach space from being a Grothendieck space.

Theorem 4.5. A Banach space $X$ has the Grothendieck property if and only if $G(X)=0$.
Proof. The necessary implication follows from Proposition 4.2.
Suppose that $G(X)=0$. Given a weak* null sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $B_{X^{*}}$, by induction, for each $k$, we get a sequence $\left(f_{n}^{(k)}\right)_{n=1}^{\infty}$ so that for all $k=1,2, \ldots$,

- $\left(f_{n}^{(1)}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$,
- $\left(f_{n}^{(k+1)}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}^{(k)}\right)_{n=1}^{\infty}\right)$,
- $\limsup _{n \rightarrow \infty}\left\|f_{n}^{(k)}\right\|<\frac{1}{k}$.

For each $n$, we set $h_{n}=f_{n}^{(n)}$. By Lemma 3.7, $\left(h_{n}\right)_{n \geqslant k} \in \operatorname{cbs}\left(\left(f_{n}^{(k)}\right)_{n=1}^{\infty}\right)$ for each $k$. Hence

$$
\limsup _{n \rightarrow \infty}\left\|h_{n}\right\| \leqslant \limsup _{n \rightarrow \infty}\left\|f_{n}^{(k)}\right\|<\frac{1}{k} \quad(k \in \mathbb{N})
$$

This implies that $\left(h_{n}\right)_{n=1}^{\infty}$ is a convex block subsequence of $\left(f_{n}\right)_{n=1}^{\infty}$ that converges to 0 in norm. Again by Proposition 4.2, $X$ enjoys the Grothendieck property.

Definition 4.6. Let $X$ be a Banach space. We set

$$
R(X)=\sup _{\left(x_{n}\right)_{n=1}^{\infty} \subseteq B_{X}} \inf _{\left(z_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)} \operatorname{ca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right) .
$$

Theorem 4.7. A Banach space $X$ is reflexive if and only if $R(X)=0$.
Proof. The necessity follows from Lemma 4.1. To prove the sufficiency, we need [BF, Fact 1]: an operator $T$ from a Banach space $X$ to a Banach space $Y$ is weakly compact if and only if the image under $T$ of every normalised basic sequence in $X$ does not dominate the summing basis $\left(s_{n}\right)_{n=1}^{\infty}$ of $c_{0}$. In particular, a Banach space $X$ is reflexive if and only if every normalised basic sequence in $X$ does not dominate the summing basis $\left(s_{n}\right)_{n=1}^{\infty}$ of $c_{0}$.

Assume that $X$ is non-reflexive. Then there exists a normalised basic sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $X$ that dominates the summing basis $\left(s_{n}\right)_{n=1}^{\infty}$ in $c_{0}$. That is, for some constant $C>0$, we get

$$
\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \geqslant C\left\|\sum_{i=1}^{n} a_{i} s_{i}\right\|=C \max _{1 \leqslant k \leqslant n}\left|\sum_{i=k}^{n} a_{i}\right|
$$

for all $n$ and all scalars $a_{1}, a_{2}, \ldots, a_{n}$. By the hypothesis, there exists a sequence $\left(z_{n}\right)_{n=1}^{\infty}$ in $\operatorname{cbs}\left(\left(x_{n}\right)_{n=1}^{\infty}\right), z_{n}=\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} x_{i}$, so that $\operatorname{ca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right)<C / 2$. Thus, for $n \neq m$ we have $\left\|z_{n}-z_{m}\right\|<\frac{1}{2} C$, yet

$$
\left\|z_{n}-z_{m}\right\|=\left\|\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} x_{i}-\sum_{i=k_{m-1}+1}^{k_{m}} \lambda_{i} x_{i}\right\| \geqslant C\left\|\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} s_{i}-\sum_{i=k_{m-1}+1}^{k_{m}} \lambda_{i} s_{i}\right\| \geqslant C .
$$

This contradiction completes the proof.
We discuss the relationship between the quantity $R$ and several commonly used equivalent quantities measuring weak non-compactness.

Theorem 4.8. Let $X$ be a Banach space. Then

$$
\operatorname{wck}_{X}\left(B_{X}\right) \leqslant R(X)
$$

Proof. Case 1. $X$ is separable.
Let $0<c<\operatorname{wck}_{X}\left(B_{X}\right)$ be arbitrary. Then there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $B_{X}$ so that $\mathrm{d}\left(\operatorname{clust}_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right), X\right)>c$. Let $\varepsilon>0$. Take any $x_{0}^{* *} \in \operatorname{clust}_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$ and let $d=\mathrm{d}\left(x_{0}^{* *}, X\right)$. By the Hahn-Banach theorem, there exists $x_{0}^{* * *} \in S_{X^{* * *}}$ so that $\left\langle x_{0}^{* * *}, x_{0}^{* *}\right\rangle=d$ and $\left\langle x_{0}^{* * *}, x\right\rangle=0$ for all $x \in X$. We let

$$
C=B_{X^{*}} \cap\left\{x^{* * *} \in X^{* * *}:\left|\left\langle x^{* * *}, x_{0}^{* *}\right\rangle-d\right|<\varepsilon\right\} .
$$

By Goldstine's theorem, $x_{0}^{* * *} \in \bar{C}^{\sigma\left(X^{* *}, X^{* *}\right)}$. Since $\left\langle x_{0}^{* * *}, x\right\rangle=0$ for all $x \in X$, we get $0 \in \bar{C}^{\sigma\left(X^{*}, X\right)}$. Since $X$ is separable, there exists a weak* null sequence $\left(f_{m}\right)_{m=1}^{\infty}$ in $C$. By passing to a subsequence, we may assume that the limit $\lim _{m}\left\langle x_{0}^{* *}, f_{m}\right\rangle$ exists, which is denoted by $a$. By the definition of $C,|a-d| \leqslant \varepsilon$. Since $x_{0}^{* *} \in$ clust $_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$, we get a subsequence $\left(y_{n}\right)_{n=1}^{\infty}$ of $\left(x_{n}\right)_{n=1}^{\infty}$ so that $\left|\left\langle x_{0}^{* *}-y_{n}, f_{m}\right\rangle\right|<\frac{1}{n}$ for $m=1,2, \ldots, n$. This implies that $\lim _{n \rightarrow \infty}\left\langle f_{m}, y_{n}\right\rangle=\left\langle x_{0}^{* *}, f_{m}\right\rangle$ for each $m$ and then $\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left\langle f_{m}, y_{n}\right\rangle=a$. Given any $\left(z_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(y_{n}\right)_{n=1}^{\infty}\right)$. It is easy to see that $\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty}\left\langle f_{m}, z_{n}\right\rangle=a$.

We claim that $|a| \leqslant \operatorname{ca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right)$. Indeed, for any $\delta>0$, we may choose a $N \in \mathbb{N}$ so that $\left\|z_{n}-z_{N}\right\|<\mathrm{ca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right)+\delta$ for all $n \geqslant N$. Then for each $m$ and $n \geqslant N$, we get

$$
\left|\left\langle f_{m}, z_{n}\right\rangle\right| \leqslant \operatorname{ca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right)+\delta+\left|\left\langle f_{m}, z_{N}\right\rangle\right| .
$$

Since $\left(f_{m}\right)_{m=1}^{\infty}$ is weak* null, we get, by letting $n \rightarrow \infty$ and $m \rightarrow \infty,|a| \leqslant \operatorname{ca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right)+\delta$. As $\delta$ was arbitrary, the proof of the claim is complete.

It follows that

$$
c<d \leqslant|a|+\varepsilon \leqslant R(X)+\varepsilon .
$$

As $c$ and $\varepsilon$ are arbitrary, we get wck $_{X}\left(B_{X}\right) \leqslant R(X)$.
Case 2. $X$ is possibly non-separable.
Let $0<c<\operatorname{wck}_{X}\left(B_{X}\right)$ be arbitrary. Then there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $B_{X}$ so that $\mathrm{d}\left(\operatorname{clust}_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right), X\right)>c$. Let $Y=\overline{\operatorname{span}}\left\{x_{n}: n=1,2, \ldots\right\}$ and $i_{Y}: Y \rightarrow X$ be the inclusion map. Since $i_{Y}^{* *}: Y^{* *} \rightarrow X^{* *}$ is an isometric embedding, we get

$$
\mathrm{d}\left(\operatorname{clust}_{Y^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right), Y\right) \geqslant \mathrm{d}\left(\operatorname{clust}_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right), X\right)>c .
$$

Indeed, let $y^{* *} \in \operatorname{clust}_{Y^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$ and $y \in Y$ be arbitrary. Then $i_{Y}^{* *} y^{* *} \in \operatorname{clust}_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$ and

$$
\left\|y^{* *}-y\right\|=\left\|i_{Y}^{* *} y^{* *}-y\right\| \geqslant \mathrm{d}\left(\text { clust }_{X^{* *}}\left(\left(x_{n}\right)_{n=1}^{\infty}\right), X\right)
$$

Finally, by Case 1, we get

$$
c \leqslant \operatorname{wck}_{Y}\left(B_{Y}\right) \leqslant R(Y) \leqslant R(X)
$$

As $c$ was arbitrary, the proof is complete.

## Example 4.9.

(1) Let $X$ be a Banach space containing a subspace isomorphic to $\ell_{1}$. Then $R(X)=2$. In particular, $R\left(\ell_{1}\right)=R(C[0,1])=2$.
(2) $R(c)=2$, where $c$ denotes the space of all convergent scalar sequences equipped with the supremum norm.
(3) $1 \leqslant R\left(c_{0}\right) \leqslant \frac{4}{3}$.

Proof. (1). Let $\varepsilon>0$. By James' distortion theorem, there is a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $B_{X}$ so that $\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \geqslant(1-\varepsilon) \sum_{i=1}^{n}\left|a_{i}\right|$ for all $n$ and all scalars $a_{1}, a_{2}, \ldots, a_{n}$. For each $\left(z_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$ we write $z_{n}=\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} x_{i}$. Then, for $n<m$, we get

$$
\left\|z_{n}-z_{m}\right\|=\left\|\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} x_{i}-\sum_{i=k_{m-1}+1}^{k_{m}} \lambda_{i} x_{i}\right\| \geqslant 2(1-\varepsilon) .
$$

This implies that $\mathrm{ca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right) \geqslant 2(1-\varepsilon)$ and hence $R(X) \geqslant 2(1-\varepsilon)$. As $\varepsilon$ was arbitrary, we proved (1).
(2). For each $n$, let

$$
x_{n}(i)=\left\{\begin{array}{rr}
1, & i \leqslant n \\
-1, & i>n
\end{array}\right.
$$

Given $\left(z_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)$, we write $z_{n}=\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} x_{i}$. Then, for $n<m$

$$
\sum_{i=k_{n-1}+1}^{k_{n}} \lambda_{i} x_{i}\left(k_{m-1}+1\right)=-1, \quad \sum_{i=k_{m-1}+1}^{k_{m}} \lambda_{i} x_{i}\left(k_{m-1}+1\right)=1 .
$$

This implies that $\left\|z_{n}-z_{m}\right\|=2$ and so ca $\left(\left(z_{n}\right)_{n=1}^{\infty}\right)=2$. Thus, we obtain $R(c)=2$.
(3). The inequality $R\left(c_{0}\right) \geqslant 1$ follows from Theorem 4.8 since for every non-reflexive space $X$ one has wck $_{X}\left(B_{X}\right)=1$, which follows for example from [GHP, Theorem 1] and [CKS, Proposition 2.2]. The inequality $R\left(c_{0}\right) \leqslant 4 / 3$ was pointed out by W. B. Johnson; we present it here with his permission.

Suppose that $\left(x_{n}\right)_{n=1}^{\infty}$ is a sequence in $B_{c_{0}}$. By passing to a subsequence, we may assume that $\left(x_{n}\right)_{n=1}^{\infty}$ converges coordinate-wise to some $x \in B_{\ell_{\infty}}$. By passing to further subsequence and making a small perturbation we may assume that there are $k_{1}<k_{2}<\ldots$ so that $x_{n}$ is supported on $\left\{1,2, \ldots, k_{n}\right\}$ and $x_{n+1}(i)=x(i), i=1,2, \ldots, k_{n}$. We define $z_{n}=\frac{2}{3} x_{2 n}+\frac{1}{3} x_{2 n+1}(n \in \mathbb{N})$.

We claim that $\left\|z_{n}-z_{m}\right\| \leqslant \frac{4}{3}$ for all $n, m, m>n$. Indeed,

$$
\left|z_{n}(i)-z_{m}(i)\right|=\left\{\begin{aligned}
\left|\frac{2}{3} x_{2 n}(i)+\frac{1}{3} x(i)-\frac{2}{3} x_{2 m}(i)-\frac{1}{3} x(i)\right| \leqslant \frac{4}{3}, & i \leqslant k_{2 n} \\
\left|\frac{1}{3} x_{2 n+1}(i)-\frac{2}{3} x_{2 m}(i)-\frac{1}{3} x(i)\right| \leqslant \frac{4}{3}, & k_{2 n}<i \leqslant k_{2 n+1} \\
\left|-\frac{2}{3} x_{2 m}(i)-\frac{1}{3} x(i)\right| \leqslant 1, & k_{2 n+1}<i \leqslant k_{2 m} \\
\left|-\frac{1}{3} x_{2 m+1}(i)\right| \leqslant \frac{1}{3}, & k_{2 m}<i \leqslant k_{2 m+1}
\end{aligned}\right.
$$

Consequently, $\mathrm{ca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right) \leqslant \frac{4}{3}$ and the proof is completed.

We require an elementary lemma whose proof is straightforward.
Lemma 4.10. Suppose that $\left(f_{n}\right)_{n=1}^{\infty}$ is a weak* null sequence in $X^{*}$. Then

$$
\limsup _{n \rightarrow \infty}\left\|f_{n}\right\| \leqslant \operatorname{ca}\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \leqslant 2 \limsup _{n \rightarrow \infty}\left\|f_{n}\right\| .
$$

An immediate consequence of Lemma 4.10 is the following quantification of implications ( $\star$ ).

Theorem 4.11. Let $X$ be a Banach space. Then

$$
K_{1}(X) \leqslant G(X) \leqslant R\left(X^{*}\right)
$$

In order to quantify ( $(*)$ ), we require a lemma.
Lemma 4.12. Let $X$ be a Banach space containing no subspaces isomorphic to $\ell_{1}$. Suppose that $f_{n} \xrightarrow{\text { weak* }} 0$ in $X^{*}$. Then

$$
\limsup _{n \rightarrow \infty}\left\|f_{n}\right\| \leqslant 2 \beta\left(\left(f_{n}\right)_{n=1}^{\infty}\right) .
$$

Proof. Let $0<c<\lim \sup \left\|f_{n}\right\|$. By passing to a subsequence, we may assume that $\left\|f_{n}\right\|>c$ for all $n$. Choose $x_{n} \in B_{X}$ with $\left\langle f_{n}, x_{n}\right\rangle>c(n \in \mathbb{N})$. Passing to a further subsequence, by Rosenthal's $\ell_{1}$-theorem, we may assume that $\left(x_{n}\right)_{n=1}^{\infty}$ is weakly Cauchy. Let $\varepsilon>0$. Since $f_{n} \xrightarrow{\text { weak }} 0$, we obtain, by induction, a strictly increasing sequence $\left(k_{n}\right)_{n=1}^{\infty}$ of even integers so that $\left\langle f_{k_{n}}, x_{k_{n}}-x_{2 n-1}\right\rangle>c-\varepsilon$ for all $n$. We set $y_{n}=\frac{1}{2}\left(x_{k_{n}}-x_{2 n-1}\right)$. Then $\left(y_{n}\right)_{n=1}^{\infty}$ is weakly null in $B_{X}$. Let us define a weakly null sequence $\left(z_{n}\right)_{n=1}^{\infty}$ in $B_{X}$ by $z_{k_{n}}=y_{n}$ and 0 otherwise. Then

$$
\beta\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \geqslant \limsup _{n \rightarrow \infty}\left|\left\langle f_{n}, z_{n}\right\rangle\right| \geqslant \underset{n \rightarrow \infty}{\limsup }\left|\left\langle f_{k_{n}}, z_{k_{n}}\right\rangle\right| \geqslant \frac{c-\varepsilon}{2} .
$$

Letting $\varepsilon \rightarrow 0$, we get $\beta\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \geqslant \frac{c}{2}$. As $c$ was arbitrary, the proof is complete.
Theorem 4.13. Let $X$ be a Banach space containing no subspaces isomorphic to $\ell_{1}$. Then

$$
K_{1}(X) \leqslant G(X) \leqslant R\left(X^{*}\right) \leqslant 8 K_{2}(X) .
$$

Proof. By Theorem 4.11, it suffices to prove the inequality $R\left(X^{*}\right) \leqslant 8 K_{2}(X)$.
Let $0<c<R\left(X^{*}\right)$. Then there exists a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $B_{X^{*}}$ so that

$$
\operatorname{ca}\left(\left(g_{n}\right)_{n=1}^{\infty}\right)>c \quad\left(\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)\right)
$$

Since $X$ contains no isomorphic copy of $\ell_{1}$, it follows from [Bo, Proposition 3.11] (cf. [Pf, Proposition 11]) that $B_{X^{*}}$ is weak convex block compact, that is, every sequence in $B_{X^{*}}$ admits a weak* convergent convex block subsequence. By passing to a convex block subsequence, by Lemma 3.7 we may assume that $f_{n} \xrightarrow{\text { weak }^{*}} f$ for some $f \in B_{X^{*}}$. Hence, we get

$$
\operatorname{ca}\left(\left(g_{n}\right)_{n=1}^{\infty}\right)>c \quad\left(\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}-f\right)_{n=1}^{\infty}\right)\right)
$$

Rescaling if necessary, we may assume that $\left(f_{n}\right)_{n=1}^{\infty}$ is a weak* null sequence in $B_{X^{*}}$ and

$$
\operatorname{ca}\left(\left(g_{n}\right)_{n=1}^{\infty}\right)>\frac{c}{2} \quad\left(\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)\right)
$$

By Lemma 4.10 and Lemma 4.12, we arrive at

$$
\frac{c}{2}<\operatorname{ca}\left(\left(g_{n}\right)_{n=1}^{\infty}\right) \leqslant 2 \limsup _{n}\left\|g_{n}\right\| \leqslant 4 \beta\left(\left(g_{n}\right)_{n=1}^{\infty}\right) \quad\left(\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)\right)
$$

This implies that $K_{2}(X) \geqslant \frac{c}{8}$. Since $c$ was arbitrary, the proof is complete.

## 5. Quantifying property $\left(\mu^{s}\right)$

For a bounded sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $X^{*}$, we define

$$
c \alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right)=\alpha\left(\left(\frac{1}{n} \sum_{i=1}^{n} f_{i}\right)_{n=1}^{\infty}\right) .
$$

Then $c \alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right)=0$ if and only if $\left(f_{n}\right)_{n=1}^{\infty}$ is Cesàro convergent to 0 with respect to $\mu\left(X^{*}, X\right)$. A direct argument shows that $c \alpha\left(\left(f_{n}\right)_{n=1}^{\infty}\right)=c \alpha\left(\left(f_{n}\right)_{n \geqslant N+1}\right)$ for every positive integer $N$.

Definition 5.1. Let $X$ be a Banach space. We set

$$
\mu^{s}(X)=\sup _{\substack{\left.\left.\left(f_{n}\right)\right)_{n}=1 \leq B_{X}\right)^{*} \\ \text { weak }}} \inf _{\substack{ \\\text { null }}}^{\infty} \inf _{n=1}^{\infty} \in \operatorname{ss}\left(\left(f_{n}\right)_{n=1}^{\infty}\right) \sup _{\left(h_{n}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(g_{n}\right)_{n=1}^{\infty}\right)} c \alpha\left(\left(h_{n}\right)_{n=1}^{\infty}\right)
$$

Theorem 5.2. A Banach space $X$ has property $\left(\mu^{s}\right)$ if and only if $\mu^{s}(X)=0$.
Proof. The sufficient part is trivial. We only prove the necessary part.
Given a weak* null sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $B_{X^{*}}$, by induction, for each $k$ we may find a sequence $\left(\left(g_{n}\right)^{(k)}\right)_{n=1}^{\infty}$ in $X^{*}$ such that

- $\left(\left(g_{n}\right)^{(1)}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)$,
- $\left(\left(g_{n}\right)^{(k+1)}\right)_{n} \in \operatorname{ss}\left(\left(\left(g_{n}\right)^{(k)}\right)_{n}\right)$,
- $c \alpha\left(\left(g_{n}\right)_{n=1}^{\infty}\right)<\frac{1}{k} \quad\left(\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(\left(g_{n}\right)^{(k)}\right)_{n}\right)\right)$.

Let $g_{n}=\left(g_{n}\right)^{(n)}(n=1,2, \ldots)$. Then $\left(g_{n}\right)_{n=1}^{\infty}$ is a subsequence of $\left(f_{n}\right)_{n=1}^{\infty}$. Take any subsequence $\left(h_{n}\right)_{n=1}^{\infty}$ of $\left(g_{n}\right)_{n=1}^{\infty}$. By construction, for each $k$, there exists $N_{k} \in \mathbb{N}$ so that $\left(h_{n}\right)_{n \geqslant N_{k}+1} \in \operatorname{ss}\left(\left(\left(g_{n}\right)^{(k)}\right)_{n}\right)$. Consequently,

$$
c \alpha\left(\left(h_{n}\right)_{n=1}^{\infty}\right)=c \alpha\left(\left(h_{n}\right)_{n \geqslant N_{k}+1}\right)<\frac{1}{k} .
$$

As $k$ was arbitrary, $c \alpha\left(\left(h_{n}\right)_{n=1}^{\infty}\right)=0$. Thus the sequence $\left(h_{n}\right)_{n=1}^{\infty}$ is Cesàro convergent to 0 with respect to $\mu\left(X^{*}, X\right)$, which completes the proof.

Definition 5.3. For a Banach space $X$, we set

$$
\operatorname{bs}(X)=\sup _{\left(x_{n}\right)_{n=1}^{\infty} \subseteq B_{X}} \inf _{\left(y_{n}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(x_{n}\right)_{n=1}^{\infty}\right)} \sup _{\left(z_{n}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(y_{n}\right)_{n=1}^{\infty}\right)} \operatorname{cca}\left(\left(z_{n}\right)_{n=1}^{\infty}\right) .
$$

Clearly, $\mathrm{bs}\left(B_{X}\right) \leqslant \operatorname{bs}(X)$. Combining Theorem 2.3 with [BKS, Corollary 4.3], we see that $\operatorname{bs}(X)=0$ if and only if $X$ has the Banach-Saks property.

Theorem 5.4. Let $X$ be a Banach space. Then

$$
\frac{1}{3} K_{1}(X) \leqslant \mu^{s}(X) \leqslant \operatorname{bs}\left(X^{*}\right)
$$

Proof. The latter inequality follows from Lemma 3.3, so it remains to prove only the former one.

Let $0<c<K_{1}(X)$ and let $\varepsilon>0$. Then there exist a weak ${ }^{*}$ null sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $B_{X^{*}}$ and a subsequence $\left(g_{n}\right)_{n=1}^{\infty}$ of $\left(f_{n}\right)_{n=1}^{\infty}$ such that

- $\alpha\left(\left(h_{n}\right)_{n=1}^{\infty}\right)>c \quad\left(\left(h_{n}\right)_{n=1}^{\infty} \in \operatorname{cbs}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)\right)$,
- $c \alpha\left(\left(g_{n}\right)_{n=1}^{\infty}\right)<\mu^{s}(X)+\varepsilon$.

It follows from Lemma 3.7 that

$$
\begin{aligned}
c & <\alpha\left(\left(\frac{1}{2^{n-1}} \sum_{i=2^{n-1}+1}^{2^{n}} g_{i}\right)_{n=1}^{\infty}\right) \\
& \leqslant 2 \alpha\left(\left(\frac{1}{2^{n}} \sum_{i=1}^{2^{n}} g_{i}\right)_{n=1}^{\infty}\right)+\alpha\left(\left(\frac{1}{2^{n-1}} \sum_{i=1}^{2^{n-1}} g_{i}\right)_{n=1}^{\infty}\right) \\
& \leqslant 3 \alpha\left(\left(\frac{1}{n} \sum_{i=1}^{n} g_{i}\right)_{n=1}^{\infty}\right) \\
& \leqslant 3 \mu^{s}(X)+3 \varepsilon .
\end{aligned}
$$

As $c$ and $\varepsilon$ are arbitrary, we arrive at $K_{1}(X) \leqslant 3 \mu^{s}(X)$, which completes the proof.
Finally, we present a result that directly quantifies [Ro, Proposition 2.2].
Theorem 5.5. Let $X$ be a reflexive space. Then

$$
\mu^{s}(X) \leqslant \operatorname{bs}\left(X^{*}\right) \leqslant 4 \mu^{s}(X)
$$

Proof. The former inequality follows from Lemma 3.3, so we need to prove the latter one. Let $0<c<\operatorname{bs}\left(X^{*}\right)$. Then there exists a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ in $B_{X^{*}}$ so that

$$
\begin{equation*}
\sup _{\left(h_{n}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(g_{n}\right)_{n=1}^{\infty}\right)} \operatorname{cca}\left(\left(h_{n}\right)_{n=1}^{\infty}\right)>c \quad\left(\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(f_{n}\right)_{n=1}^{\infty}\right)\right) . \tag{5.1}
\end{equation*}
$$

Due to reflexivity, we may assume that $f_{n} \xrightarrow{\text { weak* }} f$ for some $f \in B_{X^{*}}$.
Given any $\left(g_{n}\right)_{n=1}^{\infty} \in \operatorname{ss}\left(\left(\frac{f_{n}-f}{2}\right)_{n=1}^{\infty}\right)$, by (5.1), there exists a subsequence $\left(h_{n}\right)_{n=1}^{\infty}$ of $\left(2 g_{n}+f\right)_{n=1}^{\infty}$ such that cca $\left(\left(h_{n}\right)_{n=1}^{\infty}\right)>c$. Again, by reflexivity of $X$, we get

$$
2 c \alpha\left(\left(h_{n}-f\right)_{n=1}^{\infty}\right) \geqslant \operatorname{cca}\left(\left(h_{n}-f\right)_{n=1}^{\infty}\right)=\operatorname{cca}\left(\left(g_{n}\right)_{n=1}^{\infty}\right)>c .
$$

As $\left(\frac{h_{n}-f}{2}\right)_{n=1}^{\infty}$ is a subsequence of $\left(g_{n}\right)_{n=1}^{\infty}, \mu^{s}(X) \geqslant \frac{c}{4}$. Since $c$ was arbitrary, the proof is complete.

Acknowledgements. The first-named author would like to thank W. B. Johnson and B. Wallis for helpful discussions and comments. The second-named author is indebted to G. Plebanek for making available [FP] to us.

## References

[AK] F. Albiac and N. J. Kalton, Topics in Banach space theory, Springer, 2005.
[AC] C. Angosto and B. Cascales, Measures of weak non-compactness in Bananch spaces, Topology Appl. 156 (2009), 1412-1421.
[AR] A. Avilés and J. Rodríguez, Convex combinations of weak*-convergent sequences and the Mackey topology, Mediterr. J. Math. 13 (2016), 4995-5007.
[Ba] A. Baernstein II, On reflexivity and summability, Studia Math. 42 (1972), 91-94.
[BS] S. Banach and S. Saks, Sur la convergence forte dans les champs $L_{p}$, Studia Math. 2 (1930), 51-57.
[BF] K. Beanland and D. Freeman, Ordinal ranks on weakly compact and Rosenthal operators, Extracta Math. 26 (2011), 173-194.
[Be] H. Bendová, Quantitative Grothendieck property. J. Math. Anal. Appl. 412 (2014), 1097-1104.
[BKS] H. Bendová, O. F. K. Kalenda, and J. Spurný, Quantification of the Banach-Saks property, J. Funct. Anal. 268(2015), 1733-1754.
[Bo] J. Bourgain, La propriété de Radon-Nikodym, In: Publications Mathématiques del'Université Pierre et Marie Curie Paris VI, Cours de troisième cycle, n. 36 (1979).
[CKS] B. Cascales, O. F. K. Kalenda, and J. Spurný, A quantitative version of James's compactness theorem, Proc. Edinb. Math. Soc. 55 (2012), 369-386.
[DDS] B. De Pagter, P. G. Dodds, and F. A. Sukochev, On weak* convergence sequences in duals of symmetric spaces of $\tau$-measurable operators, Israel J. Math. 222 (2017), 125-164.
[DF] S. Díaz and A. Fernández, Reflexivity in Banach lattices, Arch Math. 63 (1994), 549-552.
[D] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
[DRS] J. Diestel, W. M. Ruess, and W. Schachermayer, Weak compact in $L^{1}(\mu, X)$, Proc. Amer. Math. Soc. 118 (1993), 447-453.
[DRT] P. N. Dowling, N. Randrianantoanina, and B. Turett, Remarks on James's distortion theorems II, Bull. Austral. Math. Soc. 59(1999), 515-522.
[EM] P. Erdős and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), 232-234.
[FJP] T. Figiel, W. B. Johnson, and A. Pełczyński, Some approximation properties of Banach spaces and Banach lattices, Israel J. Math. 183 (2011), 199-231.
[FP] R. Frankiewicz and G. Plebanek, Convex combinations and weak null sequences, Bull. Pol. Acad. Sci., Math. 45, No. 3 (1997), 221-225.
[GK] M. González and T. Kania, Grothendieck spaces: the landscape and perspectives, preprint (2021), 54 pp.
[GHP] A. S. Granero, J. M. Hernández, and H. Pfitzner, The distance $\operatorname{dist}(\mathcal{B}, X)$ when $\mathcal{B}$ is a boundary of $B\left(X^{* *}\right)$, Proc. Amer. Math. Soc. 139 (2011), 1095-1098.
[Ja] H. Jarchow, Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981.
[Jo] W. B. Johnson, Extensions of $c_{0}$, Positivity. 1 (1997), 55-74.
[KKS] M. Kačena, O. F. K. Kalenda, and J. Spurný, Quantitative Dunford-Pettis property, Adv. Math. 234 (2013), 488-527.
[Ka] S. Kakutani, Weak convergence in uniformly convex spaces, Tohoku Math. J. 45 (1938), 188-193.
[KPS] O. F. K. Kalenda, H. Pfitzner, and J. Spurný, On quantification of weak sequential completeness, J. Funct. Anal. 260 (2011), 2986-2996.
[KS] O. F. K. Kalenda and J. Spurný, Quantification of the reciprocal Dunford-Pettis property, Studia Math. 210 (2012), 261-278.
[KS1] O. F. K. Kalenda and J. Spurný, On a difference between quantitative weak sequential completeness and the quantitative Schur property. Proc. Am. Math. Soc. 140, No. 10 (2012), 3435-3444.
[KP] N. J. Kalton and A. Pełczyński, Kernels of surjections from $\mathcal{L}_{1}$-spaces with an application to Sidon sets, Math. Ann. 309 (1997), 135-158.
$[\mathrm{Kr}] \quad \mathrm{H}$. Krulišová, $C^{*}$-algebras have a quantitative version of Petczyński's property $(V)$, Czech. Math. J. 67, No. 4 (2017), 937-951.
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, Springer, Berlin, 1977.
[LART] J. Lopez-Abad, C. Ruiz, and P. Tradacete, The convex hull of a Banach-Saks set, J. Funct. Anal. 266 (2014), 2251-2280.
[NW] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53-57.
[Pf] H. Pfitzner, Boundaries for Banach spaces determine weak compactness, Invent. Math. 182 (2010), 585-604.
[Ro] J. Rodríguez, Cesàro convergent sequences in the Mackey topology, Mediterr. J. Math. 16, No. 5, Paper No. 117 (2019), 19 pp.
[SW] G. Schlüchtermann and R. F. Wheeler, On strongly WCG Banach spaces, Math. Z. 199 (1988), 387-398.
[U] A. Ülger, Weak compactness in $L^{1}(\mu, X)$, Proc. Amer. Math. Soc. 113 (1991), 143-149.
School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China
Email address: cdy@xmu.edu.cn
Mathematical Institute, Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic

Email address: kania@math.cas.cz, tomasz.marcin.kania@gmail.com
College of Mathematics and informatics, Fujian Normal University, Fuzhou, 350007, China

Email address: yingbinruan@sohu.com

